
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation
programme and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Prototype for seamless interoperability (b)
D5.5

Work Package: WP5 Seamless Interoperability

Dissemination level: PU = Public

Status: Final

Date: 30 November 2017

Responsible partner: Luis M. Alonso (TRC)

Contact information: luis.alonso@reusecompany.com

Document reference: AMASS_D5.5_WP5_TRC_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information that is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited
as source.

Contributors

Reviewers

Names Organisation

Luis M. Alonso, Borja López The REUSE Company

Jose Luis de la Vara, Jose María Álvarez, Eugenio Parra, Roy
Mendieta, Francisco Rodríguez

Universidad Carlos III de Madrid

Ángel López, Alejandra Ruiz Tecnalia Research & Innovation

Pietro Braghieri, Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler

Stefano Puri Intecs

Tomáš Kratochvíla Honeywell

Ivana Černá Masaryk University

Jan Mauersberger Ansys medini Technologies

Names Organisation

Frank Badstuebner (Peer reviewer) Infineon

Marc Sango (Peer reviewer) ALL4TEC

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 42

TABLE OF CONTENTS

Abbreviations and Definitions ... 5

Executive Summary .. 6

1. Introduction ... 8

2. Implemented Functionality .. 10

2.1 Scope ... 10

2.2 Implemented Requirements .. 10

2.2.1 ‘Characterise Artefact’ with OpenCert ... 10
2.2.2 ‘Link Artefact with External Tool’ with OpenCert .. 12
2.2.3 ‘Specify Artefact Lifecycle’ with OpenCert .. 13
2.2.4 ‘Evaluate Artefact’ with OpenCert.. 14
2.2.5 ‘Specify Process Information for Artefacts’ with OpenCert ... 14
2.2.6 ‘Conduct Impact Analysis of Assurance Asset Change’ with OpenCert 15
2.2.7 ‘Specify Traceability between Assurance Assets’ with OpenCert 16
2.2.8 ‘Specify Traceability between Assurance Assets’ with Capra .. 16
2.2.9 ‘Specify Tool Connection Information’ with OpenCert .. 18
2.2.10 ‘Specify Tool Connection Information’ for OSLC-KM-based Integration 18
2.2.11 ‘Specify Tool Connection Information’ for Integration with V&V Manager 21
2.2.12 ‘Specify Tool Connection Information’ for Integration of CHESS and V&V Tools................ 22
2.2.13 ‘Concurrent Assurance Information Edition’ with Web-based Technologies 25
2.2.14 ‘Concurrent Assurance Information Edition’ with Data Mining Technologies 27

2.3 Installation and User Manuals .. 28

3. Implementation Description ... 30

3.1 Implemented Modules... 30

3.2 Implemented Metamodel .. 32

3.3 Source Code Description for the AMASS Tool Platform ... 33

3.4 Source Code Description for External Tools .. 35

3.4.1 Seamless Interoperability Features in RQA .. 35

4. Conclusion .. 41

References ... 42

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 42

List of Figures

Figure 1. AMASS Building blocks .. 8
Figure 2. Functional decomposition for the AMASS platform ... 10
Figure 3. Artefact definition creation ... 11
Figure 4. Artefact data specification ... 11
Figure 5. Use of SVN repository as artefact repository.. 12
Figure 6. Resource specification for an artefact .. 12
Figure 7. Resource properties .. 13
Figure 8. Artefact event properties .. 13
Figure 9. Artefact evaluation properties ... 14
Figure 10. Process model ... 15
Figure 11. Activity data .. 15
Figure 12. Modification event of an artefact .. 16
Figure 13. Impact analysis information .. 16
Figure 14. Advanced CAPRA trace creation view (drop sensitive) ... 17
Figure 15. Tracing a claim to a contract .. 18
Figure 16. OSLC-KM Importing an Evidence Model from a model file ... 19
Figure 17. Fragment of a Papyrus model to be imported .. 19
Figure 18. New evidence model from a Papyrus model .. 19
Figure 19. RQA Connection Window .. 20
Figure 20. SysML (Papyrus subtype) ... 20
Figure 21. Papyrus mappings ... 21
Figure 22. V&V Manager integration .. 22
Figure 23. FBK Tool Integration via files ... 23
Figure 24. FBK Tool Integration via OSLC Automation .. 23
Figure 25. FBK Tool Adapters Configuration ... 24
Figure 26. Contract and Behaviour Verification context menu .. 24
Figure 27. Contract and Behaviour Verification main menu.. 25
Figure 28. FBK Tool Automation Plan example ... 25
Figure 29. Ultimate picture of collaborative work using rich and web clients ... 26
Figure 30. Screenshot of the current version of the web-based tool for collaborative model editing 26
Figure 31. Screenshot of the Indexing configuration preferences ... 27
Figure 32. Screenshot of context menu to index data ... 27
Figure 33. Screenshot of the Data Mining platform for collaborative work ... 28
Figure 34. Screenshot of the Kibana Discovery tool .. 28
Figure 35. Platform management modules .. 31
Figure 36. Evidence management module ... 31
Figure 37. Assurance traceability modules ... 32
Figure 38. Tool integration modules .. 32
Figure 39. Excerpt of artefact information in the CCL ... 33
Figure 40. Evidence management and System management plug-ins... 34
Figure 41. Rqa.Face.OslcKm library .. 37
Figure 42. Implementation of the OSLC-KM for RQS ... 37
Figure 43. OSLC-KM parsers and XSLT transformation files for Papyrus and Rhapsody 38
Figure 44. Part of the Papyrus XSLT transformation to map requirements in the model to the OSLC-KM

