
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Prototype for seamless interoperability (c)
D5.6

Work Package: WP5 Seamless Interoperability

Dissemination level: PU = Public

Status: Final

Date: 28 September 2018

Responsible partner: Luis M. Alonso (TRC)

Contact information: luis.alonso@reusecompany.com

Document reference: AMASS_D5.6_WP5_TRC_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information that is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors1

Reviewers

1 The list includes the contributors to D5.5, which is evolved in D5.6

Names Organisation

Luis M. Alonso, Borja López The REUSE Company (TRC)

Jose Luis de la Vara, Jose María Álvarez, Eugenio Parra, Roy
Mendieta, Francisco Rodríguez

Universidad Carlos III de Madrid (UC3)

Ángel López, Alejandra Ruiz, Estibaliz Amparan Tecnalia Research & Innovation (TEC)

Pietro Braghieri, Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Stefano Puri Intecs (INT)

Marc Sango ALL4TEC (A4T)

Tomáš Kratochvíla, Vit Koksa Honeywell (HON)

Ivana Černá Masaryk University (UOM)

Jan Mauersberger Ansys medini Technologies (KMT)

Markus Grabowski Assystem Germany (B&M)

Morayo Adedjouma, Botella Bernard, Huascar Espinoza,
Thibaud Antignac

CEA LIST (CEA)

Staffan Skogby, Detlef Scholle Alten Sweden (ALT)

Names Organisation

Daniel Wright (Peer review), Ran Bi (Peer review) Rapita Systems (RPT)

George Bravos (Peer review) Infineon (IFX)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 107

TABLE OF CONTENTS

Abbreviations and Definitions.. 9

Executive Summary .. 11

1. Introduction (*) ... 13

2. Implemented Functionality (*) .. 16

2.1 Scope (*) .. 16

2.2 Implemented Requirements (*) .. 16

2.2.1 Evidence Management Functionality (**) ... 22
2.2.1.1 ‘Characterise Artefact’ with OpenCert ... 22
2.2.1.2 ‘Link Artefact with External Tool’ with OpenCert .. 22
2.2.1.3 ‘Specify Artefact Lifecycle’ with OpenCert .. 24
2.2.1.4 ‘Evaluate Artefact’ with OpenCert.. 25
2.2.1.5 ‘Evaluate Artefact’ through Management of V&V evidence (**)............................. 26
2.2.1.6 ‘Specify Process Information for Artefacts’ with OpenCert 29

2.2.2 Assurance Traceability Functionality (**) .. 30
2.2.2.1 ‘Specify Traceability between Assurance Assets’ with OpenCert 30
2.2.2.2 ‘Specify Traceability between Assurance Assets’ with Capra (*) 30
2.2.2.3 ‘Specify Traceability between Assurance Assets’ for Knowledge-Centric Automated

Traceability (**) ... 32
2.2.2.4 ‘Conduct Impact Analysis of Assurance Asset Change’ with OpenCert 33
2.2.2.5 ‘Conduct Impact Analysis of Assurance Asset Change’ with Knowledge-Centric

Automated Traceability (**) .. 34
2.2.3 Tool integration Functionality (**) .. 34

2.2.3.1 ‘Characterise Toolchain’ with OpenCert (**) .. 34
2.2.3.2 ‘Characterise Toolchain’ with Papyrus (**) ... 34
2.2.3.3 ‘Characterise Toolchain’ with Systems Engineering Suite (**) 35
2.2.3.4 ‘Specify Tool Connection Information’ with OpenCert .. 37
2.2.3.5 ‘Specify Tool Connection Information’ for OSLC-KM-based Integration (*) 37
2.2.3.6 ‘Specify Tool Connection Information’ for Integration with V&V Manager (*) 46
2.2.3.7 ‘Specify Tool Connection Information’ for Integration of CHESS and V&V Tools (*) 49
2.2.3.8 ‘Specify Tool Connection Information’ for Papyrus Safety and Security Engineering

(**) .. 52
2.2.3.9 ‘Specify Tool Connection Information’ for Systems Engineering Suite through Ad-

hoc Tool Integration (*) ... 53
2.2.3.10 ‘Specify Tool Connection Information’ for Safety/Cyber Architect (**) 58
2.2.3.11 ‘Specify Tool Connection Information’ for Farkle (**) ... 65
2.2.3.12 ‘Specify Tool Connection Information’ for Sabotage (**) .. 65
2.2.3.13 ‘Specify Tool Connection Information’ for SAVONA (**) ... 66
2.2.3.14 ‘Specify Tool Connection Information’ though Automatic Generation of OSLC KM-

based Connectors (**) ... 66
2.2.4 Platform Management Functionality (**) ... 67

2.2.4.1 ‘Configure Access to Assurance Assets’ in OpenCert (**) 67
2.2.4.2 ‘Log in the platform’ in OpenCert (**) .. 72
2.2.4.3 ‘Concurrent Assurance Information Edition’ with Web-based Technologies 73
2.2.4.4 ‘Concurrent Assurance Information Edition’ with Data Mining Technologies 74
2.2.4.5 ‘Concurrent Assurance Information Edition’ through Automatic Translations (**) . 76
2.2.4.6 ‘Concurrent Assurance Information Edition’ in OpenCert (**) 80

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 107

2.2.4.7 Concurrent System Architecture Edition in OpenCert (**) 85

2.3 Installation and User Manuals (*) ... 86

3. Implementation Description (*) .. 87

3.1 Implemented Modules (*) .. 87

3.2 Implemented Metamodel... 89

3.3 Source Code Description for the AMASS Tool Platform (*) .. 90

3.4 Source Code Description for External Tools (*) ... 93

3.4.1 Seamless Interoperability Features in Systems Engineering Suite by TRC (**) 93
3.4.1.1 OSLC-KM standard and OSLC-KM implementation (**) .. 93
3.4.1.2 ReqIF Connector (**) ... 96
3.4.1.3 PTC Integrity Connector (**) .. 97
3.4.1.4 RAT for Rhapsody Plugin (**) ... 98
3.4.1.5 DOORS Next Generation Connector (**) .. 99
3.4.1.6 Automatic translations (**).. 100

3.4.2 Seamless Interoperability Features for Safety/Cyber Architect tools (**) 101
3.4.3 Integration of CHESS and V&V Tools (**) .. 101

4. Conclusion (*) ... 105

References ... 106

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 107

List of Figures

Figure 1. AMASS Building blocks .. 13
Figure 2. Functional decomposition for the AMASS platform ... 16
Figure 3. Artefact definition creation ... 22
Figure 4. Artefact data specification .. 23
Figure 5. Use of SVN repository as artefact repository ... 23
Figure 6. Resource specification for an artefact ... 24
Figure 7. Resource properties .. 24
Figure 8. Artefact event properties .. 25
Figure 9. Artefact evaluation properties .. 25
Figure 10. VERIFICATION Studio displaying some requirements in a specification 26
Figure 11. AMASS Repository connection parameters ... 26
Figure 12. Importing evidence into the AMASS repository ... 27
Figure 13. Detailed requirement information .. 28
Figure 14. Details of the export of the assessment of a metric for a requirement 28
Figure 15. Details of the export of the metadata of the assessment of a metric for a requirement 29
Figure 16. Process model ... 29
Figure 17. Activity data .. 30
Figure 18. Advanced CAPRA trace creation view (drop sensitive) ... 31
Figure 19. Tracing a claim to a contract ... 32
Figure 20. Knowledge-Centric Automated Traceability .. 33
Figure 21. Modification event of an artefact .. 33
Figure 22. Impact analysis information .. 34
Figure 23. Impact analysis with Knowledge-Centric Automated Traceability .. 34
Figure 24. SE Suite new connectors ... 36
Figure 25. RAT plugin for Rhapsody, create new requirement with RAT ... 36
Figure 26. RAT plugin for Rhapsody, edit requirement description with RAT .. 37
Figure 27. OSLC-KM Importing an Evidence Model from a model file ... 37
Figure 28. Fragment of a Papyrus model to be imported ... 38
Figure 29. Step #1 of the OSLC-KM Evidence Manager Importer .. 38
Figure 30. Step #2 of the OSLC-KM Evidence Manager Importer .. 39
Figure 31. New evidence model from a Papyrus model ... 40
Figure 32. OSLC-KM Preferences. Web Service URL ... 41
Figure 33. VERIFICATION Studio Connection Window .. 42
Figure 34. OSLC-KM Connection (SysML Papyrus sub-type) ... 43
Figure 35. OSLC-KM input type: Web Service ... 43
Figure 36. OSLC-KM input type: File ... 44
Figure 37. OSLC-KM input type: Database.. 44
Figure 38. OSLC-KM input type: Database connection parameters window ... 45
Figure 39. OSLC-KM mappings selector.. 45
Figure 40. OSLC-KM mappings edition window .. 45
Figure 41. OSLC-KM connection window. Optional configuration .. 46
Figure 42. OSLC-KM connection window. Custom-code filtering .. 46
Figure 43. V&V Manager integration ... 47
Figure 44. Status of the V&V tasks and the available results .. 48
Figure 45. FBK Tool Integration via files ... 49
Figure 46. FBK Tool Integration via OSLC Automation .. 50
Figure 47. FBK Tool Adapters Configuration ... 50
Figure 48. Contract and Behaviour Verification context menu ... 51

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 107

Figure 49. Contract and Behaviour Verification main menu ... 51
Figure 50. FBK Tool Automation Plan example ... 52
Figure 51. Interoperability flow between Papyrus SSE and XFTA tool ... 53
Figure 52. User interface in Papyrus SSE for seamless model-checking analysis with NuSMV tool 53
Figure 53. ReqIF metamodel .. 54
Figure 54. ReqIF connection window focusing on the ReqIF specific parameters 54
Figure 55. Mapping window for ReqIF Specifications ... 55
Figure 56. Mapping window for a single ReqIF specification .. 55
Figure 57. Integrity connector architecture ... 55
Figure 58. PTC integrity connection window .. 56
Figure 59. Rhapsody connector architecture ... 57
Figure 60. DNG Connection window .. 58
Figure 61. Interoperability between AMASS platform (CHESS, OpenCert) and Safety/Security analysis

tools (Safety Architect and Cyber Architect) .. 59
Figure 62. Flow of UML/SysML Model to Farkle ... 65
Figure 63. Extended Farkle interface for AMASS Tools ... 65
Figure 64. CHESS Export function of SAVONA .. 66
Figure 65. GUI to allow creation of XSLT files to customise the mapping of XML file nodes to

elements in the OSLC-KM metamodel ... 67
Figure 66. Manage Security menu ... 68
Figure 67. Manage Users Window ... 69
Figure 68. Manage Roles Window ... 69
Figure 69. Manage Groups Window .. 70
Figure 70. Repository Explorer showing models with different font styles according the access rights 70
Figure 71. Generation of Assurance Project in Repository folders with write access 71
Figure 72. Import data options disabled for an Assurance Project with read only access. 72
Figure 73. Authentication for Platform Access ... 73
Figure 74. Change password window... 73
Figure 75. Ultimate picture of collaborative work using rich and web clients ... 74
Figure 76. Screenshot of the current version of the web-based tool for collaborative model editing 74
Figure 77. Screenshot of the Indexing configuration preferences... 75
Figure 78. Screenshot of context menu to index data .. 75
Figure 79. Screenshot of the Data Mining platform for collaborative work .. 76
Figure 80. Screenshot of the Kibana Discovery tool ... 76
Figure 81. Automatic translations via Ontology patterns ... 77
Figure 82. Linking of patterns across different languages ... 77
Figure 83. INTEROPERABILITY Studio > Transformation manager ... 78
Figure 84. INTEROPERABILTY Studio > Transformation parameterization ... 78
Figure 85. INTEROPERABILTY Studio > Specification point of view ... 79
Figure 86. Transformation output log .. 79
Figure 87. Target specification showing new work products generated automatically 80
Figure 88. INTEROPERABILITY Studio > SandBox window ... 80
Figure 89. Conflict message when saving a model. .. 81
Figure 90. Two users edit the same model elements. When the user 1 (left editor) saves the changes,

the conflicted elements are marked in red to the user 2 (right editor) 81
Figure 91. Conflicted elements bordered in red in a graphical editor. .. 82
Figure 92. Interactive Conflict Resolution context menu. ... 83
Figure 93. Rollback resolution ... 83
Figure 94. Options to Lock/Unlock model elements ... 84
Figure 95. Lock state visualization in editors (locker user editor in the left).. 85
Figure 96. Creating a new CHESS Model in CDO ... 85
Figure 97. Platform management modules .. 88

file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D5.6_Final/D5.6_Prototype-for-seamless-interoperability-(c)_AMASS_Final.docx%23_Toc525919808

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 107

Figure 98. Evidence management module ... 88
Figure 99. Assurance traceability modules ... 89
Figure 100. Tool integration modules .. 89
Figure 101. Excerpt of artefact information in the CCL ... 90
Figure 102. Evidence management and System management plug-ins .. 92
Figure 103. Rqa.Face.OslcKm library .. 94
Figure 104. Implementation of the OSLC-KM for SE Suite by TRC ... 94
Figure 105. OSLC-KM parsers and XSLT transformation files for Papyrus and Rhapsody 95
Figure 106. Part of the Papyrus XSLT transformation to map requirements in the model to the OSLC-

KM model instance ... 95
Figure 107. ReqIF connector source code libraries ... 96
Figure 108. PTC integrity connector source code libraries .. 97
Figure 109. RAT plugin for Rhapsody source code.. 98
Figure 110. Java plugin for Rhapsody ... 98
Figure 111. DNG connector source code libraries .. 99
Figure 112. Automatic translations connector source code libraries .. 100
Figure 113. CHESS to SA plugins .. 101
Figure 114. Source project structure of Tool Adapter plugins .. 102
Figure 115. Tool Function Hierarchy .. 103
Figure 116. Tool Runner Hierarchy .. 103
Figure 117. FBK Tool Eclipse Command ... 104

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 107

List of Tables

Table 1. Summary of the status of WP5 requirements .. 17
Table 2. A Mapping table between CHESS and Safety Architect (name, ID and description of CHESS

elements are preserved by default) ... 59

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 107

Abbreviations and Definitions

API Application Programming Interface

ARTA AMASS Reference Tool Architecture

ASCE Assurance and Safety Case Environment

ASIL Automotive Safety Integrity Level

BPMN Business Process Model and Notation

CACM Common Assurance and Certification Metamodel

CHESS Composition with Guarantees for High-integrity Embedded Software Components
Assembly