model instance .. 39
Figure 45. GUI to allow creation of XSLT files to customise the mapping of XML file nodes to elements

in the OSLC-KM metamodel ... 40

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 42

Abbreviations and Definitions

API Application Programming Interface

ARTA AMASS Reference Tool Architecture

ASIL Automotive Safety Integrity Level

CACM Common Assurance and Certification Metamodel

CDO Connected Data Objects

CCL Common Certification Language

CPS Cyber-Physical Systems

ECSEL Electronic Components and Systems for European Leadership

EEF Extended Editing Framework

EMF Eclipse Model Framework

GSN Goal Structuring Notation

GUI Graphical User Interface

JSON JavaScript Object Notation

OPENCOSS Open Platform for EvolutioNary Certification of Safety-critical Systems

OSLC Open Services for Lifecycle Collaboration

OSLC-KM OSLC for Knowledge Management

RQA Requirements Quality Analyzer

RQS Requirements Quality Suite

SACM Structured Assurance Case Metamodel

SafeCer Safety Certification of Software-Intensive Systems with Reusable Components

SVN Apache Subversion

TRL Technology Readiness Level

URL Uniform Resource Locator

V&V Verification and Validation

WP Work Package

XSLT eXtensible Stylesheet Language Transformations

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 42

Executive Summary

The document is AMASS deliverable D5.5 - Prototype for seamless interoperability (b). It is the second
output of the task T5.3 Implementation for Seamless Interoperability and is based on the results from tasks
T5.1 Consolidation of Current Approaches for Seamless Interoperability and T5.2 Conceptual Approach for
Seamless Interoperability, as well as on the first output of T5.3 (D5.4 - Prototype for seamless
interoperability (a)).

Task T5.3 develops a tooling framework to implement prototype support for seamless interoperability in
CPS assurance and certification. T5.3 is being carried out iteratively, in close connection with the conceptual
tasks (T5.2 and Tx.2 in the other technical WPs), and with validation results from the implementation being
used to guide further refinement of the conceptual approach. The implementation is closely guided by the
requirements of the case studies, which are used to evaluate the prototype.

The second prototype iteration extends the initial implementation of basic building blocks for the AMASS
Core Prototype, which was a consolidation and integration of results from previous projects. More
concretely, the Seamless Interoperability features of the AMASS Prototype P1 are:

 Access Management (already in Core Prototype)

 Data Management (already in Core Prototype)

 Evidence Management (already in Core Prototype)

 Tool Integration

 Collaborative Work

 Traceability Management

The developed tools for the Prototype P1 support the following use cases:

 Characterise Artefact

 Link Artefact with External Tool

 Specify Artefact Lifecycle

 Evaluate Artefact

 Specify Process Information for Artefacts

 Specify Traceability between Assurance Assets

 Conduct Impact Analysis of Assurance Asset Change

 Specify Tool Connection Information

 Concurrent Assurance Information Edition

This document presents in detail the pieces of functionality implemented in the AMASS Tool Platform for
the areas above, their software architecture, the technology used, and source code references.

D5.5 relates to other implementation-related AMASS deliverables:

 Installable AMASS Tool Platform for Prototype P1

 User manuals and installation instructions

 Source code description

In addition, D5.5 is related to the following AMASS deliverables:

 D2.1 (Business cases and high-level requirements) includes the requirements that have been
implemented in D5.5.

 D2.2 (AMASS reference architecture (a)) and D2.3 (AMASS reference architecture (b)) present the
abstract architecture based on which D5.5 has been created.

 D2.7 (Integrated AMASS platform (b)) reports the results from validating the implementation
described in D5.5.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 42

 D5.1 (Baseline requirements for seamless interoperability) reviews the main background on
seamless interoperability for AMASS and proposes a way forward. D5.5 corresponds to the
realisation of this way forward as of October 2017.

 D5.4 (Prototype for seamless interoperability (a)) describes the first version of the Seamless
Interoperability support in the AMASS Tool Platform.

 D5.6 (Prototype for seamless interoperability (c)) will describe the third version of the seamless
interoperability support in the AMASS Tool Platform.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 42

1. Introduction

The AMASS approach focuses on the development and consolidation of an open and holistic assurance and
certification framework for CPS, which constitutes the evolution of the OPENCOSS [15] and SafeCer [19]
approaches towards an architecture-driven, multi-concern assurance, reuse-oriented, and seamlessly
interoperable tool platform.

The expected tangible AMASS results are:

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual,
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability
mechanisms (based on OSLC specifications [17]).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on
open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse
community (www.polarsys.org) is a strong candidate to host AMASS Open Tool Platform.

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding scientific
and technical project objectives are addressed by different work-packages.

Figure 1. AMASS Building blocks

http://www.polarsys.org/

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 42

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are:

 Better assessment of ideas by initially focusing on a few aspects of the solution.

 Ability to change critical decisions based on practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks

(see [2]), will be aligned, merged and consolidated at TRL41.

2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks will be
developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as the
green building blocks (Figure 1). Regarding seamless interoperability, in this second prototype, the
specific building blocks will provide advanced functionalities regarding tool integration,
collaborative work, and tool quality characterisation and assessment.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL5. Functionalities specific for seamless
interoperability developed for the second prototype will be enhanced and integrated with
functionalities from other technical work packages.

Each of these iterations has the following three prototyping dimensions:

 Conceptual/research development: development of solutions from a conceptual perspective.

 Tool development: development of tools implementing conceptual solutions.

 Case study development: development of industrial case studies (see D1.1 [1]) using the tool-
supported solutions.

As part of the Prototype Core, WP5 was responsible for consolidating the previous works on specification of
evidence characteristics, handling of evidence evolution, and specification of evidence-related information
(e.g. process information) in order to design and implement the basic building block called “Evidence
Management” (Figure 1). In addition, WP5 was responsible for the implementation of the “Access
Manager” and “Data Manager” basic building blocks. Nonetheless, the functionality of these latter blocks is
used not only in WP5, but in all the WPs, e.g. for data storage and access (of system components, of
assurance cases, of standards’ representations, etc.). For P1, WP5 has refined and extended the existing
implementation with support for specific seamless interoperability based on the development of new
functionality, and not only the integration of available tools.

This deliverable reports the tool development results of the “Evidence Management”, “Access Manager”,
“Data Manager”, “Tool Integration Management”, and “Collaborative Work Management” building
blocks. It presents in detail the design of the functionality implemented in the AMASS Tool Platform, the
building blocks’ software architecture, the technology used, and source code references. The design is
based on the investigated state of the art and state of practice approaches presented in D5.1 [8], and on the

ARTA specification in D2.22 [2], and D2.3 [3]. Their gaps were identified and analysed to determine a way
forward for seamless interoperability, enabling the formulation of requirements to achieve the
interoperability vision of AMASS. This vision covers tool integration, collaborative work, and tool quality
assessment and characterisation.

The rest of the deliverable presents the requirements implemented (Section 2) and describes the
implementation performed (Section 3).

1 In the context of AMASS, the EU H2020 definition of TRL is used, see
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-
trl_en.pdf
2 D2.2 and D2.3 are non-public descriptions of the ARTA. The deliverable that presents the final version (D2.4) will
be public.

http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 42

2. Implemented Functionality

This section presents the scope of the implementation work reported in this deliverable and the
implemented requirements.

2.1 Scope

The scope for the current prototype for seamless interoperability is the provision of tools for: (1) access and
data management; (2) specification and management of evidence-related assurance information, mostly
artefact information; (3) traceability management; (4) tool integration, and; (5) collaborative work. The
overall scope is highlighted in Figure 2, which shows the general functional overview of the AMASS Tool
Platform as presented in D2.3 [3].

The Platform Management block includes generic functionality for security, permissions and profiles, data
storage, visualization, and reporting, and including collaborative work. The Evidence Management block
handles the full lifecycle of evidence artefacts and evidence chains. The Seamless Interoperability block
manages the interoperability between the AMASS modules, as well as the connections with external tools.
The Assurance Traceability block provides generic support for traceability management and impact
analysis.

The next section presents the use cases that the above building blocks support in the scope of WP5.

Figure 2. Functional decomposition for the AMASS platform

2.2 Implemented Requirements

The implemented requirements correspond to nine use cases specified in D2.3 [3]. The following
subsections include a short description of how the implementation performed supports each use case, and
the main tools and technologies supporting the use cases. Some use cases are supported by several tools
and technologies. For example, there exist several means for tool integration in the AMASS Tool Platform.

Regarding the implemented requirements, an overview of the status of WP5 requirements is available in
D5.2 [7]. A detailed analysis will be included in D5.6, as a reference of the final AMASS support for Seamless
Interoperability.

2.2.1 ‘Characterise Artefact’ with OpenCert

For artefact characterization (i.e. evidence artefact characterisation), the AMASS Tool Platform allows a
user to create artefact models and add artefact definitions to the model via a tree-view based editor (Figure
3). Artefacts can later be specified for the artefact definitions (Figure 4). For each artefact, a user can

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 42

specify basic data such as name, description, version information, and precedent version. Examples of
evidence artefact types include system plans, system analysis results, system specifications, and V&V
results.

Figure 3. Artefact definition creation

Figure 4. Artefact data specification

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 42

2.2.2 ‘Link Artefact with External Tool’ with OpenCert

Artefacts can be linked to external tools in two main ways. First, a user can specify that the artefact
repository for an assurance project corresponds to a SVN repository (Figure 5). Second, a resource can be
added to an artefact (Figure 6) and, in its properties (Figure 7), a user can indicate the external location and
format of the file that actually corresponds to the artefact.

Figure 5. Use of SVN repository as artefact repository

Figure 6. Resource specification for an artefact

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 42

Figure 7. Resource properties

2.2.3 ‘Specify Artefact Lifecycle’ with OpenCert

Once an artefact has been created, its lifecycle can be specified by adding events and specifying event data
(Figure 8), such as the event type (creation, modification, evaluation, and revocation) and when the event
happened.

Figure 8. Artefact event properties

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 42

2.2.4 ‘Evaluate Artefact’ with OpenCert

A user can add evaluations to artefacts. The users can also specify the evaluation criterion, the criterion
description, the evaluation result, and its rationale, among other properties (Figure 9).