CDO Connected Data Objects

CCL Common Certification Language

CPS Cyber-Physical Systems

CSV Comma-Separated Values

DNG DOORS Next Generation

DOORS Dynamic Object-Oriented Requirements System

ECSEL Electronic Components and Systems for European Leadership

EEF Extended Editing Framework

EMF Eclipse Model Framework

FMEA Failure Mode and Effects Analysis

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

FMVEA Failure Modes, Vulnerabilities and Effect Analysis

FTA Fault Tree Analysis

GSN Goal Structuring Notation

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

OCRA Othello Contracts Refinement Analysis

OLEDB Object Linking and Embedding for Databases

OPENCOSS Open Platform for EvolutioNary Certification of Safety-critical Systems

OSLC Open Services for Lifecycle Collaboration

OSLC-KM OSLC for Knowledge Management

PSA Open Initiative for Next Generation of Probabilistic Safety Assessment

RAT Requirements Authoring Tool

RM Requirements Management

RMS Requirements Management System

RQA Requirements Quality Analyzer

RQS Requirements Quality Suite

RSA Rational Software Architect

RTF Rich Text Format

SA Safety Architect

SACM Structured Assurance Case Metamodel

SafeCer Safety Certification of Software-Intensive Systems with Reusable Components

SE Suite Systems Engineering Suite by TRC (formerly known as RQS or Requirements Quality
Suite)

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 107

SMV Symbolic Model Verifier

SSE Safety and Security Engineering

SQL Structured Query Language

SRL System Representation Language

SVN Apache Subversion

SysML Systems Modelling Language

TRC The REUSE Company

TRL Technology Readiness Level

UML Unified Modelling Language

URL Uniform Resource Locator

V&V Verification and Validation

WP Work Package

XMI XML Metadata Interchange

XML eXtensible Markup Language

xSAP eXtended Safety Assessment Platform

XSLT eXtensible Stylesheet Language Transformations

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 107

Executive Summary

The document is AMASS deliverable D5.6 - Prototype for seamless interoperability (c). It is the third and
final output of task T5.3 - Implementation for Seamless Interoperability, and is based on the results of tasks
T5.1 - Consolidation of Current Approaches for Seamless Interoperability and T5.2 - Conceptual Approach
for Seamless Interoperability, as well as on the first and second outputs of T5.3 (D5.4 - Prototype for
seamless interoperability (a) and D5.5 - Prototype for seamless interoperability (b)).

Task T5.3 develops a tooling framework to implement prototype support for seamless interoperability in
CPS assurance and certification. T5.3 is being carried out iteratively, in close connection with the
conceptual tasks (T5.2 and Tx.2 in the other technical WPs), and with validation results from the
implementation being used to guide further refinement of the conceptual approach. The implementation
is closely guided by the requirements of the case studies, which are used to evaluate the prototype.

The third prototype iteration extends the implementation of basic building blocks for the AMASS Core
Prototype, which was a consolidation and integration of results from previous projects, and the new
features implemented for the AMASS Prototype P1. More concretely, the Seamless Interoperability
features of the AMASS Prototype P2 are:

• Access Management (already in Core Prototype)

• Data Management (already in Core Prototype)

• Evidence Management (already in Core Prototype)

• Tool Integration (already in Prototype P1)

• Collaborative Work (already in Prototype P1)

• Traceability Management (already in Prototype P1)

The developed tools for the Prototype P2 support the following use cases:

• Configure Access to Assurance Assets

• Log in the platform

• Characterise Artefact

• Link Artefact with External Tool

• Specify Artefact Lifecycle

• Evaluate Artefact

• Specify Process Information for Artefacts

• Specify Traceability between Assurance Assets

• Conduct Impact Analysis of Assurance Asset Change

• Characterise Toolchain

• Specify Tool Connection Information

• Concurrent Assurance Information Edition

This document presents in detail the pieces of functionality implemented in the AMASS Tool Platform for
the areas above, their software architecture, the technology used, and some source code references.

D5.6 relates to other implementation-related AMASS deliverables:

• Installable AMASS Tool Platform for Prototype P2

• User manuals and installation instructions

• Source code description

In addition, D5.6 is related to the following AMASS deliverables:

• D2.1 (Business cases and high-level requirements) includes the requirements that have been
implemented in D5.6.

• D2.4 (AMASS reference architecture (c)) presents the abstract architecture based on which D5.6
has been created.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 107

• D2.8 (Integrated AMASS platform (c)) and D2.9 (AMASS platform validation) report the results from
validating the implementation described in D5.6 and integrating it with the results from other
implementation tasks.

• D5.1 (Baseline requirements for seamless interoperability) reviews the main background on
seamless interoperability for AMASS and proposes a way forward. D5.6 corresponds to the
realisation of this way forward as of September 2018.

• D5.4 (Prototype for seamless interoperability (a)) describes the first version of the Seamless
Interoperability support in the AMASS Tool Platform, and D5.5 (Prototype for seamless
interoperability (b)) the second version.

• D5.8 (Methodological guide for seamless interoperability (b) presents the guidelines to effectively
use the tool support reported in D5.6 for Seamless Interoperability in CPS assurance and
certification.

Note: the sections modified with respect to D5.5 are marked with an asterisk in the headline, i.e. (*), and
the new sections with two asterisks, i.e. (**). Some new sections contain modified (or non-modified)
sections because the former has been added and the latter was already included in D5.5. In other words,
the structure of the sections and subsections has been revised for D5.6.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 107

1. Introduction (*)

The AMASS approach focuses on the development and consolidation of an open and holistic assurance and
certification framework for CPS, which constitutes the evolution of the OPENCOSS [19] and SafeCer [23]
approaches towards an architecture-driven, multi-concern assurance, reuse-oriented, and seamlessly
interoperable tool platform.

The expected tangible AMASS results are:

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual,
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability
mechanisms (based on OSLC specifications [21]).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on
open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the PolarSys/Eclipse
community (www.polarsys.org) is a strong candidate to host AMASS Open Tool Platform.

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding scientific
and technical project objectives are addressed by different work-packages.

Figure 1. AMASS Building blocks

http://www.polarsys.org/

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 107

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are:

• Better assessment of ideas by initially focusing on a few aspects of the solution.

• Ability to change critical decisions based on practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks

(see [2]), will be aligned, merged and consolidated at TRL42.

2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks will be
developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as the
green building blocks (Figure 1). Regarding seamless interoperability, in this second prototype, the
specific building blocks will provide advanced functionalities regarding tool integration,
collaborative work, and tool quality characterisation and assessment.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL5. Functionalities specific for seamless
interoperability developed for the second prototype will be enhanced and integrated with
functionalities from other technical work packages.

Each of these iterations has the following three prototyping dimensions:

• Conceptual/research development: development of solutions from a conceptual perspective.

• Tool development: development of tools implementing conceptual solutions.

• Case study development: development of industrial case studies (see D1.1 [1]) using the tool-
supported solutions.

As part of the Prototype Core, WP5 was responsible for consolidating the previous works on specification of
evidence characteristics, handling of evidence evolution, and specification of evidence-related information
(e.g. process information) in order to design and implement the basic building block called “Evidence
Management” (Figure 1). In addition, WP5 was responsible for the implementation of the “Access
Manager” and “Data Manager” basic building blocks. Nonetheless, the functionality of these latter blocks is
used not only in WP5, but in all the WPs, e.g. for data storage and access (of system components, of
assurance cases, of standards’ representations, etc.). For P1, WP5 has refined and extended the existing
implementation with support for specific seamless interoperability based on the development of new
functionality, and not only the integration of available tools. P2 completes the implementation for seamless
interoperability of the AMASS tool platform by enhancing the available features and by supporting several
further WP5 requirements for which no functionality had been provided yet.

This deliverable reports the tool development results of the “Evidence Management”, “Access Manager”,
“Data Manager”, “Tool Integration Management”, and “Collaborative Work Management” building
blocks. It presents in detail the technological design of the functionality implemented in the AMASS Tool
Platform, the building blocks’ software architecture, the technology used, and some source code
references. The design is based on the investigated state of the art and state of practice approaches

presented in D5.1 [9], on the ARTA specification in D2.23 [2], D2.3 [3], and D2.4 [4], and on the conceptual
design presented in D5.2 [10] and D5.3 [11]. Gaps were identified and analysed to determine a way forward
for seamless interoperability, enabling the formulation of requirements to achieve the interoperability

2 In the context of AMASS, the EU H2020 definition of TRL is used, see
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-
trl_en.pdf
3 D2.2 and D2.3 are non-public descriptions of the ARTA. The deliverable that presents the final version (D2.4) is
public.

http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 107

vision of AMASS. This vision covers tool integration, collaborative work, and tool quality assessment and
characterisation.

The rest of the deliverable presents the requirements implemented (Section 2) and describes the
implementation performed (Section 3).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 107

2. Implemented Functionality (*)

This section presents the scope of the implementation work reported in this deliverable and the
implemented requirements.

2.1 Scope (*)

The scope for the current prototype for seamless interoperability is the provision of tools for: (1) access
and data management; (2) specification and management of evidence-related assurance information,
mostly artefact information; (3) traceability management; (4) tool integration, and; (5) collaborative work.
The overall scope is highlighted in Figure 2, which shows the general functional overview of the AMASS
Tool Platform as presented in D2.3 [3] and later evolved for D2.4 [4].

The Platform Management block includes generic functionality for security, permissions and profiles, data
storage, visualization, and reporting, and including collaborative work. The Evidence Management block
handles the full lifecycle of evidence artefacts and evidence chains. The Seamless Interoperability block
manages the interoperability between the AMASS modules, as well as the connections with external tools.
The Assurance Traceability block provides generic support for traceability management and impact
analysis.

The next section presents the use cases that the above building blocks support in the scope of WP5.

Figure 2. Functional decomposition for the AMASS platform

2.2 Implemented Requirements (*)

The implemented requirements correspond to 12 use cases specified in D2.4 [4]. The following subsections
include a short description of how the implementation performed supports each use case, and the main
tools and technologies supporting the use cases. Some use cases are supported by several tools and
technologies. For example, there exist several means for tool integration in the AMASS Tool Platform. The
use case functionality has been grouped as in D2.4. For example, Evidence Management functionality
includes the Characterise Artefact, Link Artefact with External Tool, Specify Artefact Lifecycle, Evaluate
Artefact, and Specify Process Information for Artefacts use cases.

Table 1 shows the requirements and the status of the requirements for the WP5.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 107

Table 1. Summary of the status of WP5 requirements

Req. No. Name Description Status Tool Partners

WP5_EM
_001

Evidence
characteristics
specification

The AMASS Tool Platform shall allow an
assurance engineer to specify the
characteristics of assurance evidence.

Solved AMASS
Platform

TEC

WP5_EM
_002

Evidence
traceability

The AMASS Tool Platform shall allow an
assurance engineer to specify
relationships between evidence
artefacts.

Solved AMASS
Platform

TEC,
AMT,
INT

WP5_EM
_003

Evidence change
impact analysis

When an evidence artefact is changed,
the AMASS Tool Platform shall indicate
how the change impacts other evidence
artefacts.

Solved AMASS
Platform

TEC,
AMT

WP5_EM
_004

Evidence
evaluation

The AMASS Tool Platform shall allow an
assurance manager engineer to specify
information about the results from
evaluating an evidence artefact.

Solved AMASS
Platform

TEC, TRC

WP5_EM
_005

Evidence
information import

The AMASS Tool Platform shall be able
to import information about evidence
artefacts.

Solved AMASS
Platform

TEC,
UC3,
TRC

WP5_EM
_006

Evidence
information export

The AMASS Tool Platform shall be able
to export information about evidence
artefacts.

Solved AMASS
Platform

TEC,
UC3,
TRC

WP5_EM
_007

Derivation of
evidence
characterization
model

The AMASS Tool Platform shall derive
an evidence characterisation model
from the baseline of an assurance
project.

Solved AMASS
Platform

MDH,
TEC

WP5_EM
_010

Evidence lifecycle
information
storage

The AMASS Tool Platform shall allow an
assurance engineer to specify the
events that have occurred during the
lifecycle of an evidence artefact.

Solved AMASS
Platform

TEC

WP5_EM
_011

Interactive
evidence change
impact analysis

The AMASS Tool Platform shall allow an
assurance manager to indicate what
evidence artefacts are impacted by the
changes to a given evidence artefact.

Solved AMASS
Platform

TEC,
AMT

WP5_EM
_013

Link of evidence to
other assets

The AMASS Tool Platform shall allow an
assurance manager to link evidence
artefacts with other assurance assets.

Solved AMASS
Platform

TEC, INT,
AMT

WP5_EM
_014

Evidence resource
specification

The AMASS Tool Platform shall allow an
assurance engineer to indicate the
location of the resource that an
evidence artefact represents in the
system.

Solved AMASS
Platform

TEC

WP5_EM
_016

Evidence report
generation

The AMASS Tool Platform shall be able
to automatically generate reports,
checklists, and evidence for
certification purposes.

Solved AMASS
Platform

TEC

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 107

Req. No. Name Description Status Tool Partners

WP5_AM
_003

User action log The AMASS Tool Platform shall
maintain a log with all the actions
performed by the users.

Solved AMASS
Platform

TEC

WP5_DM
_001

Multi-platform
availability

The AMASS Tool Platform shall be
accessible from desktop, Web, and
cloud environments.

Solved AMASS
Platform

TEC

WP5_DM
_002

Simultaneous data
access

The AMASS Tool Platform shall allow
users to access data simultaneously.

Solved AMASS
Platform

TEC,
AMT,
INT

WP5_DM
_005

System artefact
information
storage

The AMASS Tool Platform shall be able
to store information about any type of
system artefact.

Solved AMASS
Platform

TEC

WP5_DM
_006

Standard formats
storage

The AMASS Tool Platform shall be able
to store system artefacts represented
in standard formats (OSLC RM, ReqIF,
UML, Sims, FMI, FMU…).

Solved AMASS
Platform

TEC

WP5_DM
_007

Data versioning The AMASS Tool Platform shall support
data versioning.

Solved AMASS
Platform

TEC

WP5_TI_
001

Automatic data
collection

The AMASS Tool Platform shall
automatically collect data from external
tools.

Solved AMASS
Platform

TEC,
UC3,
TRC,
HON

WP5_TI_
002

Automatic data
export

The AMASS Tool Platform shall be able
to automatically export data to external
tools.

Solved AMASS
Platform

UC3,
TRC

WP5_TI_
007

Version
management tools
interoperability

The AMASS Tool Platform shall be able
to interoperate with version
management tools.

Solved AMASS
Platform

TEC

WP5_CW
_003

Collaborative
management of
compliance with
standards and of
process assurance

The AMASS Tool Platform shall support
the collaboration among systems
engineers, assurance managers for
management of compliance with
standards and of process assurance.

Solved AMASS
Platform

TEC

WP5_CW
_004

Collaborative re-
certification needs
& consequences
analysis

The AMASS Tool Platform shall support
the collaboration among assurance
managers and assurance engineers for
re-certification needs & consequences
analysis.

Solved AMASS
Platform

TEC

WP5_CW
_007

Collaborative
assurance evidence
management

The AMASS Tool Platform shall support
the collaboration among assurance
managers and systems engineers for
assurance evidence management.

Solved AMASS
Platform

TEC

WP5_CW
_008

Collaborative
product reuse
needs &
consequences
analysis

The AMASS Tool Platform shall support
the collaboration among systems
engineers and assurance managers for
product reuse needs & consequences
analysis.

Solved AMASS
Platform

TEC

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 107

Req. No. Name Description Status Tool Partners

WP5_CW
_009

Collaborative
assurance case
specification

The AMASS Tool Platform shall support
the collaboration among assurance
managers and assurance engineers for
assurance case specification.

Solved AMASS
Platform

TEC

WP5_CW
_010

Collaborative
compliance needs
specification

The AMASS Tool Platform shall support
the collaboration among assurance
managers for compliance needs
specification.

Solved AMASS
Platform

TEC

WP5_CW
_011

Collaborative
assurance
assessment

The AMASS Tool Platform shall support
the collaboration among assurance
managers, assurance engineers, and
assurance assessors for assurance
assessment.

Solved AMASS
Platform

TEC

WP5_CW
_012

Collaborative
compliance
assessment

The AMASS Tool Platform shall support
the collaboration among assurance
managers, assurance engineers, and
assurance assessors for compliance
assessment.

Solved AMASS
Platform

TEC

WP5_TQ
_001

Tool qualification
information needs

The AMASS Tool Platform shall allow an
assurance manager to specify the needs
regarding qualification for the
engineering tools used in a CPS’
lifecycle.

Solved AMASS
Platform

MDH,
TEC

WP5_TQ
_002

Tool quality
evidence
management

The AMASS Tool Platform shall manage
evidence of tool quality.

Solved AMASS
Platform

MDH,
TEC

WP5_TQ
_003

Tool quality
information import

The AMASS Tool Platform shall be to
import tool quality information such as
tool qualification dossiers.

Solved AMASS
Platform

MDH,
TEC

WP5_TQ
_004

Tool quality needs
indication

The AMASS Tool Platform should
indicate the tool quality needs that
need to be fulfilled in a given assurance
project.

Solved AMASS
Platform

MDH,
TEC

WP5_TQ
_005

Tool quality
requirements
fulfilment

The AMASS Tool Platform should
indicate the degree to which tool
quality requirements for the
engineering tools used in a CPS’
lifecycle have been fulfilled.

Solved AMASS
Platform

MDH,
TEC

WP5_EM
_008

Visualization of
chains of evidence

The AMASS Tool Platform shall display
the chains of evidence to which an
evidence artefact belongs.

Solved AMASS
Platform

AMT,
INT

WP5_EM
_015

Resource part
selection

When indicating the location of the
resource that an evidence artefact
represents in the system, the AMASS
Tool Platform shall allow an assurance
engineer to select a part of the
resource (e.g. a section inside a
document or a component model file
within a large system model).

Solved AMASS
Platform

AMT

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 107

Req. No. Name Description Status Tool Partners

WP5_TI_
003

Tool chain
deployment
support

The AMASS Tool Platform shall support
the specification, configuration, and
deployment of tool chains for CPS
assurance and certification on a single
environment.

Solved AMASS
Platform

UC3,
TRC,
FBK,
HON

WP5_TI_
005

System
specification tools
interoperability

The AMASS Tool Platform shall be able
to interoperate with system
specification tools.

Solved AMASS
Platform

UC3,
TRC, FBK

WP5_TI_
006

V&V tools
interoperability

The AMASS Tool Platform shall be able
to interoperate with V&V tools.

Solved AMASS
Platform

UC3,
TRC,
FBK,
HON,
UOM

WP5_TI_
014

Client-server
support

The AMASS Tool Platform shall support
data and tool integration in client-
server architectures.

Solved AMASS
Platform

HON

WP5_TI_
017

Standards-based
interoperability

The AMASS Tool Platform shall support
standard mechanisms for tool
interoperability.

Solved AMASS
Platform

UC3,
TRC,
FBK,
HON

WP5_TI_
018

Extended standard-
based
interoperability

The AMASS Tool Platform shall provide
extended means to standard
mechanisms for tool interoperability.

Solved AMASS
Platform

UC3,
TRC,
FBK,
HON

WP5_EM
_009

Suggestion of
evidence traces

When specifying relationships for an
evidence artefact, the AMASS Tool
Platform shall suggest evidence
artefacts to which the first evidence
artefact might relate.

Solved AMASS
Platform

UC3,
TRC

WP5_EM
_012

Evidence trace
verification

The AMASS Tool Platform shall analyse
the quality of the relationships between
evidence artefacts.

Solved AMASS
Platform

UC3,
TRC

WP5_AM
_001

User
authentication

The AMASS Tool Platform shall require
users to be authenticated for Platform
access.

Solved AMASS
Platform

TEC

WP5_AM
_002

User access The AMASS Tool Platform shall provide
users with different options for data
access and for action permission.

Solved AMASS
Platform

TEC

WP5_AM
_004

User profiles The AMASS Tool Platform shall allow
users to have different profiles for
Platform access.

Solved AMASS
Platform

TEC

WP5_AM
_005

Access rights
groups

The AMASS Tool Platform shall allow
users to belong to different access
rights groups.

Solved AMASS
Platform

TEC

WP5_DM
_003

Consistent data
access

When users are accessing data
simultaneously, the AMASS Tool
Platform shall manage the possible
conflicts.

Solved AMASS
Platform

AMT,
TEC

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 107

Req. No. Name Description Status Tool Partners

WP5_DM
_004

Real-time data
access feedback

The AMASS Tool Platform shall provide
users with feedback about how data is
being accessed by other users on real
time.

Solved AMASS
Platform

AMT,
TEC

WP5_DM
_008

Secure data access The AMASS Tool Platform shall provide
a secure standard API for data access.

Cancel
led

AMASS
Platform

WP5_TI_
004

System analysis
tools
interoperability

The AMASS Tool Platform shall be able
to interoperate with system analysis
tools.

Solved AMASS
Platform

A4T

WP5_TI_
008

Quality
management tools
interoperability

The AMASS Tool Platform shall be able
to interoperate with quality
management tools.

Solved AMASS
Platform

UC3,
TRC

WP5_TI_
009

MS Office
applications
interoperability

The AMASS Tool Platform shall be able
to interoperate with MS Office
applications (Word, Excel, Visio, etc.).

Solved AMASS
Platform

TEC,
UC3,
TRC

WP5_TI_
010

Interoperability
throughout CPS
lifecycle

The AMASS Tool Platform shall be able
to interoperate with some tool in all
CPS lifecycle phases.

Solved AMASS
Platform

UC3,
TRC

WP5_TI_
011

Non-proprietary
data exchange

The AMASS Tool Platform shall provide
exchange data in non-proprietary
formats.

Solved AMASS
Platform

UC3,
TRC,
HON

WP5_TI_
012

Data entry effort The AMASS Tool Platform shall allow
users to create and enter data only
once.

Solved AMASS
Platform

UC3,
TRC,
HON

WP5_TI_
013

Continuous data
management

The AMASS Tool Platform shall support
continuous data analysis, verification,
and integration.

Solved AMASS
Platform

AMT

WP5_TI_
015

Service offer and
discovery

The AMASS Tool Platform shall allow
clients to ask for a server’s services and
to discover servers.

Solved AMASS
Platform

HON

WP5_TI_
016

Performance
monitoring

The AMASS Tool Platform shall allow
continuous performance monitoring of
the servers.

Solved AMASS
Platform

HON

WP5_CW
_001

Collaborative
system analysis

The AMASS Tool Platform shall support
the collaboration among systems
engineers, safety engineers, and
security engineers for system analysis.

Solved AMASS
Platform

A4T

WP5_CW
_002

Collaborative
system
specification

The AMASS Tool Platform shall support
the collaboration among systems
engineers, safety engineers, and
security engineers for system
modelling.

Solved AMASS
Platform

A4T

WP5_CW
_005

Collaborative
system V&V

The AMASS Tool Platform shall support
the collaboration among systems
engineers for system V&V.

Solved AMASS
Platform

HON,
FBK

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 107

Req. No. Name Description Status Tool Partners

WP5_CW
_006

Collaborative
model-based
systems
engineering

The AMASS Tool Platform shall support
the collaboration among systems
engineers, safety engineers, and
security engineers for model-based
systems engineering.

Solved AMASS
Platform

A4T

WP5_CW
_013

Metrics &
measurements
reports

The AMASS Tool Platform shall manage
metrics and measurements about
collaborative work.

Solved AMASS
Platform

AMT

2.2.1 Evidence Management Functionality (**)

2.2.1.1 ‘Characterise Artefact’ with OpenCert

For artefact characterization (i.e. evidence artefact characterisation), the AMASS Tool Platform lets a user
create artefact models and add artefact definitions to the model via a tree-view based editor (Figure 3). A
user can later specify artefacts for the artefact definitions (Figure 4). For each artefact, a user can specify
basic data such as name, description, version information, and preceding version. Examples of evidence
artefact types include system plans, system analysis results, system specifications, and V&V results.

Figure 3. Artefact definition creation

2.2.1.2 ‘Link Artefact with External Tool’ with OpenCert

Artefacts can be linked to external tools in two main ways. First, a user can specify that the artefact
repository for an assurance project corresponds to an SVN repository (Figure 5). Second, a user can add a
resource to an artefact (Figure 6) and, in its properties (Figure 7), indicate the external location and format
of the file that corresponds to the artefact.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 107

Figure 4. Artefact data specification

Figure 5. Use of SVN repository as artefact repository

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 107

Figure 6. Resource specification for an artefact

Figure 7. Resource properties

2.2.1.3 ‘Specify Artefact Lifecycle’ with OpenCert

Once an artefact has been created, its lifecycle can be specified by adding events and specifying event data
(Figure 8), such as the event type (creation, modification, evaluation, and revocation) and when the event
happened.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 107

Figure 8. Artefact event properties

2.2.1.4 ‘Evaluate Artefact’ with OpenCert

A user can add evaluations to artefacts, and can specify the evaluation criterion, the criterion description,
the evaluation result, and its rationale, among other properties (Figure 9).

Figure 9. Artefact evaluation properties

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 107

2.2.1.5 ‘Evaluate Artefact’ through Management of V&V evidence (**)

A user can store evidence created by external tools that can connect to the CDO repository, and more
concretely from the VERIFICATION Studio (Figure 10; formerly known as Requirements Quality Analyzer or
System Quality Analyzer).

Figure 10. VERIFICATION Studio displaying some requirements in a specification

After providing connection details and a name for the evidence (Figure 11), it is imported to the AMASS
Tool Platform from VERIFICATION Studio (Figure 12). Each artefact contains all the assessments of a
requirement and detailed information about them (Figure 13).

Figure 11. AMASS Repository connection parameters

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 107

Figure 12. Importing evidence into the AMASS repository

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 107

Figure 13. Detailed requirement information

A user can assess and manage the quality of all the work products of a Cyber-Physical System (CPS) by using
TRC tools. This lets them demonstrate that quality procedures and processes have been executed to
develop the CPS.

Figure 14. Details of the export of the assessment of a metric for a requirement

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 107

Figure 15. Details of the export of the metadata of the assessment of a metric for a requirement

2.2.1.6 ‘Specify Process Information for Artefacts’ with OpenCert

Process-related artefact information is specified by means of process models (Figure 16). These models can
contain information about activities, participants, people, tools, organizations, and techniques involved in
the processes within an assurance project. Artefacts can later be associated to these elements. For
example, ‘activity artefacts’ is a set of activity data (Figure 17) with which the input and output artefact of
an activity can be specified.

Figure 16. Process model

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 107

Figure 17. Activity data

2.2.2 Assurance Traceability Functionality (**)

2.2.2.1 ‘Specify Traceability between Assurance Assets’ with OpenCert

OpenCert lets a user specify traceability between evidence artefacts (part of its functionality to characterise
artefacts, see Section 2.2.1). More concretely, relationships can be created to specify artefact components
with ‘ArtefactPart’ and any other type of relationship with ‘OwnedRel’.

2.2.2.2 ‘Specify Traceability between Assurance Assets’ with Capra (*)

Capra Eclipse project4 offers basic support for the creation, management and visualisation of trace links
between resources within Eclipse. In WP5, Capra basic support has been extended to support references to
resources external to the Eclipse environment (e.g. external files, requirements modelled with DOORS, etc.)
and to references to Eclipse resources stored in CDO. The trace model was extended to include trace
directionality, allowing users to express upstream-downstream relationships. Based on trace directionality,
the software can calculate the impact of changes in upstream artefacts on downstream artefacts.
Furthermore, the user interface was extended so that the creation of traces between internal artefacts and
external artefacts is much easier. A new view is available which lets the user add items (URLs, files, objects)
by dragging & dropping (Figure 18).

At the time of writing, the aforementioned extensions are under discussion with the Capra project team, in
particular to evaluate their possible integration in the Capra project, as AMASS contribution.

4 https://projects.eclipse.org/projects/modeling.capra

https://projects.eclipse.org/projects/modeling.capra

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 107

Figure 18. Advanced CAPRA trace creation view (drop sensitive)

Per WP3, the use of Capra was selected for the storage of the traceability links between system
architectural entities such as components and contracts, and assurance related entities, like claims and
evidences. In this work package, a specific support/user interface has been developed to assist the user
creating traceability links, by letting them specify the kind of traceability links allowed by the system
architecture (abstract) metamodel (see D3.3 [5] , section 3.2.2.5).