Figure 9. Artefact evaluation properties

2.2.5 ‘Specify Process Information for Artefacts’ with OpenCert

Process-related artefact information is specified by means of process models (Figure 10). These models can
contain information about activities, participants, persons, tools, organizations, and techniques involved in
the processes of an assurance project. Artefacts can later be associated to these elements. For example,
‘activity artefacts’ is a set of activity data (Figure 11) with which the input and output artefact of an activity
can be specified.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 42

Figure 10. Process model

Figure 11. Activity data

2.2.6 ‘Conduct Impact Analysis of Assurance Asset Change’ with OpenCert

When changes are made to artefacts and these changes result in modification events (Figure 12), the users
can determine the impact of such changes in other artefacts and accept it or refuse it (Figure 13).

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 42

Figure 12. Modification event of an artefact

Figure 13. Impact analysis information

2.2.7 ‘Specify Traceability between Assurance Assets’ with OpenCert

OpenCert provides support to specify traceability between evidence artefacts as part of its functionality to
characterise artefacts (see Section 2.2.1). More concretely, relationships can be created to specify artefact
components with ‘ArtefactPart’ and any other type of relationship with ‘OwnedRel’.

2.2.8 ‘Specify Traceability between Assurance Assets’ with Capra

Capra Eclipse project3 offers a basic support for the creation, management and visualisation of trace links
between resources within Eclipse. In the context of WP5, Capra basic support has been extended to support

3 https://projects.eclipse.org/projects/modeling.capra

https://projects.eclipse.org/projects/modeling.capra

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 42

reference to resources which are external to the Eclipse environment (e.g. external files, requirements
modelled with DOORS, etc.) and to support references to Eclipse resources stored in CDO. The trace model
was extended to have trace directions, that means a trace is a directed relationship, not undirected. The
direction is required in AMASS to express upstream-downstream relationships and based on that, the
calculation of change impact in upstream artefacts. Furthermore, the user interface was extended so that
the creation of traces between internal artefacts and external artefacts is much easier. A new view is
available now which can be simply filled in with drag & drop (URLs, files, objects) (Figure 14).

Figure 14. Advanced CAPRA trace creation view (drop sensitive)

In the context of WP3, Capra approach has been selected for the storage of the traceability links between
system architectural entities, like components and contracts, and assurance related entities, like claims and
evidences. A specific support/user interface is currently under development to assist the architect in the
creation of the traceability links; in particular, by using this support, the architect will be allowed to create
the kind of traceability links which are allowed by the system architecture (abstract) metamodel (see D3.2
[4] , section 3.2.2.4).

Figure 15 shows an example of the aforementioned support: by selecting a contract in the system
architecture model, the latter available through the Papyrus/CHESS editor, a dedicate tab (named
OpenCert) is enabled in the properties view. The OpenCert tab allows to check the current assurance case
entities already traced to the contract itself, and also allows to create new traceability links. For instance, a
trace link between the selected contract and the Goal1 claim available in the assurance case model,
showed in the left part of the figure, can be created by using the Claim table in the OpenCert tab. The link
to be created will be automatically stored in the Capra model, by using the Capra API’s facilities. The
possibility to retrieve existing traceability link associated to the selected architectural entity and the
possibility to create new links, requires that the location of the Capra model has to be known by the tool (it
can set in the CHESS preference page or by using some setting at the assurance project level, the definition
of this part is ongoing).

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 42

Figure 15. Tracing a claim to a contract

2.2.9 ‘Specify Tool Connection Information’ with OpenCert

The default OpenCert support to specify tool connection information is presented in Section 2.2.2. The new
support developed for Prototype P1 and that has been or will be integrated in OpenCert is presented in
Sections 2.2.10, 2.2.11, and 2.2.12.

2.2.10 ‘Specify Tool Connection Information’ for OSLC-KM-based Integration

Artefacts evidence can be gathered from external tools aiming at different specification or V&V targets. All
of them can populate the artefact evidence database for an assurance project, just by implementing a
producer of the OSLC-KM standard.

An example use case implemented for the AMASS platform is as follows. From the side of the AMASS Tool
Platform, in the menu bar just select the “OSLC-KM” menu, and the option “Import evidence model from
file” (Figure 16), then select a Papyrus file (Figure 17). As a result, its content is sent to a Requirements
Quality Analyzer (RQA) web service that works as an OSLC producer. The web method returns the OSLC-KM
instance, then the AMASS platform loads the model by the Java implementation of the OSLC-KM standards
and maps its content to an Artefact Model inside the current assurance project (Figure 18).

On the other side, in RQA the creation of the OSLC-KM model can be parameterized by modifying the
mapping between the Papyrus metamodel and the OSLC-KM metamodel. This can be done in RQA in the
connection window, selecting a new OSLC-KM connection (Figure 19) and then, in the new window,
selecting the Papyrus model from the file system (Figure 20). Finally, in the bottom part of this window, if
the “Advance” configuration is selected, a new window will appear allowing to customize the mappings
from the Papyrus model and the OSLC-KM instance created for it (Figure 21).

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 42

Figure 16. OSLC-KM Importing an Evidence Model from a model file

Figure 17. Fragment of a Papyrus model to be imported

Figure 18. New evidence model from a Papyrus model

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 42

Figure 19. RQA Connection Window

Figure 20. SysML (Papyrus subtype)

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 42

Figure 21. Papyrus mappings

2.2.11 ‘Specify Tool Connection Information’ for Integration with V&V Manager

V&V Manager allows formal verification of the contracts by external V&V tools that are installed on remote
verification servers.