Figure 19 shows an example of the aforementioned support: by selecting a contract in the system
architecture model ((through the Papyrus/CHESS editor), a dedicated tab (named OpenCert) is enabled in
the properties view. The OpenCert tab allows to check the current assurance case entities already traced to
the contract itself, and also allows to create new traceability links. For instance, a trace link between the
selected contract and the Goal1 claim available in the assurance case model, showed in the left part of the
figure, can be created by using the Claim table in the OpenCert tab. The link to be created will be
automatically stored in the Capra model, by using the Capra API’s facilities. The possibility to retrieve
existing traceability link associated to the selected architectural entity and the possibility to create new
links, requires that the location of the Capra model must be known by the tool (it can be set in the CHESS
preference page or by using some setting at the assurance project level, the definition of this part is
ongoing).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 107

Figure 19. Tracing a claim to a contract

2.2.2.3 ‘Specify Traceability between Assurance Assets’ for Knowledge-Centric Automated Traceability
(**)

Knowledge-Centric Automated Traceability has been implemented in the Traceability Studio tool [26] by
TRC (Figure 20). This enables the definition and implementation of trace links between two sources of
information, which can be of different types: V&V results, requirements, architecture data, design blocks,
risk management information, etc. This functionality supports traceability management between
heterogeneous and isolated work products, exploiting OSLC-KM as base technology for solving the
“connectivity” challenge with different tools. Trace link suggestion is also supported.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 107

Figure 20. Knowledge-Centric Automated Traceability

2.2.2.4 ‘Conduct Impact Analysis of Assurance Asset Change’ with OpenCert

When changes are made to artefacts and these changes result in modification events (Figure 21), users can
determine the impact of such changes in other artefacts and accept or reject the changes (Figure 22).

Figure 21. Modification event of an artefact

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 107

Figure 22. Impact analysis information

2.2.2.5 ‘Conduct Impact Analysis of Assurance Asset Change’ with Knowledge-Centric Automated
Traceability (**)

As part of the functionality in Traceability Studio for Knowledge-Centric Automated Traceability, the tool
supports impact analysis when changes occur in the traced elements (Figure 23).

Figure 23. Impact analysis with Knowledge-Centric Automated Traceability

2.2.3 Tool integration Functionality (**)

2.2.3.1 ‘Characterise Toolchain’ with OpenCert (**)

Toolchains can be configured in OpenCert through the different connectors implemented in the tool, which
are presented below. The configuration is not performed from a single, unified user interface, but the
different technologies have their own user interface. This facilitates maintenance and extensibility of the
connectors with different external tools in OpenCert.

2.2.3.2 ‘Characterise Toolchain’ with Papyrus (**)

Papyrus fosters seamless interoperability with different external tools and technologies via different
means. Example of such interoperability means have been presented in D5.3 [11] and are listed below:

• Integration using Eclipse API with CDO repository to support object-level locking, changes to
Papyrus’s editing behavior, etc., together with workbench-based server and user administration
facilities.

• Integration using Eclipse API with file-based remote repositories, e.g. git, SVN, etc.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 107

• Integration with the RSA tool using Papyrus additional component (specifically the RSA model
importer plugin) to be able to import RSA models into Papyrus.

• Integration with the Rhapsody tool using Papyrus additional component (specifically the Rhapsody
model importer plugin) to be able to import Rhapsody models into Papyrus.

• Capability to import and export Simulink and Autosar models via integrated model-to-model
(M2M) transformations gateways.

• Connector to retrieve and import information from ReqIF specifications, Excel and CSV files, and by
extension to be interoperable with DOORS tool using its ReqiF export component.

• Integration with the Eclipse debug framework to provide (co-)execution of UML models and
alternative execution semantics (BPMN, Simulink, etc.), and enable control, observation and
animation facilities over the executions.

Each connector mean provides its proper interface that can be activated or deactivated depending of the
need. This allows to configure within a platform a set of different tool-chains for different engineering
purpose: requirement management, system design, architecture optimization, process management,
system analysis, safety analyses, security analyses, simulation, product lines, etc.

Papyrus tool, as a core component of the AMASS platform, takes also benefits of many tool connections
developed within the platform and presented in the next sections.

2.2.3.3 ‘Characterise Toolchain’ with Systems Engineering Suite (**)

Systems Engineering Suite (SE Suite) is the new name of the already existing TRC toolsuite: Requirements
Quality Suite (RQS).

Within SE Suite, the following set of toolchain connectors (Figure 24) have been added to or updated in
WP5:

• OSLC-KM to create a universal language to communicate among different engineering tools in a
semantic way.

• ReqIF: a new connector able to integrate requirement specifications from tools that can export to a
ReqIF standard format. This is useful when no other connector is available in the SE Suite.

• PTC Integrity: a new connector able to retrieve requirements from PTC Integrity documents.

• IBM Rhapsody: a new connector able to understand models from this modelling tool.
This has been integrated in a different way to the other connectors, in the form of a plugin that
provides capabilities to assess requirements quality on-the-fly as the modeller describes them
within the Rhapsody Model (Figure 25 and Figure 26).

• DOORS Next Generation: a new connector to be able to integrate with this IBM platform, which is
the successor to the IBM Rational DOORS software, which was already integrated in the toolchain.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 107

-

Figure 24. SE Suite new connectors

Figure 25. RAT plugin for Rhapsody, create new requirement with RAT

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 107

Figure 26. RAT plugin for Rhapsody, edit requirement description with RAT

The OSLC-KM connector will be described in depth in ‘Specify Tool Connection Information’ for OSLC-KM-
based Integration.

2.2.3.4 ‘Specify Tool Connection Information’ with OpenCert

The default OpenCert support to specify tool connection information is presented in Section 2.2.1.2. The
extended support developed for Prototypes P1 and P2 is presented in the following sections.

2.2.3.5 ‘Specify Tool Connection Information’ for OSLC-KM-based Integration (*)

From AMASS platform:

Artefact evidence can be gathered from external tools aiming at different specification or V&V targets. All
of them can populate the artefact evidence database for an assurance project by implementing a producer
of the OSLC-KM standard.

An example use case implemented for the AMASS platform is as follows.

In the AMASS Tool Platform menu bar, select the “OSLC-KM” menu, and the option “Import evidence
model from file” (Figure 27), then select a Papyrus file (Figure 28).

Figure 27. OSLC-KM Importing an Evidence Model from a model file

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 107

Figure 28. Fragment of a Papyrus model to be imported

A wizard will be shown to include all the parameters needed for this importation. This wizard comprises
two steps.

The first one is designed to gather all the inputs related to the OSLC-KM file to be imported (Figure 29):

• The type of file to be parsed

• The file itself

• An additional transformation file to fine-tune the default OSLC-KM generation from the file type.

Figure 29. Step #1 of the OSLC-KM Evidence Manager Importer

The second one is designed to gather all the inputs about the storage of the new Evidence data (Figure 30):
its Assurance Project and the name it will have.

As a result, its content is sent to a VERIFICATION Studio web service that works as an OSLC producer. The
web method returns the OSLC-KM instance, then the AMASS platform loads the model by the Java

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 107

implementation of the OSLC-KM standards and maps its content to an Artefact Model inside the current
assurance project (Figure 31).

Figure 30. Step #2 of the OSLC-KM Evidence Manager Importer

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 107

Figure 31. New evidence model from a Papyrus model

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 107

The location of the VERIFICATION Studio web service can be changed in the Window > Preferences Menu.

In the Preferences window there is an option with the name “OSLC-KM Preferences” where the URL of this
web service is configured (Figure 32).

This web service is publicly available at the following URL:

http://authoring.reusecompany.com:9999/OslcKmService.svc/GetSrlFromContent

Figure 32. OSLC-KM Preferences. Web Service URL

This web service can transform files created from many different tools into OSLC-KM:

• Microsoft Excel

• Standard XMI (output from many UML tools)

• SysML from Rhapsody

• SysML from Papyrus

• SysML from Magic Draw

• SysML from Other tool providers

• Simulink

• ASCE

• FMI/FMU

• Pure Variance

• Metadata

• SQL

• XML

http://authoring.reusecompany.com:9999/OslcKmService.svc/GetSrlFromContent

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 107

• SRL encoded in JSON format

From SE Suite tools

In the VERIFICATION Studio, the OSLC-KM standard can be the source to retrieve work-products from many
different tools to assess its quality.

1. The tools expect these work-products either directly (the source tool is also provider of the OSLC-
KM instance) via web service or via application API.

2. Other possibility, is to perform the parsing of the structured information from the source file to
produce the instance of OSLC-KM, provided that the metamodel of the information is known, such
as an XMI file coming out of a modelling tool.

3. The last possibility is like the previous one, but the input is not a file, but the output of an SQL
query to a database.

This can be done in the VERIFICATION Studio connection window by selecting a new OSLC-KM connection
(Figure 33) and then, in the new window, selecting a suitable source (Figure 34).

Figure 33. VERIFICATION Studio Connection Window

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 107

Figure 34. OSLC-KM Connection (SysML Papyrus sub-type)

In the OSLC-KM connection edition window, there are three different options to select the source of the
information to match the input possibilities described at the top of this chapter. Once the input type source
is selected, the window reconfigures automatically to ask for further parameters, depending on the source
selected:

• OSLC Service: this is a provider of OSLC-KM in the form of a web service. It can be the web service
described in the integration from the AMASS platform, where the input content of a file is
transformed in OSLC-KM, or any other web service that offers it in its API.

Extra parameters needed to be provided for this type:

o The type of input.

o The URL of the web service.

Figure 35. OSLC-KM input type: Web Service

• File: when selecting a file input format, the transformation will be done using the default
parameters in the OSLC-KM connector. These can be fine-tuned if necessary to add additional
parameters or an extra XSLT transformation schema.

Extra parameters needed to be provided for this type:

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 107

o The type of input.

o The location of the file.

Figure 36. OSLC-KM input type: File

• Database: with this source a user can describe all the parameters to connect to a database that can

use OLEDB drivers (Access, SQL Server, Oracle) and provide a SQL query that will retrieve a set of

rows. These rows will be parsed into OSLC-KM and loaded into the tool.

Extra parameters needed to be provided for this type:
o The connection parameters to the database.

o The SQL query to be executed.

Figure 37. OSLC-KM input type: Database

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 107

Figure 38. OSLC-KM input type: Database connection parameters window

After selecting the type of the input and basic parameters to retrieve its contents, further refinement of the
parsing of the content can be done; from the OSLC-KM connection window, the SRL Content selection
window lets users specify the exact mappings between the inputs in the file and the SE Suite categories.
You can use an ad-hoc mapping (the green button shown in the Figure 39 will show the mappings edition
window as in Figure 40) or an existing mapping file (the file selector on the right side of Figure 39).

Figure 39. OSLC-KM mappings selector

Figure 40. OSLC-KM mappings edition window

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 107

After dealing with the input type, its basic parameters and mappings, a user can specify optional
configuration to do the following:

• Include a work-product containing all the work products found in the OSLC-KM source to allow
execution of completeness and consistency metrics over the whole source regardless the parts it’s
divided into.

• Include a “missing information” work product if the source of the OSLC-KM is not present in the
given configuration.

Figure 41. OSLC-KM connection window. Optional configuration

Finally, the user can set rules based on the knowledge database which the SE Suite tools can use to
distinguish work products that are useful for quality assessment from those that are not.

Figure 42. OSLC-KM connection window. Custom-code filtering

2.2.3.6 ‘Specify Tool Connection Information’ for Integration with V&V Manager (*)

V&V Manager allows formal verification of the contracts by external V&V tools that are installed on remote
verification servers (WP5_TI_014 Client-server support).

The contracts (or individual formal properties) are selected, for example, from a Block Definition Diagram
or at the level of components, using the related contracts. The verification or validation is invoked using a
contextual menu Validation  V/V Manager, as depicted in Figure 43. Before any V&V activity is started,
the availability of the Verification servers is checked and the communication is established with one of the
available servers (WP5_TI_015 Service offer and discovery).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 107

Figure 43. V&V Manager integration

Until a V&V activity is finished, the V&V Manager sends monitoring requests periodically to the Verification
Server. The responses to these monitoring requests indicate the current status of the V&V tasks performed
by the external V&V tools and the responses also contain the information that the tasks were completed
(WP5_TI_016 Performance monitoring). The status and result of the verification or validation is depicted in
the V&V Result tab, see Figure 44.

Requests and responses exchanged between the V&V Manager, the Verification Server and the V&V tools
comply to the non-proprietary OSLC standard and are encoded in the RDF format (WP5_TI_006 V&V tools
interoperability, WP5_TI_011 Non-proprietary data exchange, and WP5_TI_017 Standards-based
interoperability).

Verification servers are installed as Linux servers in the current prototype, where a Proxygen or Apache-
Tomcat server acts as an OSLC Automation service provider (by default on port 6080, or 8080). All
verification tools installed on the verification servers get the OSLC Automation Plan and Request, and if the
V&V tool can execute the verification plan, it is executed. When the execution performed by the V&V tool
finishes, the server returns the OSLC Automation Response with Verification Results. All Verification results
from all tools are seamlessly and continuously consolidated into a complete V&V result. Currently, all
integrated V&V tools are command line based.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 107

Figure 44. Status of the V&V tasks and the available results

How to integrate a new V&V tool

Install it on the verification servers and register it on the Proxygen or Apache-Tomcat server application.
The server needs to know:

1. The tool binary name to be executed – only if this is different from the name stated in the OSLC
Automation Plan.

2. The tool parameters – only if the parameters must be handled in a way other than as command
line arguments or content of a configuration file.

3. Artefacts under verification (requirements, system architecture, system design) – only if the
artefacts must be handled in a way other than being passed as file arguments.

In summary, if the tool binary name, its parameters and the artefacts under verification can be passed to
the command line tool in a standard way, the V&V tool does not have to be registered by the verification
server application.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 107

The Verification Server collects data that are extracted from the OSLC communication going through the
server. The V&V Manager is capable to store data (V&V requests and results) in an appropriate PostgreSQL
database (WP5_TI_001 Automatic data collection).

2.2.3.7 ‘Specify Tool Connection Information’ for Integration of CHESS and V&V Tools (*)

CHESS has been extended and integrated to perform V&V activities on the models by using the FBK Tools.
Currently, two kinds of tool adapters are available: the first one invokes the FBK tools locally by passing the
artefacts and the command via files. The second performs the same functionality via the OSLC-Automation
adapter.

Adapter to FBK Tool via files

The architecture of the integration with FBK tools via files is depicted in Figure 45. The tool adapter takes
the request from CHESS, converts the model to the Verification tool format, sets up the artefacts and the
command files, sends them to the Verification Tools and finally returns the result to CHESS, ready to be
shown graphically.

Figure 45. FBK Tool Integration via files

Adapter to FBK Tool via OSLC

Figure 46 represents the same functionality using the OSLC approach. As mentioned above, here we choose
to use the OSLC Automation Domain for the integration toward the Verification Tools. From the user side,
the choice of the adapter is transparent in terms of functionalities, so the user can decide to ask for a
specific validation regardless of where this validation is going to be performed (locally or remotely).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 107

Figure 46. FBK Tool Integration via OSLC Automation

Adapter Configuration

The user can configure adapters from the Preferences menu (Figure 47). The Tools Preference Page allows
the user to configure both the local adapter (via files) and the OSCL tool adapters by specifying parameters
such as the executable path, the execution timeout, and the OSLC Service Provider catalogue end in the
Service Provider instance.