The contracts (or individual formal properties) are selected for example from Block Definition Diagram or at
the level of components, using the related contracts. The verification or validation is invoked using a
contextual menu Validation V/V Manager, as depicted in Figure 22.

Verification servers are installed as Linux servers in the current prototype, where Proxygen or Apache-
Tomcat server act as an OSLC Automation service provider (by default on port 6080, or 8080). All
verification tools installed on the verification servers get the OSLC Automation Plan and Request, and if the
V&V tool is able to execute the verification plan, it is executed and when the V&V tool finishes, the server
returns the OSLC Automation Response with Verification Results. All Verification results from all tools are
seamlessly and continuously consolidated into a complete V&V result. Currently, all integrated V&V tools
are command line based.

How to integrate a new V&V tool

Install it on the verification servers and register it on the Proxygen or Apache-Tomcat server application.
The server needs to know:

1. The tool binary name to be executed – only if it is different from the name stated in the OSLC
Automation Plan.

2. The tool parameters – only if the parameters have to be handled differently than as command line
arguments or as a content of a configuration file parameters.

3. Artefacts under verification (requirements, system architecture, system design) – only if the
artefacts have to be handled differently than just to be passed as file arguments.

In summary, if the tool binary name, its parameters and the artefacts under verification could be passed to
the command line tool in a standard way, the V&V tool does not have to be registered by the verification
server application.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 42

Figure 22. V&V Manager integration

2.2.12 ‘Specify Tool Connection Information’ for Integration of CHESS and V&V
Tools

CHESS has been extended and integrated in order to perform V&V activities on the models by using the FBK
Tools. Currently two kind of tool adapters are available: the first one that invokes the FBK tools locally by
passing the artefacts and the command via files. The second that does the same functionalities via the
OSLC-Automation adapter.

Adapter to FBK Tool via files

The architecture of the integration towards FBK tools via files is depicted in Figure 23. The tool adapter
takes in charge the request from CHESS, converts the model to the Verification tool format, setups the
artifacts and the commands files, sends them to the Verification Tools and in the end returns the result to
CHESS, ready to be shown grafically.

Adapter to FBK Tool via OSLC

Figure 24 represents the same functionality using the OSLC approach. As mentioned above, here we choose
to use the OSLC Automation Domain for the integration toward the Verification Tools. From the user side,
the choice of the adapter is transparent in terms of functionalities, so the user can decide to ask for a
specific validation regardless of where this validation is going to be performed (locally or remotely).

Adapters Configuration

The configuration of such adapters is available in the Preferences menu (Figure 25). The Tools Preference
Page allows configuring both the local (via files) and OSCL tools adapters by specifying some parameters
such as the executable path, the execution timeout, and the OSLC Service Provider catalogue end in the
Service Provider instance.

The Verification actions can be executed on CHESS models and that can be invoked from both the main
menu and context menu (Figure 26 and Figure 27). There are some functions for the contract based
verification and other for behaviour model checking. The same functions can be invoked by selecting the
component in the diagram.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 42

In the OSLC approach, all the verification functions have been mapped on AutomationPlan instances. The
adapter on the client side maps the required function to the corresponding Automation Plan, then
instantiates the Automation Request setting up the parameter values in accordance with the plan. Just as
an example, the Contract Refinement check is defined in the Service Provider catalogue (Figure 28).

Figure 23. FBK Tool Integration via files

Figure 24. FBK Tool Integration via OSLC Automation

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 42

Figure 25. FBK Tool Adapters Configuration

Figure 26. Contract and Behaviour Verification context menu

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 42

Figure 27. Contract and Behaviour Verification main menu

Figure 28. FBK Tool Automation Plan example

2.2.13 ‘Concurrent Assurance Information Edition’ with Web-based Technologies

An ultimate goal for the WP5 in AMASS is to provide means to support collaboratively work on the same
document or model at the same time without locking. To offer a seamless experience to the user, the

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 42

editing shall work both, in rich client (and tools) based on eclipse as well as in web based clients (Figure 29).
In this prototype, the collaboration between two web based clients was the target.

Figure 29. Ultimate picture of collaborative work using rich and web clients

The solution (Figure 30) is based on a NodeJS based server that handles all “Operational Transformations”,
i.e. small pieces of change information (so called “mutations”) that are sent by all attached clients and that
the server must bring into order, apply them and send them to all attached clients so they can be
“eventually” consistent, meaning that all clients are up to date at a given point in time. The server was
implemented using purely open-source software as Share DB / Share JS. As a proof of concept, a simple
GSN editor was build (again) using open-source software as Draw.IO and mxGraph. Once the server is
running, the clients may actively connect and after that all modifications done by any of the clients will
appear also at other attached clients. Both, the client but also the server were built using the Node.js based
build environment and require Node.js installed.

Figure 30. Screenshot of the current version of the web-based tool for collaborative model editing

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 42

2.2.14 ‘Concurrent Assurance Information Edition’ with Data Mining Technologies

The AMASS tools collect, create and aggregate a lot of data and relationships. It is essential to provide
users, but also other functions and modules, a way to quickly search this big-data by means of keywords or
other criteria. Based on the Elasticsearch open source software stack [20], a generic indexing features is
available in the platform. In this prototype, it is intentionally kept simple. Arbitrary EMF objects (local or
remote, file or CDO resource) can be indexed via the user interface of the prototype. Attributes and
relationships are “crawled” by a generic and reflective indexer. The respective Ecore metamodel is used to
decide whether an attribute value is indexed or not. The only pre-requisite is the configuration of the
Elastic server (Figure 31).

Figure 31. Screenshot of the Indexing configuration preferences

The user can select an arbitrary object and index the object, the object’s resource or the object tree into
Elasticsearch (Figure 32).

Figure 32. Screenshot of context menu to index data

The prototype further contains a web-based (google like) simple search application (Figure 33). The user
may enter arbitrary keywords or other expressions following the Elastic search syntax [21]. The result can
be further limited either by document type (here metaclass) or dedicated filters as for example ASIL –
which was implemented as an example.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 42

Figure 33. Screenshot of the Data Mining platform for collaborative work

The Kibana Dashboard Software (Figure 34) can be used to visualize all indexed data in a nice and
understandable way.

Figure 34. Screenshot of the Kibana Discovery tool

2.3 Installation and User Manuals

The steps necessary to install the Prototype P1 are exhaustively described in the AMASS User Manual [10]
(currently under elaboration for all the AMASS building blocks), thus they are not repeated in this
deliverable. In the user manual of the Prototype P1 the users can find the installation instructions, the tool
environment description, and the functionalities for the specification of evidence-related assurance project

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 42

information: artefact repository preferences, artefact definitions, artefacts, artefact resources, artefact
property values, artefact events, artefact evaluations, impact analysis, executed processes, and property
models.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 42

3. Implementation Description

This section presents the modules that have been implemented, the underlying metamodel, and the source
code created.

3.1 Implemented Modules

The modules implemented for AMASS Prototype P1 in the scope of WP5 are as follows:

 Platform Management (Figure 35)

o Access Management
This module is integrated in OpenCert and uses CDO [12] as the main base technology.

o Data Management
This module is integrated in OpenCert and uses CDO [12] as the main base technology.

o Collaborative Work
In addition to some basic support for collaborative work provided by OpenCert (e.g.
through CDO features for concurrent data access), the tools that currently implement
collaborative work functionality are: Capra, the web-based approach for concurrent
assurance information edition, Elasticsearch, and Kibana.

 Evidence Management (Figure 36)

o Evidence Characterization Editor
OpenCert implements this module. It is an Eclipse-Based editor for artefact and executed-
process information of an assurance project. It contains plugins for edition of artefact
models and of process models, and to provide services for evidence storage
(determination, specification, and structuring of evidence), and for traceability-related
aspects. The editors have been mostly generated with the EMF [14] and EEF [13] Eclipse
technologies, in addition to the implementation of some tailored functionality, e.g. for
integration with SVN and for impact analysis.

 Assurance Traceability (Figure 37)

o Traceability Management
The Evidence Characterisation Editor provides support for evidence traceability. This
functionality is complemented with the use of Capra.

o Impact Analysis
The impact analysis support is currently embedded in the Evidence Characterisation Editor.

 Tool Integration (Figure 38)

o Toolchain Management
The current support for Toolchain Management is integrated in OpenCert and CHESS. Each
tool integration technology has a dedicated user interface.

o Tool Connector
Each tool integration technology described above has its own Tool Connector component:
connector for SVN, connector based on OSLC-KM, etc.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 42

Figure 35. Platform management modules

Figure 36. Evidence management module

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 42

Figure 37. Assurance traceability modules

Figure 38. Tool integration modules

3.2 Implemented Metamodel

AMASS D2.2 [2] presents the CACM, including evidence management metamodels. These metamodels
correspond to the envisioned, conceptual data structure necessary in AMASS to provide the reuse-oriented
holistic approach for architecture-driven assurance, multi-concern assurance, and seamless
interoperability. However, the metamodel implemented for the Evidence Management modules does not
exactly correspond to the CACM, but to the metamodel implemented in OpenCert. This situation will be re-
analysed for future AMASS prototypes.

Such metamodel is the CCL created in the OPENCOSS project. The CCL can be regarded as compliant with
the CACM because it supports all the evidence information specification needs represented in the CACM.
However, the specification of information can be a bit different. For example, traceability information is not
specified in the CCL based on a specific metamodel, but this information type is embedded in the CCL
artefact metamodel.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 42

Figure 39 shows an excerpt of the CCL to specify evidence information. Further information about the CCL
can be found in [16].

Figure 39. Excerpt of artefact information in the CCL

3.3 Source Code Description for the AMASS Tool Platform

The source code of the second AMASS prototype can be found in the source code SVN repository [11]. The
code for Prototype P1 evidence management and system management modules are stored together with
the other basic building blocks in the repository under “tag” to distinguish the state of the code at the time
of the integrated release.