Figure 47. FBK Tool Adapters Configuration

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 107

Verification actions can be executed on CHESS models and invoked from both the main menu and context
menu (Figure 48 and Figure 49). The same functions can be invoked by selecting the component in the
diagram.

Figure 48. Contract and Behaviour Verification context menu

Figure 49. Contract and Behaviour Verification main menu

In the OSLC approach, all the verification functions have been mapped on AutomationPlan instances. The
adapter on the client side maps the required function to the corresponding Automation Plan, then
instantiates the Automation Request, setting up the parameter values in accordance with the plan. As an
example, the Contract Refinement check is defined in the Service Provider catalogue (Figure 50).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 107

Figure 50. FBK Tool Automation Plan example

2.2.3.8 ‘Specify Tool Connection Information’ for Papyrus Safety and Security Engineering (**)

Papyrus Safety and Security Engineering (SSE) is a tool that offers model-based safety and security analysis
capabilities of UML/SysML-based system models. As Papyrus SSE can be connected to Papyrus as a plugin,
it offers seamless interoperability to the AMASS Platform.

Papyrus SSE also provides file-based interoperability features with other safety analyses tools like NuSMV
and XFTA tools. Papyrus SSE enables annotation of the system models with fault and failure propagation
information. This information is used to perform FMEA and fault tree analyses. The safety information can
also be translated into a file format supported by NuSMV or XFTA (OpenPSA, SMV) to perform further FTA
and model-checking analyses with these tools. The files can be manually imported in the XFTA and NuSMV
tools. The files can be also directly used from the Papyrus SSE environment, as it provides seamless
integration and a user interface to run these external tools and deliver their results back to the analysed
model. Figure 51 presents the interoperability flow between Papyrus SSE and XFTA tool to get quantitative

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 107

FTA analyses on a model. Figure 52, meanwhile, shows excerpts of the Papyrus SSE user interface to
transform a UML model into an SMV model and run the NuSMV tool for model-checking analysis.

Figure 51. Interoperability flow between Papyrus SSE and XFTA tool

Figure 52. User interface in Papyrus SSE for seamless model-checking analysis with NuSMV tool

2.2.3.9 ‘Specify Tool Connection Information’ for Systems Engineering Suite through Ad-hoc Tool
Integration (*)

In this section, unlike in chapter ‘Specify Tool Connection Information’ for OSLC-KM-based Integration, the
integration of the connectors for DOORS Next Generation (DNG) and Rhapsody is only available inside the
SE Suite (by TRC). In the following sections, an ad-hoc integration is described.

Once the connection is defined for any of these connectors in the SE Suite tool, all the functions that are
performed are the same, so the focus will be only to describe the ad-hoc integration and details of the
connection windows and specific parameters needed and handled in those windows.

2.2.3.9.1 ReqIF Connector

This is a new ad-hoc connector to retrieve and author requirements from ReqIF specifications (Figure 53).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 107

Figure 53. ReqIF metamodel

ReqIF is a well-known standard to represent requirements in XML format. Its structure supports to the
addition of several specifications into a single project. Every ReqIF XML file is considered as a project, and
may contain anywhere from 0 to N blocks or Specifications. Each Specification may contain both
hierarchically-related Specifications and Objects (requirements). ReqIF allows traceability by letting users
create Relations between Objects within the same ReqIF file.

All of the information contained within ReqIF files is meta-defined. This means that they do not contain
fixed attributes for the Objects, but instead contain a meta-definition of attributes that are part of the
Objects. Every attribute is defined in advance within the HEADER of the ReqIF file, and then mapped in the
Objects definition.

For that reason, the ReqIF ad-hoc connector needs to pre-define a mapping of the attributes of every single
ReqIF Specification to fulfil the SE Suite metamodel. This is compulsory to let the tools know where to
extract the Statement, Heading, Author, etc, from each ReqIF Object (requirement).

The ReqIF connection window gathers all these parameters, from the physical location of the ReqIF file to
the creation and management of the mapping between the ReqIF file and the SE Suite metamodel
attributes. (Figure 54, Figure 55 and Figure 56).

Figure 54. ReqIF connection window focusing on the ReqIF specific parameters

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 107

Figure 55. Mapping window for ReqIF Specifications

Figure 56. Mapping window for a single ReqIF specification

2.2.3.9.2 PTC Integrity

This is a new ad-hoc connector created to retrieve and author requirements from PTC documents.

PTC Integrity follows a typical client/server architecture with the specific characteristic that the server is a
web server composed of many different interfaces. The client also has some possible interactions via its API
and coding it in C language.

Integration with PTC Integrity has been accomplished by consuming some of these web service interfaces
for SE Suite tools, and for authoring capabilities on top of the Integrity client (RAT Integrity Plugin), some
interactivity has been achieved by using the Integrity client API (Figure 57).

Figure 57. Integrity connector architecture

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 107

The integration with the RAT plugin has not been as seamless as that achieved with other RMS tools. Every
other RAT plugin has a feature (whose name is RAT Inline), which allows the user to see directly in the
requirements grid the quality assessment without opening any other user interface.

The problem arose when understanding the Integrity architecture that the changes are committed to the
server and the triggers reacting to these changes were to be executed on the server, that would create an
incredible amount of network traffic from RAT Integrity Plugins to the Integrity server and, in addition, the
server would be overloaded executing all the trigger actions for all the changes of all the users. However, in
other tools, the triggers can be handled by the client which is the source of the change, that allows to
distribute the computing load and to reduce the network traffic to the minimum.

The PTC Integrity connection window lets users specify the details needed to integrate with PTC Integrity
(Figure 58).

Figure 58. PTC integrity connection window

2.2.3.9.3 RAT for Rhapsody plugin

This is a new ad-hoc connector created to retrieve requirements from Rhapsody projects. Even if a
Rhapsody project is composed of many different models, and these models can have requirements related
to or inside them, the integration will focus on retrieving and authoring the requirements, not on the
models themselves.

The Rhapsody architecture is composed of an editing environment that works with files stored either
locally on the computer or on a network resource. These files may be under management control using any
of the well-known version control management tools, such as Git, Subversion, etc.

Rhapsody allows interoperation with project contents using a Java interface as well as other .NET
interfaces, however the latter method is obsolete. As such, integration was achieved using a Java interface.

The Java interface lets a user subscribe handlers to triggers generated by Rhapsody. By creating a suitable
Java function and subscribing to the desired trigger, any functionality can be implemented.

The integration between SE Suite tools and Rhapsody has been achieved using this Java interface. The
architecture (Figure 59) is composed of three different elements:

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 107

• RAT Rhapsody plugin: written in Java, this subscribes to suitable triggers in Rhapsody, such as
creating and editing requirements, and transfers control to a service (XAT Resident Process) written
in .NET and available via a resident process within the same computer.

• The second component of the architecture is written using .NET and consists of two parts:

o XAT Resident Process: this uses existing technology provided by TRC to author
requirements via a COM object after receiving any trigger handler.

o Rhapsody COM interface: this interface facilitates communication between the XAT
Resident Process and Rhapsody. The XAT Resident Process commits the changes performed
in the RAT COM object back into Rhapsody via this interface.

• The third element is the RAT COM object, which performs any quality assessment and enables
guided authoring using patterns and makes this functionality available for other RMS tool plugins.

All three elements must be deployed on the same computer.

Figure 59. Rhapsody connector architecture

This integration has been achieved as a plugin on top of Rhapsody, adding several options in different
Rhapsody elements, as shown in Figure 25 and Figure 26 above.

2.2.3.9.4 DOORS Next Generation (DNG)

This is a new ad-hoc connector created to retrieve and author requirements from DOORS Next Generation,
which is a new requirements management tool developed by IBM and is based on the ideas and expertise
gathered while creating DOORS.

DOORS NG has been released open-source under the Jazz platform, to create an ecosystem of engineering
tools all running on it. It implements the OSLC-RM standard, generates a consumer of this OSLC-RM in SE
Suite for DNG, and has a standard OSLC-RM connector ready to work with any other provider of OSLC-RM.
When creating the first prototype of the integration, we found that the information TRC tools need to
perform their assessments was not available in the DNG implementation of the OSLC-RM standard, but in
custom attributes that go beyond that standard. Thus, the idea of having a standard OSLC-RM connector
was rejected.

DNG Integrity follows a typical website architecture, it is installed on a web server using JAVA technology.
And offers its functionality via a web browser and HTTP requests. The integration has been accomplished
by requesting and consuming HTTP requests.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 107

In WP5, we have not implemented a plugin on top of DNG. We envision that the development of several
plugins on top of DNG would allow editing with RAT, and the generation of quality dashboards, meeting the
requirement specifications.

Figure 60. DNG Connection window

The DNG connection window gathers parameters
needed for an integration including connection
details for the DNG Server and the project to
connect to. The most significant difference with the
traditional DOORS connection is that the attributes
to store the quality assessment cannot be created
from this integration, they must be selected a priori
in the connection window (Figure 60).

2.2.3.10 ‘Specify Tool Connection Information’ for Safety/Cyber Architect (**)

The design and method of seamless interoperability between the AMASS platform (CHESS and OpenCert
tools) and safety/security analysis tools (Safety/Cyber Architect) have been presented in Deliverable D5.3
[11] (Section 3.1.6), and are depicted in Figure 61.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 107

Figure 61. Interoperability between AMASS platform (CHESS, OpenCert) and Safety/Security analysis tools (Safety
Architect and Cyber Architect)

The design of system analysis tools interoperability (WP5_TI_004) supports a collaborative model-based
systems analysis method for systems engineers, safety engineers, and security engineers (WP5_CW_001,
WP5_CW_002 and WP5_CW_006). The method also supports other WP5 requirements, such as
WP5_EM_014 (Evidence resource specification) because an assurance engineer can indicate in OpenCert
the location of the evidence resource (FMEA/FMVEA tables) generated in Safety Architect, and
WP5_EM_008 (Visualization of chains of evidence) because the fault trees generated in Safety Architect
can be displayed as chains of evidence in the CHESS model architecture. Table 2 provides the mapping
between CHESS model elements and Safety Architect model elements and the implementation status.

Table 2. A Mapping table between CHESS and Safety Architect (name, ID and description of CHESS elements are
preserved by default)

Mapping between CHESS and Safety Architect

Separation
of

Concerns

CHESS Model
Elements

Safety
Architect

(SA)
Model

Elements

Mapping
Requirements

Implementati
on status

Comments

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 107

Functional
Elements

CHESS model
(“.uml” file
and
“SystemView”
Scope)

SA Model,
FE Library
and Data
Library

The mapping shall
allow the import of a
CHESS UML file and
the selection of the
import scope
(Requirement View,
System View,
Component View,
Deployment View and
Analysis View).

A new SA Project
composed by a Model
(“.sa”), a FE Library
(“.fearedevents”) and
a Data Library
(“.data”) shall be
created for each
import.

Partially
implemented

In the current prototype
only, the CHESS
Dependability View in
System View is
implemented. CHESS
Dependability View in
Requirement View,
software/Component
View, Deployment View
and Analysis View are not
yet considered. Anyway,
Safety Architect
integrates some features
such as, ReqIF Model,
Functional/Logical/Physic
al block types, Block/Link
Allocation and Global
Analysis, which could be
used for CHESS
Dependability View in
Requirement View,
software View,
Deployment View and
Analysis View,
respectively. Note also
that the Contract-Based
View and Real Time View
of CHESS is not also
considered in this
mapping.

Data library file has not
been created yet in SA
when importing.

SysML::Block
UML::Compo
nent

Block A CHESS
Component/Block
who does not have
inner blocks shall be
mapped to a Black
box in SA. Otherwise,
the SA block kind is a
White box. If a
domain modelling
stereotype is used in
CHESS to distinguish
the nature of a block
(function, software or
hardware) then this
domain modelling
constraint shall be
mapped to a SA block

Implemented A block kind can be also
an Actor. An actor
represents an element
outside the system, i.e.,
human or environment,
which interacts with the
system under analysis.
SA does not yet support
the “Contract”. All
stereotypes <<Contract>>
are currently imported as
blocks in SA.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 107

type: Function,
Software, Hardware.
Otherwise, the block
type is Untype.

Port Port CHESS port’s
orientation (IN, OU,
INOUT) shall be
mapped to SA port
type (IN, OUT,
IN_OUT)

Implemented

Connector Link CHESS Connector
shall be mapped to
SA Link

Implemented

Data type /
Data

Data type
/ Data

Some elementary
data types in Chess
should be mapped
with SA Data Type
(e.g., BooleanType,
StringType,
EnumerationType,
NumericType,
PhysicalQuantity et
Unit).

Pending In SA, the data are
intended to be
exchanged by the data
links.
It is possible to define the
data concerned by a
failure mode, which can
impact the propagation.

Complex data types in
Chess (SysML – UML) are
not yet supported in SA.

Marte.Alloc.A
ssign

Allocation
link

CHESS
Marte.Alloc.Assign
shall be mapped to
SA AllocationLink.

Implemented In SA, the allocation links
are used to allocate
blocks to other blocks or
data links to other data
links.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 107

Non-
functional
Elements

Port
FailureModes
stereotype

Port
Failure
Modes

A CHESS Port
FailureModes
stereotype shall be
mapped to SA
Specific failure modes
related to port

Implemented In SA, a failure mode
specifies how Port or
Barrier can be failed. By
default, five failure
modes are available:
– Absent: an expected
data flow is missing (in
Safety and Security
viewpoints).
– Erroneous: a data flow
is in error (in Safety and
Security viewpoints).
– Untimely: an
unexpected data flow
appears (in Safety
viewpoint).
– Malicious: an
intentionally harmful
data flow (in Security
viewpoint).
– Specific: a custom
failure mode, identified
by the name given by the
user.

ErrorModel
State
Machine

 The CHESS
ErrorModel State
Machine concept is
not present in SA

Not
implemented

In CHESS, a dedicated
ErrorModel State
Machine is used to detail
any possible relationship
between incoming errors
and outgoing errors
(InternalPropagatin,
ErrorState and failure
conditions).
In SA, a propagation link
is used to indicate how a
failure is propagated
within a black box, a
failure condition of a
black box is analysed
thank to local or systems
events, port failure
modes, barriers and
logical gates. Error states
is not modelled in SA

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 107

ErrorState The CHESS ErrorState
concept is not
present in SA

Not
implemented

In CHESS, error state
models a state of the
component that is
considered erroneous
(i.e., not complying with
the specifications).
In SA, the error, normal
or degraded states are
not modelled, they are
supposed to be foreseen
in the specification. In
addition, SA does not
perform state-based
analysis.

InternalPropa
gation

Propagatio
n Link

CHESS
InternalPropagation
shall be mapped to
SA Propagation link

Pending CHESS Internal
Propagation is inside an
ErrorModel State
Machine, which is not
handled during the
import, so Internal
Propagation is not yet
mapped to local event in
SA.

In SA, a Propagation link
is used to indicate how a
failure is propagated
within a black box. A
propagation link is
oriented and has a source
and target.

The source of a
propagation link can be:
– a failure mode of an
input port, an in/out port,
a barrier or an outgoing
allocation link
– a system event or a
local event
– a logical gate

The target of a
propagation link can be:
– a failure mode of an
output port, of an in/out
port, or of an incoming
allocation link
– a logical gate

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 107

InternalFault Local
Event

CHESS Internal Fault
shall be mapped to
SA Local Event.

Pending CHESS Internal Fault is
inside an ErrorModel
State Machine, which is
not handled during the
import, so Internal Fault
is not yet mapped to
Propagation Link in SA.

 System
Event

The SA System Event
concept is not
present in CHESS. If
the <<System
Event>> Stereotype is
defined in CHESS it
should be mapped to
SA

Pending SA allows to configure
system events impacting
all the blocks of the
model. Those events can
be – for example –
electromagnetic
interference or an
increase in the
temperature, … Those
events are then usable in
the dysfunctional
equation of each block
during the local analysis

 Barrier The SA barrier
concept is not
present in CHESS. If
the <<Barrier>>
Stereotype is defined
in CHESS it should be
mapped to SA.

Pending The SA barrier concept is
an inner control of a
block, which can be used
to reduce the failure
probability at the block’s
outputs. The barrier can
have its own failure
modes.

Logical Gate Logical
gates

CHESS logical gate
shall be mapped to
SA logical gate

Pending In SA, several gate types
(AND, OR, NAND, NOR,
K/N) are managed and
can be used in the local
analysis.

 Feared
Events

The SA feared event
concept is not
present in CHESS. If
the <<feared event>>
Stereotype is defined
in CHESS it should be
mapped to SA

Pending In SA, the feared event is
not the failure itself but
the consequence of this
failure. A feared event
can be triggered by a
failure of the system
under study.
A feared event can be a
Safety only, Security only
or Safety&Security feared
event. Feared events can
be grouped by family.

The implementation description of the above mapping table from CHESS to SA is provided in Section 3.4.2.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 107

2.2.3.11 ‘Specify Tool Connection Information’ for Farkle (**)

The Farkle tool (Figure 62 and Figure 63) is developed as and external tool to the AMASS Tool Platform. The
implementation of Farkle using a consumer and a producer for running an iterative learning-based tool
extended a previous version of the tool towards the system under test. The abstract cases are
interconnected with OSLC interfaces.

The interfaces for the AMASS Tool Platform is also handled with OSLC interfaces. The main input is a system
model created with Papyrus.

Farkle is a test execution framework that enables testing systems in their target environment; through a
communication mechanism between the host and the target, based on signal passing to the target system
under test.

Figure 62. Flow of UML/SysML Model to Farkle

.

2.2.3.12 ‘Specify Tool Connection Information’ for Sabotage (**)

The Sabotage tool is developed in the Eclipse framework using different technologies, e.g. Eclipse
Modelling Framework (EMF), which is used for the development of the user interface to generate the fault
list, and the Xtend technology for the code generation.

Farkle
Automati

c Test
Case

Log for
result

Machine
Learning

Tool

Design
Tool

UML/Sys
ML

Model

Abstract
Test Case

Evolving the
model

System
Under Test

OSLC
HTTP

AMASS Tools
Eclipse
UML/SysML-CHESS

Farkle
Adapt
or

OSLC
Adaptor

ML Test
Extended

Farkle

NuSMV

Figure 63. Extended Farkle interface for AMASS Tools

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 107

As the AMASS Platform is developed in the Eclipse framework, the Sabotage tool can be connected as an
Eclipse plugin. After installing the Sabotage plugin in the AMASS platform, a new Sabotage perspective is
opened which starts generation of fault list configurations and system simulations.

2.2.3.13 ‘Specify Tool Connection Information’ for SAVONA (**)

As SAVONA is based on Papyrus, it offers seamless interoperability with the AMASS Platform/CHESS. A
CHESS export function lets us convert the SAVONA model to a CHESS model (see Figure 64). That way, the
initial architecture design as well as the functional specification with contracts can be performed in
SAVONA and later reopened in CHESS to perform various V&V activities on the model.

Figure 64. CHESS Export function of SAVONA

2.2.3.14 ‘Specify Tool Connection Information’ though Automatic Generation of OSLC KM-based
Connectors (**)

The approach for automatic generation of OSLC-KM connectors, whose design is given in D5.3 [11], has
been implemented in the Verification Studio tool [27] by TRC. In broad terms, a user can select a structured
source format (e.g. some XML file) and the mapping of the format is performed through a user interface to
the SRL formalism [11]. The target elements correspond to e.g. Artefacts, Properties, relationships (RSHP),
and Sub-Artifacts. Based on the mapping, an XSLT file is created with the transformation information
necessary to import files of the source format.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 107

Figure 65. GUI to allow creation of XSLT files to customise the mapping of XML file nodes to elements in the OSLC-KM
metamodel

2.2.4 Platform Management Functionality (**)

2.2.4.1 ‘Configure Access to Assurance Assets’ in OpenCert (**)

CDO includes a security model to specify access rights to the models stored in CDO repositories. This model
is supported by an API that has been used to develop this functionality.

To enable or disable the Security Manager module, a new parameter has been introduced to the CDO
server configuration file “opencoss-properties.xml” (see [14]) generated in the windows user directory:

<entry key="isCDOSecurityEnabled">true/false</entry>

This parameter will be read in the init() method of the StandaloneCDOServer class (in the
org.eclipse.opencert.storage.cdo plugin) , which is responsible for running the CDO server. The parameter
calls the following methods, which are responsible for enabling and initializing the Security Manager on the
AMASS CDO Server:

private ISecurityManager createSecurity(IRepository repository) {
 IManagedContainer managedContainer = IPluginContainer.INSTANCE;
 String realmPath = "/security";
 SecurityManagerUtil.prepareContainer(managedContainer);
 ISecurityManager securityManager =
SecurityManagerUtil.createSecurityManager(realmPath, managedContainer);
 CommitHandler handler = getHandler(managedContainer, "home(/home)");

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 107

 ((InternalSecurityManager) securityManager).addCommitHandler(handler);

 return securityManager;
 }

private void initSecurity(ISecurityManager securityManager) {
 if (securityManager instanceof InternalSecurityManager) {
 ((InternalSecurityManager)
securityManager).setRepository((InternalRepository) repository);
 LifecycleUtil.activate(securityManager);
 }
 }

The CDO Server automatically adds a user account with an administration role when the Security Manager
is started for the first time. The account user name is “Administrator” and the password is “0000”. Using
this account, a user can read and modify access rights to the assurance assets stored on the AMASS Server.
This policy is an instance of the CDO Security metamodel explained in the section 4.4 of the D5.3 [11].

The AMASS platform has a set of windows that lets you create and edit access policies for the data stored
in the AMASS repository. The user can access these from the “Manage Security” context menu if you have
an administration role.

Figure 66. Manage Security menu

From the “Manage Security” menu, the user can manage users, user groups and roles (e.g. Figure 67).

Roles define the access rights (read or write) that users with the role have on the data stored in the CDO
Repository. The role management window lets users browse through all stored assurance assets and select
the asset whose access level the user with administration role wants to set or modify (Figure 68).

The user can create groups of users and assign roles to those groups (Figure 69).

The “Repository Explorer” shows all models stored in the AMASS CDO Server as a tree view. It displays
writable resources with a black caption and (only) readable ones with a dark-green caption. If a user
doesn’t have at least read permission to a model, that model is not displayed. I If a user opens an (only)
readable resource, the “Save changes” button is disabled (Figure 70).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 107

Figure 67. Manage Users Window

Figure 68. Manage Roles Window

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 70 of 107

Figure 69. Manage Groups Window

Figure 70. Repository Explorer showing models with different font styles according the access rights

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 107

Access permissions will be used by all the OpenCert functionalities that need to create or read assets from
the CDO repository (Repository Explorer, Assurance Project Generation, Cross Standard Reuse, Reuse
Assistant, the different CACM parts editors, the Arguments importer from EPF Composer…). For example, it
is only possible to create an assurance project inside CDO Folders (a kind of CDO Resource) with write
permissions (see Figure 71). It’s necessary to check the access rights to a concrete CDO Resource before
using it or a org.eclipse.emf.cdo.common.security.NoPermissionException will be thrown. The following
code to check if the logged user has read/write permissions to a concrete CDOResource has been added in
several parts of the OpenCert source code:

public static boolean hasReadPermission(CDOResourceNode node) {
 node.cdoReload();
 CDOPermission permission = node.cdoRevision().getPermission();
 return permission.isReadable();
 }

public static boolean hasWritePermission(CDOResourceNode node) {
 node.cdoReload();
 CDOPermission permission = node.cdoRevision().getPermission();
 return permission.isWritable();
 }

Figure 71. Generation of Assurance Project in Repository folders with write access

The access configuration is also evaluated to allow or deny the use of functionalities that require specific
access rights for their proper working. For example, it is not possible to use any feature that imports data
to an assurance project without write access to the target assurance project model.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 107

Figure 72. Import data options disabled for an Assurance Project with read only access.

2.2.4.2 ‘Log in the platform’ in OpenCert (**)

The “Repository Explorer” is the Opencert component that opens a session with the CDO server in order to
show to the user all the data stored in the CDO Repository. This component is the responsable of
requesting the logging credentials to the user that wants to use the OpenCert tool.

The code below, in class CDOConnectionUtil of plugin org.eclipse.emf.cdo.dawn.util, requests the access
data to the user and establishes the connection with the CDO repository using the credentials provided by
the user.

public CDOSession openSession()
 {
 ReconnectingCDOSessionConfiguration sessionConfiguration =
CDONet4jUtil.createReconnectingSessionConfiguration(host, repositoryName,
IPluginContainer.INSTANCE);

 IPasswordCredentialsProvider credentialsProvider =

 (IPasswordCredentialsProvider)IPluginContainer.INSTANCE.getElement(CredentialsPro
viderFactory.PRODUCT_GROUP, "interactive", null);

 sessionConfiguration.setCredentialsProvider(credentialsProvider);

 currentSession = sessionConfiguration.openNet4jSession();

 IPluginContainer.INSTANCE.putElement(CDOSessionFactory.PRODUCT_GROUP,
"security", currentSession.toString(), currentSession);

 return currentSession;
}

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 107

Figure 73. Authentication for Platform Access

The OpenCert platform also allows users to change their password through a contextual menu option.

Figure 74. Change password window

2.2.4.3 ‘Concurrent Assurance Information Edition’ with Web-based Technologies

An ultimate goal for the WP5 in AMASS is to provide means to support collaboratively work on the same
document or model at the same time without locking. To offer a seamless experience to the user, the
editing shall work in both (i) rich client (and tools) based on eclipse, as well as (ii) web-based clients (Figure
75). In this prototype, the collaboration between two web-based clients was the target.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 107

Figure 75. Ultimate picture of collaborative work using rich and web clients

The solution (Figure 76) is based on a NodeJS based server that handles all “Operational Transformations”,
i.e. small pieces of change information (so called “mutations”) that are sent by all attached clients and that
the server must bring into order, apply them and send them to all attached clients so they can be
“eventually” consistent, meaning that all clients are up to date at a given point in time. The server was
implemented using purely open-source software as Share DB / Share JS. As a proof of concept, a simple
GSN editor was build (again) using open-source software as Draw.IO and mxGraph. Once the server is
running, the clients may actively connect and after that all modifications done by any of the clients will
appear also at other attached clients. Both, the client, but also the server, were built using the Node.js
based build environment and require Node.js installed.

Figure 76. Screenshot of the current version of the web-based tool for collaborative model editing

2.2.4.4 ‘Concurrent Assurance Information Edition’ with Data Mining Technologies

The AMASS tools collect, create and aggregate a lot of data and relationships. It is essential to provide
users, but also other functions and modules, a way to quickly search this big-data by means of keywords or
other criteria. Based on the Elasticsearch open source software stack [24], a generic indexing feature is
available in the platform. In this prototype, it is intentionally kept simple. Arbitrary EMF objects (local or

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 107

remote, file or CDO resource) can be indexed via the user interface of the prototype. Attributes and
relationships are “crawled” by a generic and reflective indexer. The respective Ecore metamodel is used to
decide whether an attribute value is indexed or not. The only pre-requisite is the configuration of the
Elastic server (Figure 77).

Figure 77. Screenshot of the Indexing configuration preferences

The user can select an arbitrary object and index the object, the object’s resource or the object tree into
Elasticsearch (Figure 78).

Figure 78. Screenshot of context menu to index data

The prototype further contains a web-based (google like) simple search application (Figure 79). The user
may enter arbitrary keywords or other expressions following the Elastic search syntax [25]. The result can
be further limited either by document type (here metaclass) or dedicated filters as for example ASIL –
which was implemented as an example.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 107

Figure 79. Screenshot of the Data Mining platform for collaborative work

The Kibana Dashboard Software (Figure 80) can be used to visualize all indexed data in a nice and
understandable way.

Figure 80. Screenshot of the Kibana Discovery tool

2.2.4.5 ‘Concurrent Assurance Information Edition’ through Automatic Translations (**)

In the frame of the SE Suite tools and the expertise of TRC together with the Seamless interoperability
target of the WP5 of AMASS, we have added a new plugin on one of our new tools INTEROPERABILTY

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 107

Studio to automatically perform translations of requirements from one specification in one given language,
for example, English into another language, such as French. In this way we can ensure the completeness
and consistency of projects developed across different teams in different countries and different languages.

The technique is based on having equivalent ontologies for understanding requirements in those languages
(Figure 81) and mapping the structures of information needed to understand requirements (also known as
requirement-statement template or patterns) from one language to the equivalent in the target language
(Figure 82).

Then the idea is quite simple, once this pattern is matched in the source language, the mappings to the
target language are traversed and then the process is reversed in the target language, instead of matching
patterns in a text, the tool produces languages by trying to instantiate the target pattern with the
translations of the source input words.

Figure 81. Automatic translations via Ontology patterns

Figure 82. Linking of patterns across different languages

The goal is to generate a readable text in the target language. The main issue arises when coordinating the
words with their context, they must match in gender, number and conjugation depending on their
syntactical category.