The necessary plugins for Seamless Interoperability (Figure 40) are:

 org.eclipse.opencert.evm.evidspes
In this plugin, the evidence metamodel is defined and stored, and the Java implementation classes
for this model are generated.

 org.eclipse.opencert.evm.evidspes.edit
This plugin contains a provider to display evidence models in a user interface.

 org.eclipse.opencert.evm.evidspes.editor
This plugin provides the user interface to view instances of the model using several common
viewers, and to add, remove, cut, copy and paste model objects, or modify the objects in a standard
property sheet.

 org.eclipse.opencert.evm.evidspes.editor.dawn
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to
store the generated model.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 42

 org.eclipse.opencert.evm.evidspec.preferences
This plugin defines the default preferences for the communication with the SVN repository, thus it
defines the type of repository (local or remote) and a user and password to connect with the
remote repository.

 org.eclipse.opencert.evm.oslc.km.importevid
This plugin contains all the classes needed to:
1. Perform a request to the RQA web-service sending the Papyrus file content and receiving the

OSLC-KM model in form of JSON.
2. Build from the JSON string the OSLC-KM model.
3. Parsing the OSLC-KM model into an ArtefactModel from the Evidence Manager.
4. Store the ArtefactModel in the CDO database.

Regarding the jar file needed to perform step 2, the source code is publicly available at
https://github.com/trc-research/oslc-km

Figure 40. Evidence management and System management plug-ins

 org.eclipse.opencert.impactanalysis
This plugin contains the implementation of the change impact analysis module. This module is used
by AMASS Tool Platform clients to call and execute change impact analysis.

 org.eclipse.opencert.infra.properties

https://github.com/trc-research/oslc-km

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 42

This plugin contains the definition of the Property metamodel, and the Java implementation classes
for this model.

 org.eclipse.opencert.infra.properties.edit
As the edit plugin for evidence, this plugin contains a provider to display the model in a user
interface.

 org.eclipse.opencert.infra.properties.editor
As the edit plugin for evidence, this plugin is an editor to create and modify instances of the model.

 org.eclipse.opencert.infra.svnkit
In this plugin, the functionalities necessary for the communication with the SVN repository to
export and import artefacts are defined.

 org.eclipse.opencert.pam.procspec
In this plugin, the process execution metamodel is defined and stored, and the Java
implementation classes for this model are generated.

 org.eclipse.opencert.pam.procspec.edit
This plugin contains a provider to display process execution models in a user interface.

 org.eclipse.opencert.pam.procspec.editor
This plugin provides the user interface to view instances of the model using several common
viewers, and to add, remove, cut, copy and paste model objects, or modify the objects in a standard
property sheet.

 org.eclipse.opencert.pam.procspec.editor.dawn
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to
store the generated model.

 org.eclipse.opencert.storage.cdo
This plugin contains classes for using the CDO server in the AMASS Tool Platform. This server
provides a common storage for all AMASS Tool Platform clients and a server. It accesses
PostgreSQL database as its data backend. In addition to common storage implementation, this
package contains utility classes used when accessing the CDO server by its clients.

 org.eclipse.opencert.chess.tracemodel
This plugin provides a dedicated Capra metamodel which is used to create the links between
architectural related entities and assurance and evidence ones. Capra extension points are used to
register the metamodel at runtime.

 org.eclipse.opencert.chess.traceability
This plugin contains classes that implement the user interface and control for the management of
the traceability links between CHESS and the other parts of the OpenCert models (as presented in
section 2.2.8). These classes use the API provided by Capra and use the different kind of trace links
provided by the org.eclipse.opencert.chess.tracemodel plugin.

3.4 Source Code Description for External Tools

This section describes the source code for features that have been implemented for Seamless
Interoperability but have not been integrated into the AMASS Tool Platform. The features correspond to
functionality that will be integrated for the next prototype or that will be provided by an externals tool. For
the latter, tool integration mechanisms for communication between the AMASS Tool Platform and the
external tools will need to be developed.

3.4.1 Seamless Interoperability Features in RQA

The approach for Seamless Interoperability has been divided into two different steps.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 42

1) The first step has been defining a standard to represent all kinds of knowledge, which has been
named OSLC Knowledge Management (OSLC-KM). From this standard, all the operations inside the
Requirements Quality Suite (RQS) by TRC have been defined using it as input instead of defining a
connection for each possible different model source.

Once this OSCL-KM model has been introduced as input to RQS, the tool creates what is called a
specification composed of workproducts, for example, the requirements found in the model in the
Papyrus file, and exposes it to the rest of functionality of RQS. This will allow to assess its quality in
many different perspectives:

 Correct: in the scope of the individual workproduct

 Complete: in the scope of the specification

 Consistent: in the scope of the specification

2) Then the second step has been to map the contents of the model represented in a file, e.g. a
Papyrus model, into an instance of the OSLC-KM standard. This has been achieved by using a
technology called Extensible Stylesheet Language Transformations (XSLT). For each possible source
of models, a XSLT file has been created to map the entities from that model to the entities of the
OSLC-KM model.

The final goal in the long term, and outside the scope of the AMASS project, is that every model tool
manufacturer will be able to create their implementation of the OSLC-KM model inside their tools, and
exposing it via a web service, so that the AMASS platform or RQS can consume it without having to execute
this transformation, and the OSLC-KM model can be more complete in the sense that not every piece of
information of the model stored in the file can be extracted and mapped in the OSLC-KM model. This will
create a better representation of the model, thus better results to analyse it.

The implementation of this functionality has been developed inside the Requirements Quality Suite (RQS)
and it’s composed of several libraries:

 Rqa.Face.OslcKm: it implements the connection of the OSLC-KM model instance with the rest of
functionalities of the Requirements Quality Suite (RQS).