We have reached an initial level of understandable text, but it needs further refinement for the next
versions.

Inside INTEROPERABILITY Studio, the user can find the Transformation Manager (or R+ for short) (Figure 83)
where there are a set of available transformations that can be parameterized and executed. Among these
possible transformations we have included this automatic translation possibility, which, in fact, it’s another
type of transformation of the source work products.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 107

Figure 83. INTEROPERABILITY Studio > Transformation manager

After selecting the desired translation transformation, the source and target specifications must be
provided as shown in Figure 84. Then, other parameters of the execution can be managed at the bottom of
that window. When all the parameters have been set up, the translation can be performed by clicking in
the “Translate” button.

Figure 84. INTEROPERABILTY Studio > Transformation parameterization

Other possibility for the execution of the translation transformation is from the point of view of the source
specification (Figure 85), there are contextual menu options displaying the possible transformation
available for that source and just by selecting it, the translation is performed automatically.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 107

Figure 85. INTEROPERABILTY Studio > Specification point of view

After the translation transformation process has been finished, a new window will appear showing its log
information (Figure 86). Then this output window can be closed by clicking in the “OK” button.

Figure 86. Transformation output log

Then, when navigating in INTEROPERABILITY Studio to the selected target specification (Figure 87) the user
can see the new work products (green cell background) that have been added by the process.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 107

Figure 87. Target specification showing new work products generated automatically

Finally, a SandBox feature (Figure 88) has been included in the tool to allow the user to fine tune the
parameters needed to customize the translation transformation.

Figure 88. INTEROPERABILITY Studio > SandBox window

2.2.4.6 ‘Concurrent Assurance Information Edition’ in OpenCert (**)

OpenCert supports real-time collaboration on models edition by transferring the changes that one user
commits to the repository to all other users connected to the same repository and transparently weaving
those changes into their model copies.

By default, model elements are locked optimistically, that is, the CDO server implicitly acquires and releases
locks while executing a commit operation the user tries the save the changes made to the model stored in
the CDO repository. These implicit locks are not visible to the committing user or any other user of the
same repository.

Optimistic locking provides for the highest possible degree of concurrency, but it also comes with a non-
zero risk of commit conflicts that are only detected when a commit operation is executed by the CDO

https://help.eclipse.org/neon/topic/org.eclipse.emf.cdo.doc/javadoc/org/eclipse/emf/cdo/transaction/CDOTransaction.html

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 107

server and, consequently, rejected. The following pop-up message (see Figure 89) is shown to the users
when a commit operation is rejected due a conflict.

Figure 89. Conflict message when saving a model.

As the local model copies of a user are automatically updated at the time they are changed by other users,
CDO can anticipate the potential conflict of the local changes early, in fact, before an attempt to commit
those changes is even made. OpenCert marks such conflicting model elements with a red bold font for tree-
based editors and with red borders for graphical ones.

Figure 90. Two users edit the same model elements. When the user 1 (left editor) saves the changes, the conflicted
elements are marked in red to the user 2 (right editor)

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 107

Figure 91. Conflicted elements bordered in red in a graphical editor.

Each time a local transaction is notified of a remote change by the CDO server and local conflicts are
detected, those conflicts are categorized as being either trivial conflicts or non-trivial conflicts. Trivial
conflicts are:

• Changes to multi-valued features on both sides (local and remote) of the same model element.

• Changes to different single-valued features on both sides (local and remote) of the same model
element.

Trivial conflicts are merged automatically into the local transaction; therefore, no user interaction is
involved.

When non-trivial changes are detected, i.e., changes to the same single-valued feature on both sides (local
and remote) of the same model element, the collaboration of the user to solve the conflict is needed, for
that, OpenCert has and Interactive Conflict Resolution feature accessible through a context menu (see
Figure 92).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 83 of 107

Figure 92. Interactive Conflict Resolution context menu.

The Solve Conflict asks the user if s/he wants to solve the conflict with a rollback operation, it means that
the local model copies are automatically updated to their latest remote versions. As a result, all local
changes will be lost and need to be re-applied and committed again.

Figure 93. Rollback resolution

OpenCert checks the possibility of creating explicit locks on selected model elements avoiding the
modification of those locked parts by other users. It’s possible to lock just a single model element
(“Lock/Unlock Object” option) or lock the tree of model elements rooted at the selected model element
(“Lock/Unlock Tree” option).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 84 of 107

This feature is only available for the tree-based model editor using the context menu over the desired
model element to Lock or Unlock.

Figure 94. Options to Lock/Unlock model elements

The locked elements are shown differently to the locker user, highlighted in green with a key icon, and to
the rest of users, highlighted in yellow with a closed padlock icon (see Figure 95).

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 85 of 107

Figure 95. Lock state visualization in editors (locker user editor in the left)

2.2.4.7 Concurrent System Architecture Edition in OpenCert (**)

Collaborative work related to system architecture modelling is made available in AMASS by using the
Papyrus support for CDO; moreover, in the context of AMASS, CHESS has been extended to allow the usage
of the CHESS modelling language (e.g. the contract-based extension) and the Papyrus editor extensions
while using CDO as model repository.

While creating a new CHESS project in a CDO repository, the wizard creates a folder that contains the new
model and notation resources (i.e. the .di, .notation and .uml resources), as well as a text file. project that it

is used to specify the CHESS nature5 of the created project.

Figure 96. Creating a new CHESS Model in CDO

5 In Eclipse, project natures allow to tag a project as a specific kind of project. Project natures allow to indicate that

a certain tool is used to operate on that project. They can also be used to distinguish projects that plug-in is
interested in from the rest of the projects in the workspace.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 86 of 107

As further feature, the import/export of CHESS models from workspace file-based projects to CDO projects
have been implemented.

Concerning CHESS support for model-based analysis, at the time of writing only the Concerto FLA analysis
[7] is supported while working within CDO; to enable the other kind of analysis it is necessary to switch the
CHESS CDO project to the file-based version by using the aforementioned CDO export feature.

2.3 Installation and User Manuals (*)

The steps necessary to install the Prototype P2 are exhaustively described in the AMASS User Manual [13]
(currently under elaboration for all the AMASS building blocks), thus they are not repeated in this
deliverable. In the user manual of the Prototype P2 the users can find the installation instructions, the tool
environment description, and the functionality for the specification of evidence-related assurance project
information (artefact repository preferences, artefact definitions, artefacts, artefact resources, artefact
property values, artefact events, artefact evaluations, impact analysis, executed processes, and property
models) and tool integration, among other features.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 87 of 107

3. Implementation Description (*)

This section presents the modules that have been implemented, the underlying metamodel, and the source
code created.

3.1 Implemented Modules (*)

The modules implemented for the AMASS Prototype P2 in the scope of WP5 are as follows:

• Platform Management (Figure 97)

o Access Management
This module is integrated in OpenCert and uses CDO [16] as the main base technology.

o Data Management
This module is integrated in OpenCert and uses CDO [16] as the main base technology.

o Collaborative Work
In addition to some basic support for collaborative work provided by OpenCert (e.g.
through CDO features for concurrent data access), the tools that currently implement
collaborative work functionality are: Capra, the web-based approach for concurrent
assurance information edition, Elasticsearch, and Kibana.

• Evidence Management (Figure 98)

o Evidence Characterization Editor
OpenCert implements this module. It is an Eclipse-Based editor for artefact and executed-
process information of an assurance project. It contains plugins for edition of artefact
models and of process models, and to provide services for evidence storage
(determination, specification, and structuring of evidence), and for traceability-related
aspects. The editors have been mostly generated with the EMF [18] and EEF [17] Eclipse
technologies, in addition to the implementation of some tailored functionality, e.g. for
integration with SVN and for impact analysis.

• Assurance Traceability (Figure 99)

o Traceability Management
The Evidence Characterisation Editor provides support for evidence traceability. This
functionality is complemented with the use of Capra. Further support is provided by
Traceability Studio.

o Impact Analysis
The impact analysis support is currently embedded in the Evidence Characterisation Editor.
Further support is provided by the Traceability Studio.

• Tool Integration (Figure 100)

o Toolchain Management
The current support for Toolchain Management is integrated in OpenCert and CHESS. Each
tool integration technology has a dedicated user interface.

o Tool Connector
Each tool integration technology described above has its own Tool Connector component:
connector for SVN, connector based on OSLC-KM, etc.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 88 of 107

Figure 97. Platform management modules

Figure 98. Evidence management module

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 89 of 107

Figure 99. Assurance traceability modules

Figure 100. Tool integration modules

3.2 Implemented Metamodel

AMASS D2.4 [4] presents the CACM, including evidence management metamodels. These metamodels
correspond to the envisioned, conceptual data structure necessary in AMASS to provide the reuse-oriented
holistic approach for architecture-driven assurance, multi-concern assurance, and seamless
interoperability. However, the metamodel implemented for the Evidence Management modules does not
exactly correspond to the CACM, but to the metamodel implemented in OpenCert.

Such metamodel is the CCL created in the OPENCOSS project. The CCL can be regarded as compliant with
the CACM because it supports all the evidence information specification needs represented in the CACM.
However, the specification of information can be a bit different. For example, traceability information is not
specified in the CCL based on a specific metamodel, but this information type is embedded in the CCL
artefact metamodel.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 90 of 107

Figure 101 shows an excerpt of the CCL to specify evidence information. Further information about the CCL
can be found in [20].

Figure 101. Excerpt of artefact information in the CCL

3.3 Source Code Description for the AMASS Tool Platform (*)

The source code of the second AMASS prototype can be found in the source code SVN repository [15]. The
code for Prototype P2 evidence management and system management modules are stored together with
the other basic building blocks in the repository under “tag” to distinguish the state of the code at the time
of the integrated release.

The necessary plugins for Seamless Interoperability (Figure 102) are:

• org.eclipse.opencert.evm.evidspes
In this plugin, the evidence metamodel is defined and stored, and the Java implementation classes
for this model are generated.

• org.eclipse.opencert.evm.evidspes.edit
This plugin contains a provider to display evidence models in a user interface.

• org.eclipse.opencert.evm.evidspes.editor
This plugin provides the user interface to view instances of the model using several common
viewers, and to add, remove, cut, copy and paste model objects, or modify the objects in a
standard property sheet.

• org.eclipse.opencert.evm.evidspes.editor.dawn
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to
store the generated model.

• org.eclipse.opencert.evm.evidspec.preferences

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 91 of 107

This plugin defines the default preferences for the communication with the SVN repository, thus it
defines the type of repository (local or remote) and a user and password to connect with the
remote repository.

• org.eclipse.opencert.evm.oslc.km.importevid
This plugin contains all the classes needed to:
1. Request all the parameters needed to insert the structured content of a file as evidences in the

Evidence Manager: type of file, file, additional transformation options and destination in the
AMASS repository: Assurance Project and evidence name.

2. Perform a request to the SE Suite web-service sending the selected file content and receiving
the OSLC-KM model in form of JSON.

3. Build from the JSON string the OSLC-KM model.
4. Parsing the OSLC-KM model into an ArtefactModel from the Evidence Manager.
5. Store the ArtefactModel in the AMASS repository (CDO database).

Regarding the jar file needed to perform step 2, the source code is publicly available at
https://github.com/trc-research/oslc-km

• org.eclipse.opencert.evm.oslc.km.importevid

This plugin contains all the classes needed to add another option in the Preferences window to
select the URL of the OSLC-KM Web Service used in the OSLC-KM importer.

• org.eclipse.opencert.impactanalysis
This plugin contains the implementation of the change impact analysis module. This module is used
by AMASS Tool Platform clients to call and execute change impact analysis.

• org.eclipse.opencert.infra.properties
This plugin contains the definition of the Property metamodel, and the Java implementation classes
for this model.

• org.eclipse.opencert.infra.properties.edit
As the edit plugin for evidence, this plugin contains a provider to display the model in a user
interface.

• org.eclipse.opencert.infra.properties.editor
As the edit plugin for evidence, this plugin is an editor to create and modify instances of the model.

• org.eclipse.opencert.infra.svnkit
In this plugin, the functionalities necessary for the communication with the SVN repository to
export and import artefacts are defined.

• org.eclipse.opencert.pam.procspec
In this plugin, the process execution metamodel is defined and stored, and the Java
implementation classes for this model are generated.

• org.eclipse.opencert.pam.procspec.edit
This plugin contains a provider to display process execution models in a user interface.

• org.eclipse.opencert.pam.procspec.editor
This plugin provides the user interface to view instances of the model using several common
viewers, and to add, remove, cut, copy and paste model objects, or modify the objects in a
standard property sheet.

• org.eclipse.opencert.pam.procspec.editor.dawn
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to
store the generated model.

• org.eclipse.opencert.storage.cdo
This plugin contains classes for using the CDO server in the AMASS Tool Platform. This server
provides a common storage for all AMASS Tool Platform clients and a server. It accesses
PostgreSQL database as its data backend. In addition to common storage implementation, this

https://github.com/trc-research/oslc-km

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 92 of 107

package contains utility classes used when accessing the CDO server by its clients. This plugin also
contains the code related with the access control to the assets stored in the server.

• org.eclipse.opencert.chess.tracemodel
This plugin provides a dedicated Capra metamodel which is used to create the links between
architectural related entities and assurance and evidence ones. Capra extension points are used to
register the metamodel at runtime.

• org.eclipse.opencert.chess.traceability
This plugin contains classes that implement the user interface and control for the management of
the traceability links between CHESS and the other parts of the OpenCert models (as presented in
section 2.2.2.2). These classes use the API provided by Capra and use the different kind of trace
links provided by the org.eclipse.opencert.chess.tracemodel plugin.

Figure 102. Evidence management and System management plug-ins

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 93 of 107

• org.polarsys.chess.cdo
This plugin contains classes that implement the support for CDO while working with the CHESS
projects. It supports the creation of the CHESS model, with its structure, in the selected CDO
repository and the usage of the CHESS model profile and Papyrus editor customization. In addition,
it provides capabilities to import and export CHESS projects from CDO to workspace file-based
repositories.

3.4 Source Code Description for External Tools (*)

This section describes the source code for features that have been implemented for Seamless
Interoperability but have not been integrated into the AMASS Tool Platform.

3.4.1 Seamless Interoperability Features in Systems Engineering Suite by TRC

(**)

3.4.1.1 OSLC-KM standard and OSLC-KM implementation (**)

The approach for Seamless Interoperability has been divided into two different steps.

1) The first step has been defining a standard to represent all kinds of knowledge, which has been
named OSLC Knowledge Management (OSLC-KM). From this standard, all the operations inside the
SE Suite by TRC have been defined using it as input instead of defining a connection for each
possible different model source.

Once this OSCL-KM model has been introduced as input to SE Suite, the tool creates what is called a
specification composed of work products, for example, the requirements found in the model in the
Papyrus file and exposes it to the rest of functionality of SE Suite. This will allow to assess its quality
in many different perspectives:

• Correct: in the scope of the individual work product

• Complete: in the scope of the specification

• Consistent: in the scope of the specification

2) Then the second step has been to map the contents of the model represented in a file, e.g. a
Papyrus model, into an instance of the OSLC-KM standard. This has been achieved by using a
technology called Extensible Stylesheet Language Transformations (XSLT). For each possible source
of models, a XSLT file has been created to map the entities from that model to the entities of the
OSLC-KM model.

The final goal in the long term, and outside the scope of the AMASS project, is that every model tool
manufacturer will be able to create their implementation of the OSLC-KM model inside their tools, and
exposing it via a web service, so that the AMASS platform or SE Suite can consume it without having to
execute this transformation, and the OSLC-KM model can be more complete in the sense that not every
piece of information of the model stored in the file can be extracted and mapped in the OSLC-KM model.
This will create a better representation of the model, thus better results to analyse it.

The implementation of this functionality has been developed inside the SE Suite by TRC and it’s composed
of several libraries:

• Rqa.Face.OslcKm: it implements the connection of the OSLC-KM model instance with the rest of
functionalities of the Requirements Quality Suite (SE Suite).

• System Repository Language (SRL): it is the OSLC-KM implementation inside the SE Suite by TRC.

• Oslc.Km.Parsers: several parsers have been implemented in the methodology described in the
second step (by using XSLT transformation files to create the OSLC-KM model instance). They can

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 94 of 107

be seen in Figure 105. A part of this transformation, the file generated for Papyrus to get
requirements from the model can be found in Figure 106.

• Oslc.Km.Parsers.XmlToSrl: in the same Visual Studio solution a Graphical User Interface (GUI) has
been generated in SE Suite to manage this kind of transformations (see Figure 106).

Figure 103. Rqa.Face.OslcKm library

Figure 104. Implementation of the OSLC-KM for SE Suite by TRC

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 95 of 107

Figure 105. OSLC-KM parsers and XSLT transformation files for Papyrus and Rhapsody

Figure 106. Part of the Papyrus XSLT transformation to map requirements in the model to the OSLC-KM model
instance

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 96 of 107

3.4.1.2 ReqIF Connector (**)

The implementation of this functionality has been developed inside the SE Suite by TRC and it’s composed
of several libraries:

Figure 107. ReqIF connector source code libraries

• ReqIfConnector: this library is in charge of
providing reading and writing access to the
ReqIF file implementing the ReqIF metamodel.

• RequirementFacadeTest: this library contains
tests to ensure that the functionality developed
on the ReqIfConnector works as expected.

• Rqa.Face.ReqIF: this library uses the interface
exposed by the ReqIfConnector to provide an
implementation of the Rqa.Face interface, which
is the one used by all the SE Suite tools to
perform their operations.

• Rqa.Face.ReqIF.Tests: this library contains tests
to ensure that the functionality developed on
the Rqa.Face.ReqIF library works as expected.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 97 of 107

3.4.1.3 PTC Integrity Connector (**)

The implementation of this functionality has been developed inside the SE Suite by TRC and it’s composed
of several libraries:

Figure 108. PTC integrity connector source code
libraries

• IntegrityDiagnosticTool: this tool contains
functionality to provide testing of the connectivity
capabilities in several scenarios. This is an internal
tool.

• Rqa.Face.Integrity: this library consumes the PTC
Integrity Web Service and provides an
implementation of the Rqa.Face interface, which is
the one used by all the SE Suite tools to perform
their operations.

• Rqa.Face.Integrity.Local: this library performs the
integration of the output from the RAT plugin for
Integrity with the Integrity application using their
COM API.

• Rqa.Face.Integrity.Tests: this library contains tests
to ensure that the functionality developed on the
Rqa.Face.Integrity library works as expected.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 98 of 107

3.4.1.4 RAT for Rhapsody Plugin (**)

The implementation of this functionality has been developed inside the SE Suite by TRC and it’s composed
of several libraries:

Figure 109. RAT plugin for Rhapsody source code

• RhapsodyRatResidenProcess: this tool contains
functionality to provide testing of the
connectivity capabilities in several scenarios.
This is an internal tool.

• JavaRhapsodyPlugin: this is the plugin contains
an implementation of the custom menu items
added Rhapsody. This implementation only
launches a the RhapsodyRatResidenProcess
functions.

• JavaPluginHelper.hep: includes the custom
menu options to be added to Rhapsody.

Finally, some major integration points to be
mentioned are:

• The requirement format for Rhapsody is HTML
and the SE Suite tool works authoring
requirements in RTF format, so a conversion
process is performed before using the RAT COM
object.

• The RAT COM interface has been improved to
allow editing requirements having hyperlinks to
any other Rhapsody model element at any
position of the requirement.

• RAT Edition window is not possible to be modal
on top of Rhapsody with this architecture.

Figure 110. Java plugin for Rhapsody

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 99 of 107

3.4.1.5 DOORS Next Generation Connector (**)

The implementation of this functionality has been developed inside the SE Suite by TRC and it’s composed
of several libraries:

Figure 111. DNG connector source code libraries

• Rqa.Face.Dng: this library consumes the DNG
Web Service and provides an implementation of
the Rqa.Face interface, which is the one used by
all the SE Suite tools to perform their operations.

• Rqa.Face.Dng.Tests: this library contains tests to
ensure that the functionality developed on the
Rqa.Face.Dng library works as expected.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 100 of 107

3.4.1.6 Automatic translations (**)

The implementation of this functionality has been developed inside the SE Suite by TRC and it’s composed
of several libraries:

Figure 112. Automatic translations connector source code
libraries

• IS.Client: this library is the base for the
Interoperability Studio, a new tool in the
SE Suite. It has several plugins, but the
important one responsible of the
automatic translations are the classes
defined under the PL\Control\Generator
folder. Its name is Generator because it
is responsible of generating the target
requirements from the input ones.

In the frame of AMASS, we have focused
on transforming requirements across
different languages (translations)

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 101 of 107

3.4.2 Seamless Interoperability Features for Safety/Cyber Architect tools (**)

Figure 113 illustrates the necessary plugins for the transformation from CHESS to Safety Architect.

Figure 113. CHESS to SA plugins

• Com.all4tec.sa.parser.chess
This plugin contains the specific strategies to create SA elements (such as: model, block, port, datalink,
allocation link …) from CHESS elements.

• Com.all4tec.sa.parser.chess.tests
This plugin contains the Unit Tests for the transformation CHESS-SA.

• Com.all4tec.sa.parser.chess.ui
This plugin contains the UI Wizard to import a CHESS model into Safety Architect.

• Com.all4tec.sa.parser.common.uml
This plugin contains the common strategies to create SA elements from UML-based elements. This will be
reused later by different bridges to convert UML-based model (e.g., Papyrus, CHESS, MagicDraw etc.) to SA.

• Com.all4tec.sa.parser.common.uml.ui
This plugin contains the UI components to be shared by all UML-based bridges.

3.4.3 Integration of CHESS and V&V Tools (**)

Currently, three V&V tools are integrated in the platform: OCRA, nuXmv and xSAP. As described in the Tool
Integration, the integration is performed by adapters that connect the external tools via files or OSLC
Automation protocol.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 102 of 107

The adapters are composed by two Eclipse plugins and their internal structures are shown below:

Figure 114. Source project structure of Tool Adapter plugins

The eu.fbk.tool.adpater.core plugin contains the classes for the invocation of the tool functions. Each
function is mapped to a class (that derives from the ToolFunction class) whose attributes are the function
parameters. The class itself translates its behaviour and the attributes to the tool invocation command.

The Figure 115 shows the tool functions hierarchy:

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 103 of 107

Figure 115. Tool Function Hierarchy

Depending on the plugin runtime configuration (File or OSLC adapter category) and the tool function, the
command is executed by the appropriate ToolRunner and the result is processed by the ResultBuilder.
The ToolFunction is not aware of the runner which is executed, so we can add a new runner category
with no development impact on the tool function classes.

The Figure 116 shows the Tool Runner Hierarchy.

Figure 116. Tool Runner Hierarchy

The eu.fbk.tool.adpater.ui allows the invocation of the tool functions as Eclipse commands and presents
the command results in some Views. Typically, CHESS invokes directly these commands. The command id
and the admitted parameters are described in the plugin.xml file as depicted by Figure 117.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 104 of 107

Figure 117. FBK Tool Eclipse Command

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 105 of 107

4. Conclusion (*)

This deliverable has presented the implementation work performed for Seamless Interoperability in the
AMASS Prototype P2, which is the third version of the AMASS Tool Platform. This functionality allows a user
to manage evidence artefacts, manage traceability between assurance assets, integrate the Platform with
external tools, and collaborate with other users. In addition, some external support is provided for
concurrent assurance information editing, e.g. via Kibana. Further support for seamless interoperability is
provided by external tools integrated with the AMASS Tool Platform, such as the tools of the SE Suite by
TRC.

Prototype P2 has extended the previous versions of the support for Seamless Interoperability in the AMASS
Platform new features through the development of security mechanisms for user access management, the
enactment of larger toolchains, and the integration of advanced collaborative work functionality.

At its current state, and prior to validation in WP2 and application in WP1, Seamless Interoperability
support for Prototype P2 has TRL 3 (experimental proof of concept). The main aspects to address for
Seamless Interoperability implementation until the end of AMASS include fixing bugs detected in WP2
activities and enhancing the current features from the feedback provided by users and industry partners in
WP1 activities. This will lead to a higher TRL.

Regarding security implications from integration with external tools, the users of the AMASS Tool Platform
must take into consideration the security mechanisms that the external tools provided, e.g. authentication.
Based on the existence or not of these mechanisms, the degree of confidence in the data exchanged can
vary.

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 106 of 107

References

[1] AMASS project: D1.1 - Case studies description and business impact. 2016. https://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-
business-impact_AMASS_Final.pdf

[2] AMASS project: D2.2 - AMASS reference architecture (a). 2016.

[3] AMASS project: D2.3 - AMASS reference architecture (b). 2017.

[4] AMASS project: D2.4 - AMASS reference architecture (c). 2018. https://www.amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-
architecture-%28c%29_AMASS_Final.pdf

[5] AMASS project: D3.3 - Design of the AMASS tools and methods for architecture-driven assurance (b).
2018.

https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-
of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf

[6] AMASS project: D3.4 - Prototype for architecture-driven assurance (a). 2016. http://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architec
ture-driven%20assurance%20%28a%29_AMASS_final.pdf

[7] AMASS project: D4.3 - Design of the AMASS tools and methods for multiconcern assurance (b). 2018.
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-
of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf

[8] AMASS project: D4.4 - Prototype for multiconcern assurance (a). 2017. http://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-
assurance-%28a%29_AMASS_final.pdf

[9] AMASS project: D5.1 - Baseline requirements for seamless interoperability. 2016. http://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-
for-Seamless-Interoperability_AMASS_Final.pdf

[10] AMASS project: D5.2 - Design of the AMASS tools and methods for seamless interoperability (a).
2017.

[11] AMASS project: D5.3 - Design of the AMASS tools and methods for seamless interoperability (b).
2018.

https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.3_Design-
of-the-AMASS-tools-and-methods-for-seamless-interoperability-%28b%29_AMASS_Final.pdf

[12] AMASS project: D6.4 - Prototype for cross/intra-domain reuse (a). 2017.

https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.4_Prototype-for-
cross-intra-domain-reuse-%28a%29_AMASS_Final.pdf

[13] AMASS project: Prototype Core User Manual, Version 0.16. 2017.
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/
PrototypeCore/AMASS_Prototype1_UserManual.docx

[14] AMASS project: Prototype P1 Developers Guide. https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_DeveloperGuide.doc

[15] AMASS project: Source code repository. 2017. https://services.medini.eu/svn/AMASS_source/ 7

6 The current User Manual is a draft document; the final version of the manual will be integrated in D2.5 - AMASS
User guidance and methodological framework (m31).

7 The AMASS SVN code repository is open to AMASS partners with the same credentials as the SVN document
repository. In case that people outside the project need access, please contact the AMASS Project Manager
(alejandra.ruiz@tecnalia.com)

https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-architecture-%28c%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-architecture-%28c%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-architecture-%28c%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.3_Design-of-the-AMASS-tools-and-methods-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.3_Design-of-the-AMASS-tools-and-methods-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.4_Prototype-for-cross-intra-domain-reuse-%28a%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.4_Prototype-for-cross-intra-domain-reuse-%28a%29_AMASS_Final.pdf
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/%20PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/%20PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_DeveloperGuide.doc
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_DeveloperGuide.doc
https://services.medini.eu/svn/AMASS_source/

 AMASS Prototype for seamless interoperability (c) D5.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 107 of 107

[16] Eclipse: CDO Model Repository. 2017. https://eclipse.org/cdo/

[17] Eclipse: EEF. 2016. https://eclipse.org/eef/#/

[18] Eclipse: EMF. 2017. https://eclipse.org/modeling/emf/

[19] OPENCOSS project. 2015. http://www.opencoss-project.eu/

[20] OPENCOSS project: D4.4 - Common Certification Language: Conceptual Model. 2015.
http://www.opencoss-project.eu/sites/default/files/D4.4_v1.5_FINAL.pdf

[21] OSLC community. 2017. https://open-services.net/

[22] PolarSys: OpenCert project. 2017. https://www.polarsys.org/projects/polarsys.opencert

[23] SafeCer Project. 2015. https://artemis-ia.eu/project/40-nsafecer.html

[24] Elasticsearch, https://www.elastic.co/

[25] Elasticsearch Query String Syntax
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-
query.html#query-string-syntax

[26] The REUSE Company: Traceability Studio. https://www.reusecompany.com/traceability-studio

[27] The REUSE Company: Verification Studio. https://www.reusecompany.com/verification-studio

https://eclipse.org/cdo/
https://eclipse.org/eef/#/
https://eclipse.org/modeling/emf/
http://www.opencoss-project.eu/
http://www.opencoss-project.eu/sites/default/files/D4.4_v1.5_FINAL.pdf
https://open-services.net/
https://www.polarsys.org/projects/polarsys.opencert
https://artemis-ia.eu/project/40-nsafecer.html
https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax
https://www.reusecompany.com/traceability-studio
https://www.reusecompany.com/verification-studio