 System Repository Language (SRL): it is the OSLC-KM implementation inside the Requirements
Quality Suite (RQS).

 Oslc.Km.Parsers: several parsers have been implemented in the methodology described in the
second step (by using XSLT transformation files to create the OSLC-KM model instance). They can
be seen in Figure 43. A part of this transformation, the file generated for Papyrus to get
requirements from the model can be found in Figure 44.

 Oslc.Km.Parsers.XmlToSrl: in the same Visual Studio solution a Graphical User Interface (GUI) has
been generated in RQS to manage this kind of transformations (see Figure 45).

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 42

Figure 41. Rqa.Face.OslcKm library

Figure 42. Implementation of the OSLC-KM for RQS

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 42

Figure 43. OSLC-KM parsers and XSLT transformation files for Papyrus and Rhapsody

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 42

Figure 44. Part of the Papyrus XSLT transformation to map requirements in the model to the OSLC-KM model
instance

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 42

Figure 45. GUI to allow creation of XSLT files to customise the mapping of XML file nodes to elements in the OSLC-
KM metamodel

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 42

4. Conclusion

This deliverable has presented the implementation work performed for Seamless Interoperability in AMASS
Prototype P1, which is the second version of the AMASS Tool Platform. The current support in the Platform
allows a user to manage evidence artefacts, manage traceability between assurance assets, integrate the
Platform with external tools, and collaborate with other users. In addition, some external support is already
provided for concurrent assurance information editing, e.g. via Kibana. Some further support for tool
integration provided by external tools will be integrated in the AMASS Tool Platform for the next prototype,
such as advanced RQA support.

At its current state, and prior validation in WP2 and application in WP1, Seamless Interoperability support
for Prototype P1 has TRL 3 (experimental proof of concept).

In addition to the implementation of further requirements for further Seamless Interoperability in the
AMASS Tool Platform and to the general revision of some implementation for enhancement, the main
aspects to address for Prototype P2 include the final decision upon the implementation of new features
targeted at tool quality characterisation and assessment, the development of security mechanisms for user
access management, a detailed analysis of the security implications from integration with external tools,
the enactment of larger toolchains, and the integration of advanced collaborative work functionality.

 AMASS Prototype for seamless interoperability (b) D5.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 42

References

[1] AMASS project: D1.1 - Case studies description and business impact. 2016. https://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-
and-business-impact_AMASS_Final.pdf

[2] AMASS project: D2.2 - AMASS reference architecture (a). 2016.
[3] AMASS project: D2.3 - AMASS reference architecture (b). 2017.
[4] AMASS project: D3.2 - Design of the AMASS tools and methods for architecture-driven assurance (a).

2017.
[5] AMASS project: D3.4 - Prototype for architecture-driven assurance (a). 2016. http://amass-

ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architec
ture-driven%20assurance%20%28a%29_AMASS_final.pdf

[6] AMASS project: D4.4 - Prototype for multiconcern assurance (a). 2017. http://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-
assurance-%28a%29_AMASS_final.pdf

[7] AMASS project: D5.2 - Design of the AMASS tools and methods for seamless interoperability (a).
2017.

[8] AMASS project: D5.1 - Baseline requirements for seamless interoperability. 2016. http://amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-
for-Seamless-Interoperability_AMASS_Final.pdf

[9] AMASS project: D6.4 - Prototype for cross/intra-domain reuse (a). 2017.

[10] AMASS project: Prototype Core User Manual, Version 0.14. 2017.
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/
PrototypeCore/AMASS_Prototype1_UserManual.docx

[11] AMASS project: Source code repository. 2017. https://services.medini.eu/svn/AMASS_source/ 5
[12] Eclipse: CDO Model Repository. 2017. https://eclipse.org/cdo/
[13] Eclipse: EEF. 2016. https://eclipse.org/eef/#/
[14] Eclipse: EMF. 2017. https://eclipse.org/modeling/emf/
[15] OPENCOSS project. 2015. http://www.opencoss-project.eu/
[16] OPENCOSS project: D4.4 - Common Certification Language: Conceptual Model. 2015.

http://www.opencoss-project.eu/sites/default/files/D4.4_v1.5_FINAL.pdf
[17] OSLC community. 2017. https://open-services.net/
[18] PolarSys: OpenCert project. 2017. https://www.polarsys.org/projects/polarsys.opencert
[19] SafeCer Project. 2015. http://safecer.eu/
[20] Elasticsearch, https://www.elastic.co/
[21] Elasticsearch Query String Syntax

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-
query.html#query-string-syntax

4 The current User Manual is a draft document; the final version of the manual will be integrated in D2.5 - AMASS
User guidance and methodological framework (m31).

5 The AMASS SVN code repository is open to AMASS partners with the same credentials as the SVN document
repository. In case that people outside the project need access, please contact the AMASS Project Manager
(alejandra.ruiz@tecnalia.com)

https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/%20PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/%20PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_source/
https://eclipse.org/cdo/
https://eclipse.org/eef/#/
https://eclipse.org/modeling/emf/
http://www.opencoss-project.eu/
http://www.opencoss-project.eu/sites/default/files/D4.4_v1.5_FINAL.pdf
https://open-services.net/
https://www.polarsys.org/projects/polarsys.opencert
http://safecer.eu/
https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax

