
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
¢Ƙƛǎ Wƻƛƴǘ ¦ƴŘŜǊǘŀƪƛƴƎ ǊŜŎŜƛǾŜǎ ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ ŀƴŘ ƛƴƴƻǾŀǘƛƻƴ ǇǊƻƎǊŀƳƳŜ
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Methodological guide for multiconcern
assurance (b)

D4.8

Work Package: WP4: Multi-Concern Assurance

Dissemination level: PU = Public

Status: Final

Date: 31 October 2018

Responsible partner: Barbara Gallina (MAELARDALENS HOEGSKOLA)

Contact information: barbara.gallina@mdh.se

Document reference: AMASS_D4.8_WP4_MDH_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information that is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors1

Reviewers2

1 The list includes the contributors to D4.7, which is evolved in D4.8
2 The list includes the reviewers of D4.7, which is evolved in D4.8

Names Organisation
Barbara Gallina (Task Leader), Zulqarnain Haider,
Shankar Iyer, Irfan Sljivo

Maelardalens Hoegskola (MDH)

Marc Sango ALL4TEC (A4T)

Stefano Puri Intecs (INT)

Alejandra Ruiz Tecnalia Research & Innovation (TEC)

T.Gruber, K.Christl, S.Chlup, Ch.Schmittner Austrian Institute of Technology (AIT)

Morayo Adedjouma, Thibaud Antignac, Bernard
Botella, Huascar Espinoza

Commissariat à ƭΩénergie atomique et aux
Energies Alternatives (CEA)

Robert Bramberger, Helmut Martin, Bernhard Winkler Virtual Vehicle Research Center (VIF)

Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Names Organisation
Fredrik Warg (Peer Reviewer, D4.7) SP Technical Research Institute of Sweden (SPS)

Garazi Juez Uriagereka (Peer Reviewer, D4.7 and
D4.8)

Tecnalia Research & Innovation (TEC)

Siddhartha Verma (Peer Reviewer, D4.8) Austrian Institute of Technology (AIT)

Cristina Martínez (Quality Manager, D4.7 and D4.8) Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (TC Review, D4.7 and D4.8) Universidad Carlos III de Madrid (UC3)

Stefano Puri (TC Review, D4.7) Intecs (INT)

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 124

TABLE OF CONTENTS
Executive Summary .. 9

1. Introduction (*) ... 11

2. Multi -concern Assurance Overview .. 14

2.1. Background .. 14
 Contract Based Multi-concern Assurance (*) ... 14
 Dependability Assurance Case Modelling ... 16
 Process-related Dependability Co-assessment ... 17
 System Dependability Co-Analysis ... 19

2.2. Vision ... 20

2.3. Tool Support Overview ... 20
 CHESS .. 21
 OpenCert ςAssurance Case Editor .. 21
 FMVEA (*) ... 21
 EPF Composer and BVR Tool .. 23
 WEFACT... 24
 Safety Architect and Cyber Architect ... 30
 Papyrus for Safety and Security Engineering .. 31

3. Methodological Guide ... 33

3.1. Contract-Based Multiconcern Assurance (*) ... 33
 Contract-based Trade-off Analysis in Parameterized Architectures 35

3.2. Dependability Assurance Case Modelling (*) .. 35

3.3. Process-related Dependability Co-assessment via EPF-C and BVR Tool ... 41
 EPF Composer Workflow ... 42
 BVR Workflow ... 54

3.4. Standard-related Dependability Co-assessment via OpenCert Workflow (*) 56

3.5. System Dependability Co-Analysis (*) ... 57
 System Dependability Co-Analysis via Papyrus SSE... 57
 System Dependability Co-Analysis via Safety Architect... 61
 System Dependability Co-Analysis via ConcertoFLA ... 63

3.6. Privacy Analysis .. 73
 Relevant Privacy Concerns ... 73
 Privacy Assurance Case Methodology .. 74
 Verification of Privacy-Related Requirements .. 75

4. Cases Studies... 80

4.1. Case Study CS11 - Attitude and Orbit Control System (*) .. 80
 Description of the Use Case Scenario ... 80
 Demonstration of the Methodology .. 81

4.2. Case Study CS3 - Cooperative Adaptive Cruise Control (CACC) .. 85
 Description of the Use Case Scenario ... 85
 Demonstration of the methodology... 85

4.3. Process-related Dependability Co-Assessment: An Automotive Case .. 86
 Commonalities and Variabilities between SAE J3061 and ISO 26262 87
 Work Products... 88
 Roles ... 88
 Guidance ... 88
 Tasks ... 89
 Work Break Down Structure .. 91

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 124

 Domain Engineering .. 91
 Variability Model Creation (VSpec Editor) .. 93
 Configuration Resolution (Resolution Editor) ... 103
 Model Realization (Realization Editor) ... 104
 Case Study Conclusion ... 109

4.4. CS1: Industrial and Automation Control Systems (IACS) (*) ... 110
 Description of the Use Case Scenario ... 110
 Demonstration of the Methodology .. 110

5. Conclusions ... 116

Abbreviations and Definitions.. 117

References ... 120

Appendix A. Changes with respect to D4.7 (*) ... 124

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 124

List of Figures

Figure 1. Assurance Case Specification and Multi-concern Assurance in relation to other AMASS
Prototype P2 building blocks .. 12

Figure 2. Multiconcern assurance case structure proposal .. 15

Figure 3. Process framework overview ... 18

Figure 4. Security-oriented FMVEA elements complementing FMEA... 22

Figure 5. User Interface of the FMVEA model editor. .. 23

Figure 6. WEFACT user authorisation .. 25

Figure 7. WEFACT project selection dialog box ... 25

Figure 8. WEFACT user interface ... 26

Figure 9. Requirement data input in WEFACT ... 27

Figure 10. Tool definition box in WEFACT ... 28

Figure 11. Typical use of WEFACT in AMASS ... 29

Figure 12. Example of SA FT exported in Arbre Analyste [28] .. 30

Figure 13. Example of CA AT ... 31

Figure 14. Papyrus SSE supports safety and security analyses during early phases of systems engineering
 .. 32

Figure 15. Multi-concern contracts ... 33

Figure 16. The argument pattern for contract-based requirements assurance 34

Figure 17. Contract-based Trade-off Analysis takes in input the parameterized architecture and a set of
configurations. The process is decomposed in 2 sub-processes; the execution of contact-
based checks for each instantiated architecture, and the visualization of the compared results
of the checks. ... 35

Figure 18. Workflow for Dependability Assurance Case modelling .. 36

Figure 19. Screenshot of the Assurance Case editor defining the assurance case structure 37

Figure 20. Six Step Process for developing goal structures [5] ... 38

Figure 21. Screenshot of the Assurance Case editor editing a claim .. 39

Figure 22. Graphical notations used to show the interplay between concerns 40

Figure 23. Workflow for System Dependability Co-Assessment... 41

Figure 24. Organization of Method Content ... 42

Figure 25. Method Content Workflow .. 43

Figure 26. Method Plug-in .. 44

Figure 27. Content Package .. 44

Figure 28. Work Product 1 .. 45

Figure 29. Work Product 2 .. 45

Figure 30. Guideline ... 46

Figure 31. Role and Work Product Relationship .. 46

Figure 32. Create a Task ... 47

Figure 33. Task Steps .. 48

Figure 34. Task Relationships with Roles, Work Products and Guidance.. 48

Figure 35. Cybersecurity Capability Pattern .. 49

Figure 36. Multi Concern Capability Pattern ... 49

Figure 37. Pattern Engineering Lifecycle [56] .. 50

Figure 38. Iterative Design Process Factoring Safety and Cybersecurity Requirements 51

Figure 39. Software Unit Design and Implementation Delivery Process... 52

Figure 40. Process Diagram - Software Unit Design and Implementation Delivery Process 52

Figure 41. Detailed Activity Diagram ς Software Unit Implementation .. 53

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 124

Figure 42. Fragment of Published Method Content .. 54

Figure 43. BVR Feature Model using VSpec Editor .. 55

Figure 44. BVR Resolution Model with Valid Resolution .. 55

Figure 45. BVR Resolution Model with Invalid Resolution ... 55

Figure 46. Sub-activities related to the Preparation of Cross-Standard Reuse 57

Figure 47. Annotation of the system model to conduct safety and/or security analyses........................ 58

Figure 48. Lifecycle supported by Papyrus4Safety for model-based safety analysis 59

Figure 49. Main phases supported by Papyrus4Security ... 59

Figure 50. Interoperability between AMASS platform (CHESS and OpenCert) with Safety/Cyber Architect
tools .. 62

Figure 51. Workflow regarding system dependability co-analysis via Safety Architect........................... 63

Figure 52. System Dependability Co-Analysis via ConcertoFLA .. 64

Figure 53. Component, Interfaces and other entities definition .. 65

Figure 54. Assigning input/output ports to a component .. 65

Figure 55. Composite Component .. 66

Figure 56. Decorating the components with their failure behaviour ... 67

Figure 57. State Machine Diagram illustrating the ErrorModel Stereotyped Security Attack Model....... 68

Figure 58. Security Attack Model showing Failure Stereotype State Transition 68

Figure 59. Sensor Component with ErrorModelBehavior Stereotype .. 69

Figure 60. Specifying the injected faults at the input ports of composite component............................ 70

Figure 61. Creating FailurePropagationAnalysis component and assigning resource platform 70

Figure 62. Back-propagated failure on the output port of composite system .. 71

Figure 63. Generate FT via Concerto-FLA menu .. 71

Figure 64. Automatically generated multi-concern fault tree .. 72

Figure 65. Example of data protection assurance case .. 75

Figure 66. Architectural view of the data flow diagram and its attributes (white values correspond to
Sn5.1.b.1 and grey values correspond to Sn5.1.b.2 from Figure 65) 76

Figure 67. Class diagram showing the components of the ACS system .. 81

Figure 68. ACS Composite component .. 82

Figure 69. SignalConditioner Component Security Attack Model .. 82

Figure 70. Automatically generated fault tree from failure propagation paths with highlighted
SignalConditioner Component tree .. 84

Figure 71. SignalConditioner Component fault tree illustrating multi-concern causes 85

Figure 72. !ǎǎǳǊƛƴƎ άǊŜŀǊ Ŏƻƭƭƛǎƛƻƴέ ƘŀȊŀǊŘ ƛƴ ǇƭŀǘƻƻƴƛƴƎκ/!// ŎŀǇŀōƭŜ ǾŜƘƛŎƭŜ 86

Figure 73. Requirements from ISO 26262 ... 87

Figure 74. Requirements from SAE J3061 ... 87

Figure 75. Common and Variation Points identification .. 88

Figure 76. Feature Tree ς Top Level .. 93

Figure 77. ConcernChoice, Roles and Activities Expanded ... 94

Figure 78. WorkProducts Subtree ... 94

Figure 79. Guidance Subtree (1 of 2) .. 95

Figure 80. Guidance Subtree (2 of 2) .. 95

Figure 81. CommonalityPoint and VariabilityPoint Subtrees ... 95

Figure 82. DesignCom Subtree.. 96

Figure 83. DesignReviewCom Subtree .. 96

Figure 84. ImplementationCom Subtree ... 97

Figure 85. ImplementationReviewCom Subtree .. 97

Figure 86. DesignVar and DesignSafety Subtrees .. 98

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 124

Figure 87. DesignVar and DesignCybersecurity Subtrees ... 98

Figure 88. DesignVar and DesignMultiConcern Subtrees ... 99

Figure 89. DesignReviewVar and DesignReviewSafety Subtrees .. 99

Figure 90. ReviewVar and DesignReviewCybersecurity Subtrees ... 100

Figure 91. DesignReviewVar and DesignReviewMultiConcern Subtrees .. 100

Figure 92. ImplementationVar and ImplementationSafety Subtrees ... 101

Figure 93. ImplementationVar and ImplementationCybersecurity Subtrees 101

Figure 94. ImplementationVar and ImplementationMultiConcern Subtrees 102

Figure 95. ImplementationReviewVar and ImplementationReviewSafety Subtrees............................. 102

Figure 96. ImplementationReviewVar and ImplementationReviewCybersecurity Subtrees 103

Figure 97. ImplementationReviewVar and ImplementationReviewMultiConcern Subtrees 103

Figure 98. Example - ±ŀƭƛŘ wŜǎƻƭǳǘƛƻƴ ǿƛǘƘ /ƻƴŎŜǊƴ/ƘƻƛŎŜ Ψaǳƭǘƛ/ƻƴŎŜǊƴΩ ... 103

Figure 99. Example - ±ŀƭƛŘ wŜǎƻƭǳǘƛƻƴ {ƘƻǿƛƴƎ /ŀǊŘƛƴŀƭƛǘȅ ǿƛǘƘ /ƻƴŎŜǊƴ/ƘƻƛŎŜ Ψaǳƭǘƛ/ƻƴŎŜǊƴΩ 104

Figure 100. Creation of Fragment Substitution ... 104

Figure 101. Creation of Placement/Replacement .. 105

Figure 102. Linking VSpec to Fragment Substitution ... 105

Figure 103. Placement Unit Design Review Safety .. 106

Figure 104. Replacement Unit Design Review Cybersecurity ... 106

Figure 105. Detailed Activity Diagram Cybersecurity (1 of 3) ... 107

Figure 106. Detailed Activity Diagram Cybersecurity (2 of 3) ... 107

Figure 107. Detailed Activity Diagram Cybersecurity (3 of 3) ... 108

Figure 108. Detailed Activity Diagram Multi Concern (1 of 3) .. 108

Figure 109. Detailed Activity Diagram Multi Concern (2 of 3) .. 109

Figure 110. Detailed Activity Diagram Multi Concern (3 of 3) .. 109

Figure 111. High-level Archiecture of SchneiderElectric Saitel RTU ... 110

Figure 112. SchneiderElectric Saitel RTU High-level Architecture model in CHESS 111

Figure 113. Import from CHESS tool to Safety Architect tool ... 111

Figure 114. Safety Architect WBS model from CHESS WBS model ... 112

Figure 115. Cyber Architect project initialised with EBIOS knowledge bases ... 112

Figure 116. An interface between Safety Architect and Cyber Architect.. 113

Figure 117. Safety & Security viewpoint in Safety Architect .. 114

Figure 118. Safety & Security viewpoint selection in Safety Architect ... 114

Figure 119. Propagation Tree (fault tree extended with malicious events) in Safety Architect 115

Figure 120. Import Safety Architect propagation tree in CHESS tool ... 115

Figure 121. Evidence resource location in OpenCert ... 115

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 124

List of Tables

Table 1. Task/Work Product/Roles/Guidance Relationships ... 89

Table 2. Work Break Down Structure... 91

Table 3. Feature Tree ς Variability Model .. 91

List of Codes

Code 1. Template for input purpose limitation.. 77

Code 2. Template for output purpose limitation ... 77

Code 3. Consolidated template for main function of Rate credit application 77

Code 4. Purpose-limited main function of Rate credit application ... 79

Code 5. Flow-oriented ACSL specification of read_input_int abstract function 79

Code 6. Flow-oriented ACSL specification of insert abstract function ... 79

Code 7. Definition of credit_rate function ... 79

List of Algorithms

Algorithm 1. Purpose limitation ACSL specification generation ... 78

List of Equations

Equation 1. 5ŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ Җ ǇǳǊǇƻǎŜǎ ƻǊŘŜǊƛƴƎ ... 76

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 124

Executive Summary

This document (D4.8 Methodological guide for multi-concern assurance (b)) is the final deliverable
associated with the AMASS Task 4.4 Methodological Guide for Multi-Concern Assurance, which provides
information about how to use the AMASS Multiconcern Assurance approach. This is the final version and it
is based on the functionality supported by the third prototype (P2) of the AMASS platform.

This deliverable is conceived as an update3 of the previous version (D4.7 Methodological guide for multi-
concern assurance (a)), which was delivered as a confidential document.

This document focuses on the techniques developed in WP4. The guide targets a diversified audience,
mainly composed of process engineers, assurance engineers and development engineers.

To try to make the document self-contained, first, background information regarding the AMASS multi-
concern concepts is given. Second, the AMASS multiconcern vision is recalled. Third, the potential of the
tool-supported approach is illustrated via a series of workflow-diagrams. Fourth, the fundamental
functionality of the tools supporting the execution of the workflows is recalled. Finally, use case-oriented
scenario instantiations are used to further refine such guidelines.

To have a more general overview regarding the AMASS approach including the methods and techniques
provided by other WPs, the reader is referred to D2.5 [12] as well as D3.8 [7] and D6.8 [8], which
respectively provide guidance for the AMASS Architecture-driven approach and for the AMASS cross- and
intra-domain reuse approach. D2.5 also includes a user manual, which contains detailed descriptions of
how to use the specific functions.

3 The sections modified with respect to D4.7 have been marked with (*), then the details about the differences and
modifications are provided in Appendix A: Document changes with respect to D4.7 (*)

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 124

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 124

1. Introduction (*)

Embedded systems have significantly increased in technical complexity towards open, interconnected
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and
automation of labour-intensive activities such as the assurance of their dependability. The AMASS project
builds on the results of two large-scale projects, namely OPENCOSS [26] and SafeCer [25]. These projects
dealt with the assurance and certification of software-intensive critical systems using incremental and
model-based approaches. Both projects focused on compositional argumentation, however, neither dealt
with multiple concerns. Moreover, while the SafeCer approach was more detailed with respect to system
modelling, OPENCOSS was more detailed with structuring of the assurance case. Since the two approaches
are complementary, in AMASS, it has been decided to combine them and further refine them.

More specifically, SafeCer developed a generic process model given as the commonality within a
configurable process line. Methodological guidelines for the EPF Composer-based Safety-oriented Process
Line Engineering (SoPLE) [55] were also developed. The AMASS project consolidates and extends SoPLE to
enable capturing the multi-faceted nature of assurance and thus contributing to the multi-concern
assurance approach. The AMASS project also combines it with the OPENCOSS solutions for managing multi-
concern compliance.

OPENCOSS elaborated solutions for assurance case structuring (i.e., vocabulary and structured expressions
used in the assertions included the argumentation, as well as the composition of the arguments when they
were provided by different suppliers), but the connection with system modelling was not in focus.
Furthermore, the assurance case did not consider multiple concerns and how to account for their interplay.
Hence, in AMASS, the compositional approach for assurance case structuring, properly connected with
system modelling, and extended for multi concern assurance, has been targeted.

SafeCer also developed a generic component model and contract-based verification techniques for
compositional development and certification of CPS. These have been integrated in the CHESS tool support
[27]. The AMASS project consolidates and extends such support with a wider range of mono-concern
focused analysis techniques for the system architecture and combines it with the OPENCOSS solutions for
building an assurance case. The resulting Architecture-Driven Assurance approach (designed in D3.3 [6]) is
in D4.3 [3], further extended for: multi-concerns (in particular, the interplay between safety and security is
in focus); and reuse of multi-concern architectural patterns. Moreover, the approach exploits tool
interoperability mechanisms (designed in D5.3 [9]) to interact with external tools for multi-concern
modelling and analysis support.

Figure 1 provides a general overview of the AMASS Scientific Technical Objectives (STOs) and how they are
implemented in the AMASS project by specific Work Packages (WPs). This deliverable defines the guide to
be followed to apply the Multi-concern assurance approach developed in WP4. The methodological guide
describes how to use the AMASS tools with help of examples and detailed process steps. The workflow is
presented with the aid of activity diagrams or sequences of to-be-followed steps. The steps are meant to
give an example of usage of the tool trying to cover all relevant features.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 124

Figure 1. Assurance Case Specification and Multi-concern Assurance in relation to other AMASS Prototype P2
building blocks

This deliverable, first, provides an overview of the key concepts, such as contract-based multi-concern
assurance, dependability assurance modelling, and system dependability co-assessment and analysis. Then,
it explains what Multiconcern Assurance means, the role of the key concepts in the approach, and how the
AMASS platform supports it. The core of this deliverable describes the workflows to enact Multiconcern
Assurance, detailing the activities to be conducted and how to use the tool support. The workflows are
presented by means of activity diagrams or sequences of steps to follow. To get a detailed explanation
about the different options, the user may refer to the user manual, included in D2.5 [12]. Finally, the guide
uses simple case studies to concretely describe the approach.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 124

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 124

2. Multi -concern Assurance Overview

This chapter provides an overview of the multi-concern assurance approach. To do that, essential
information is recalled: first, background information belonging to the solution space, then the vision, and,
finally, the main functionalities of the individual tools composing the AMASS platform and playing an active
role within WP4.

2.1. Background

The purpose of this section is to recall fundamental concepts in order to make the document self-contained
and enable the understanding of the guide. The presentation of the concepts builds on top of D4.3 [3].

 Contract Based Multi -concern Assurance (*)

The spine of an assurance case is represented by the top-level requirements and goals that should be met
by the system, and the evidence supporting the confidence that those requirements are met. Typically,
those top-level requirements are decomposed based on the system architecture so that assurance of the
decomposed requirements supports top-level requirements to fulfil dependability properties at system
level. Confidence in the requirements decomposition needs to be ensured to use the decomposed
requirements also for the assurance of the top-level requirements. Assumption-guarantee contracts can
assist in increasing confidence in both requirements and their decomposition.

This decomposition of requirements to ensure the system level assurance is also reflected in the system
assurance case. In D4.3 [3], a proposal for the multiconcern assurance case structure was made. The
system is assured for multiple concerns such that a set of system goals is developed for all the different
concerns. The system goals are supported by the system requirements developed for all the different
concerns. The concern-specific system goals are supported by the requirements specific to different
concerns (safety, security, performance). Interplay of the concerns on all the levels where cross concern
trade-off occurs (goals, requirement and components) is handled in the trade-off argument module as
shown in Figure 2.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 124

Figure 2. Multiconcern assurance case structure proposal

Considering allocation of requirements over the system architecture, contracts on the architecture
elements are defined to correspond to the requirements allocated to those elements. An assumption-
guarantee contract can be used to formalise a requirement such that the contract guarantees formalise the
requirement by describing the behaviour of the element that implements the requirement, while the
contract assumptions capture the conditions under which that behaviour is exhibited. Provided that the
assumptions hold in a particular system, then the guarantee also holds, hence the corresponding
requirement is met by the element in the given system. Requirement decomposition is captured by the
contract refinement specification. Just as a requirement may be decomposed to a set of (sub)-
requirements, the contract of an element can be refined by a set of contracts of the sub-elements.

The contract refinement analysis can be used to increase confidence in the requirements decomposition as
well as to assure that a particular contract/requirement holds in the given system. To assure that a
requirement is satisfied with sufficient confidence, it is necessary to argue about:

1. Is the contract or a set of contracts correctly formalising the requirement?

2. Can the inputs in the refinement analysis (i.e., can the contracts themselves be trusted? and more
precisely can the corresponding element be trusted to behave according to the guarantees given
the assumptions) be trusted? and

3. Can the outputs from the refinement analysis (i.e., can we the tool itself be trusted) be trusted?

Assuring these aspects allows the outputs from the contract refinement analysis to be used to support both
requirements decomposition and requirement satisfaction. The first point may be addressed for example
by inspection of the requirement and the corresponding contract guarantees, while testing or simulation
can be used to support the second aspect. The third aspect may be addressed by verification of the tool

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 124

and methodology used for contract checking. The last aspect is related to the tool qualification activities
and the level of confidence put on it.

Considering that each requirement may be related to one or more different concerns such as safety and
security, assurance of different contracts supports assurance of those concerns related to that contract.
Furthermore, as the contracts connect additional information to the requirement in terms of assumptions,
the contract-based assurance supports identification of interactions of those formalisable requirements
across concerns. Dependency, conflicting as well as supporting relationships between elements and their
concern-specific requirements can be highlighted through contract-based assurance.

2.1.1.1. Contract-based Trade-off Analysis in Parameterized Architectures

Parametrized architectures, as defined and developed in WP3, provide the means to analyse the system
architecture in different configurations. Each configuration may enable/disable some components, ports,
connections, and contracts. Different configurations can be analysed and compared with respect to
different aspects: contract refinement, satisfaction of formal properties, fault tolerance, minimal cut sets,
reliability measures. Such an approach was for example followed in the analysis of different configuration
of the next generation of air traffic control design [75].

Comparing the different configurations allows the designer to perform trade-off analysis and design space
exploration. Architectural choices are supported by the mentioned analysis results. In particular, the choice
whether adding or removing a function (represented by a block or by a contract), enabling or disabling a
redundancy, or other similar changes is supported by checking which functional and non-functional
properties hold in the different configurations. This trade-off analysis is enhanced by the information about
the concern addressed by the different properties and contracts: the analysis provides a direct way to
evaluate the impact of the trading-off architectural elements on the multiconcern represented by
properties and contracts.

 Dependability Assurance Case Modelling

As it was recalled in D4.1 [2], originally, when the necessity of demonstrating safety management emerged
[58], the concept of safety case was introduced. Decade after decade, this concept has evolved to include
other properties such as security, performance, conformance, trust, etc. Nowadays, the concept of
Assurance Case is used to refer to a case that covers any critical property to be assured.

An Assurance Case is a set of auditable claims, arguments, and evidences created to support the claim that
a defined system/service will satisfy some particular requirements [57]. Assurance cases use a structured
set of arguments and a corresponding body of evidence to justify that a system satisfies specific claims with
respect to its properties (i.e. safety, security, reliability, availability, etc.).

With Dependability Assurance Case modelling, advantages of two main concepts are taken. On the one
hand the compositional argumentation and, on the other hand, the power of argumentation applied on
dependability.

Compositional argumentation means to deal with the challenge of complexity and length of the assurance
cases. By adopting a modular, compositional, approach to the assurance case construction it may be
possible to:

¶ Justifiably limit the extent of the assurance case modification and revalidation required following
anticipated system changes.

¶ {ǳǇǇƻǊǘ όŀƴŘ ƧǳǎǘƛŦȅύ ŜȄǘŜƴǎƛƻƴǎ ŀƴŘ ƳƻŘƛŦƛŎŀǘƛƻƴǎ ǘƻ ŀ ΨōŀǎŜƭƛƴŜΩ assurance case.

¶ Establish a family of assurance case variants to justify the dependability of a system in different
configurations.

This approach establishes a modular and compositional construction for assurance cases that has a
correspondence with modular structure of the underlying architecture. As with system architecture, the
assurance engineer should establish interfaces between the modular elements of the assurance (safety,

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 124

security, conformance...) justification such that the assurance case elements may be adequately composed,
removed and replaced. Similarly, it will be necessary to establish the assurance argument infrastructure
required in order to support modular reasoning.

In order to provide assurance of the system to carry out its intended function in its intended context, the
relationships between the dependability aspects of the system όǎŀŦŜǘȅΣ ǎŜŎǳǊƛǘȅ ŀǾŀƛƭŀōƛƭƛǘȅΧύ, the decisions
made during the development of the system to accommodate them, and the effects of these decisions and
any other concerns which they impact (in this case, maintainability, performance, and potentially security)
have to be recorded.

Assurance cases are not a fixed document but rather a living document, as Denney, Pai and Habli proposed
in [73], άDynamic Safety Casesέ should be targeted. Artefacts should be checked, validated and updated
based on actual feedback data. With this conception of dynamic assurance case, in AMASS, the need for an
explicit notation that shows that a claim has an impact (to reassure, to dismiss or no impact) in another
claim has been identified. More specifically, the following relationships between dependability properties
in the assurance case have been identified:

 Dependency relationship. The claim A of one attribute depends on the fulfilment of claim B of
another attribute. For example, a fail-safe claim of attribute safety depends on the claim that the
safety instrumentation system is not tampered of attribute security.

 Conflicting relationship. The assurance measure of attribute A is in conflict with the assurance
measure of attribute B. For example, a strong password or blocking a terminal after several failed
login attempts for security conflicts with the emergency shutdown for safety. Resolution of such a
conflict need to be noted in the Assurance Case.

 Supporting relationship. The assurance measure of attribute A is also applicable to assurance of
attribute B, such that one assurance measure can be used to replace two separate ones if the
attributes are considered and addressed individually. For example, encryption can be used for
both: for confidentiality in terms of security and to check data integrity regarding safety. This
means two goals can be addressed by one argumentation.

Another challenge that security experts need to face is the temporary effectivity of the assurance decisions.
As security threats evolve in time, as attacks improve, the security mechanisms put in place need to be re-
assured after some time. Assurance cases need to be checked periodically to ensure that evidence used to
support the safety and security properties is still valid [60] and if not, provide an impact analysis and modify
the system to ensure that the vulnerabilities are mitigated and/or avoided. Assurance cases should not be
seen as a static tool but rather as a dynamic and living mechanism that supports safety and security
responsible during the impact analysis task.

 Process-related Dependability Co-assessment

To achieve a fully functional automated car, car manufacturers are constantly increasing the complexity of
the functions. Developers of these vehicles have to deal with functional safety on the one hand and
cybersecurity on the other hand. In that context, cybersecurity gets more and more important because
automated driving needs information transfer from outside of the vehicle, e.g. between vehicle and
environment (kŜȅǿƻǊŘ άV2X ς ŎƻƳƳǳƴƛŎŀǘƛƻƴέύΦ

This subsubsection presents the concept of co-engineering and how it could be implemented via Security-
informed Safety-oriented Process Line Engineering (SiSoPLE) [55], supported by the integration of EPF
Composer (shortened EPF-C) [18] and BVR Tool [24]. Co-engineering supports the combination of cross
concern activities to a joint process. This method is used during process development (see Figure 3) and
supports Process-related Dependability Co-assessment. Different domains like automotive and avionics
have different requirements, which lead to different processes and workflows. From another perspective,
processes often deal with similar concerns like functional safety, cybersecurity and other quality-related
concerns. This point of view makes clear that many methods are useable in different realisations in various

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 124

domains. Product developers follow well-defined domain specific processes and workflows, which should
cover a wide spectrum of concerns.

The interaction between functional safety and cybersecurity methodologies has to be defined
ǎȅǎǘŜƳŀǘƛŎŀƭƭȅΦ ! ά{ŀŦŜǘȅ-Security-Co-9ƴƎƛƴŜŜǊƛƴƎέ ŀǇǇǊƻŀŎƘ Ƙŀǎ ǘƻ ōŜ ƻŦŦŜǊŜŘΦ ¢ƘŜ ŀŎǘƛǾƛǘies concerning
this approach belong to ǘƘŜ ōƭƻŎƪ άtǊƻŎŜǎǎ ŘŜǾŜƭƻǇƳŜƴǘέ ƛƴ ǘƘŜ άtǊƻŎŜǎǎ ŦǊŀƳŜǿƻǊƪ ƻǾŜǊǾƛŜǿέ ƛƴ Figure 3.
The approach compares relevant standards, for example ISO 26262 for functional safety in the automotive
domain and SAE J3061 for cybersecurity in vehicle systems and identifies commonalities and variabilities of
those standards.

Note: The successor to SAE J3061 is under joint development between ISO and SAE, which is called
ISO/SAE 21434 - Road Vehicles - Cybersecurity Engineering.

After identification of relevant standards, the framework leads via process development to process
management. Additional compliance management and argumentation management is considered. The
following subsection regards only co-engineering which is part of process development.

Figure 3. Process framework overview

Standards allow flexible but thoroughly justified interpretations and customisations, which can be modelled
as variabilities. Differences between project specific processes, which arise through instantiation of
identical base processes may be interpreted as variabilities. Variable activities can be managed with the
methodology shown in Section 3.3.2 - BVR Workflow. To deal with commonalities based on a co-
engineering approach, we must define two types of commonality. The first definition is related to the
Safety-oriented Process Line (SoPL) [30], which deals with single concern ς cross domain processes. In this
case, common activities are identified in different domains (e.g. functional safety in the automotive and
industrial domain).

For cross concern topics, we have to extend the primary definition of single concern commonality. The
ƛƴǘŜƴǘƛƻƴ ƛǎ ǘƻ άƳŀȄƛƳƛȊŜέ Ŏƻ-engineering activities and deal with variability in a way that makes elaborated
processes reusable. Activities in cross concern applications, which must be executed in any case, are called
safety security co-engineering ŀŎǘƛǾƛǘƛŜǎ ƛƴǎǘŜŀŘ ƻŦ ǎƛƴƎƭŜ ŎƻƴŎŜǊƴ άŎƻƳƳƻƴŀƭƛǘȅέΦ ¢ƘŜ Ƴŀƛƴ ŘƛŦŦŜǊŜƴŎŜ ƛǎ

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 124

that co-engineering activities do not necessarily contain common activities, but they lead to a common
goal. We must make sure that co-engineering guarantees interaction between different concerns, in our
example safety and security related activities. This interaction guarantees functional safety at the
demanded level, and it makes sure that cyber-security issues are considered (in our example based on ISO
26262 and SAE J3061). SAE J3061 risk levels quantify the risk of successful cyberattacks. Risk levels are
ŘŜǊƛǾŜŘ ōŀǎŜŘ ƻƴ άŀǘǘŀŎƪ ǇƻǘŜƴǘƛŀƭέΣ άŀǘǘŀŎƪ ǇǊƻōŀōƛƭƛǘȅέΣ άǎŜǾŜǊƛǘȅέ ŀƴŘ άŎƻƴǘǊƻƭƭŀōƛƭƛǘȅέΦ Lƴ ƻǳǊ ŎŀǎŜ ƛǘ ƛǎ ŀ
criterion that indicates the risk that functional safety can possibly be levered out by an attacker in certain
circumstances. The task is to combine two different concerns, which apparently may be considered
independently, but they are not. In our framework, activities concerning functional safety and
cybersecurity are considered in joint activities. In the concept phase, ISO 26262 demands that the activity
Hazard Analysis and Risk Assessment (HARA) must be performed. A process, which beyond safety also
considers security, has also to perform Threat Analysis and Risk Assessment (TARA). That process must
consider the potential dependence between HARA and TARA and has to perform these two activities in
parallel but intertwined.

Safety engineer and security engineer are different roles performed by different persons and depending on
the role the safety or security activities will be executed. However, in this approach both roles need to be
synchronized and exchanging information between teams. One of the activities that should be executed in
combination is analysis approaches like System-theoretic Process Analysis for Security (STPA-Sec) [31] for
concept phase and Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) [32] for system level are able
to identify interdependence between functional safety and cybersecurity. Identification of hazards and
potential causes is an indispensable presupposition for a safe and secure system. We must identify hazards
and threats from both areas because insufficient controls can lead to unsafe control actions, independent
whether the cause is related to a hardware fault (classic safety-oriented view) or to a security issue. In
some cases, we will identify cybersecurity risks, which influence only non-safety areas (e.g. privacy) but
they are out of scope from our safety perspective. Section 2.1.4 provides additional information concerning
co-analysis methods.

The interest is to define measures, which are appropriate to mitigate any identified risks. The co-
engineering approach must cover hazards, which arise due to the combination of safety and security risks.
As a consequence, we need to perform a safety and security co-analysis, which should guarantee that we
identify any additional potential hazards, which would stay undiscovered if only one discipline is examined
in an isolated way. To make sure that measures from competitive disciplines do not influence each other in
a non-admissible way, we have to consider a trade-off in the risk reduction measures. In other words,
developers have to decide how much impact is allowed for each single safety and security measure. A
metric has to be developed as an aid to find out the balance and as an argument why a specific safety-
security constellation has been chosen. Finally, all arguments have to be collected in the assurance case,
which covers the integrated and harmonized safety and security case. In an assessment, which deals with
safety and security, evidence is needed to argue why the trade-off between safety and security conforms
with standards from both domains.

The tool EPF-C is used to model the safety and security co-engineering process and the tool WEFACT is used
to execute the process workflow and gather all the required evidences for the argumentation. An example
which shows how the two tools are used can be found in D4.3 [3].

 System Dependability Co-Analysis

Co-analysis covers a wide range of methods and techniques to identify safety hazards and security threats,
which are often the activities in the early stage of a product/system development lifecycle, e.g. in the
requirements engineering as well as the design phase. These analyses are also regarded as approaches to
risk assessment, because the goal of the analyses is often to identify safety and security risks.

In the context of the AMASS project, more precisely in the context of D4.3 [3], the following methods were
identified as an initial reference for co-analysis:

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 124

¶ The SAHARA method, which combines the automotive hazard analysis and risk assessment (HARA)
with the security domain STRIDE approach to quantify impacts of security threats and safety
hazards on system concepts at initial concept phase.

¶ The FMVEA Method, which was developed in the context of the ARROWHEAD project [59] and
extends the established Failure Mode and Effect Analysis with security related threat modes.

These two methods are expected to be further developed during the third iteration of the AMASS
prototype.

Besides these methods, additional two methods will strengthen the AMASS Co-Analysis approach:

¶ The joint analysis performed via fault trees and attack trees conducted via Safety Architect [14], as
well as the security analysis performed via the EBIOS (Expression des Besoins et Identification des
Objectifs de Sécurité - Expression of Needs and Identification of Security Objectives) method
conducted via Cyber Architect [15] . The results of these analyses are expected to be exchanged
with the AMASS platform.

¶ Failure Logic Analysis via ConcertoFLA [34], which is a result of the EU ARTEMIS CONCERTO project
[88] and was extensively recalled in D4.5 [4] as well as in D4.6 [11].

2.2. Vision

The core vision of the AMASS Multiconcern assurance consists of the exploitation of:

(1) Synergies between safety and security (among other dependability properties), as it was discussed
in [55]. Such synergies offer clear opportunities for co-assessment and co-analysis. In AMASS, co-
assessment is enabled via the integration of an open source process engineering tool and a
variability management tool, plus explicitly indicate equivalences between activities, artefacts and
requirements in the standards. Co-analysis is enabled via a combination of open-source and non-
open-source analysis techniques, which are expected to offer different advantages and trade-off
capabilities and evidence.

(2) Contract-based approaches for compositional assurance developed in OPENCOSS and SafeCer.
These approaches, which were extended in D4.3 [3] and partially implemented in D4.6 [11], include
a multi-concern perspective enabling: the decomposition of the requirements (related to different
concerns) onto the architecture components; the semi-automatic derivation of analysis results
from the architecture; the definition of a safety/security/multi-concern concept with mitigation
mechanisms on top of the architecture.

2.3. Tool Support Overview

The tool support is based on a collection of Eclipse plugins that provide the different functionalities
necessary to perform the Multiconcern Assurance Approach. In particular, it includes: EPF Composer
plugins to model the processes representing e.g., safety and or security plans; Papyrus plugins to model
SysML diagrams; CHESS plugins to design and perform different model-based analyses, and OpenCert
plugins to create and link assurance argument fragments. These plugins are part of the AMASS platform,
which provides the user a single user interface hiding the complexity of the underlying tool architecture.
The AMASS platform interacts with external backend tools to provide analysis results (via Safety Architect,
Papyrus for Safety and Security Engineering, and FMVEA) or to execute the process plans (WEFACT).

Except for FMVEA and WEFACT, the following subsections recall only essential information regarding the
main functionalities implemented within the different tools. A more extensive description of the tools was
given in D4.3 [3]. Concerning FMVEA and WEFACT, instead, since a new version of these tools is in the
process to be released, a more detailed information is provided to enable the reader to have a more
concrete idea of the potential of the coming support.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 124

 CHESS

CHESS Eclipse Polarsys project [36][27] provides support for system and software modelling, analysis and

implementation. The CHESS modelling language (CHESSML)4 is implemented as a profile of UML, SysML
and MARTE modelling languages. CHESSML supports component, contract-based design and the modelling
of timing and dependability concerns. Analysis support is made available by using the information provided
within the model and by providing seamless integration with tools for dependability analysis, like
ConcertoFLA for failure propagation (see 2.3.1.1) and multi-concern fault tree analysis (see 3.5.3),

xSAP/OCRA for fault tree analysis, contract-based analysis, like OCRA, and timing analysis, like MAST5.
Regarding software, the specific CHESS methodology [36] for software modelling, analysis and
implementation is supported, by offering a model driven approach with code generation facility (currently
Ada is supported as target language).

2.3.1.1. ConcertoFLA

The AMASS platform, via inclusion of CHESS toolset, also includes the plugin which implements
ConcertoFLA, a technique for qualitative dependability analysis. More specifically, this plugin retrieves the
dependability-related information (behaviour of the components in the presence of faults) and exploits it
to calculate the behaviour at system level. The analysis results are then back-propagated and annotated on
the original model.

 OpenCert ςAssurance Case Editor

This feature manages argumentation information in a modular fashion. Assurance cases are a structured
form of an argument that specifies convincing justification that a system is adequately dependable for a
given application in a given environment. Assurance cases are modelled as connections between claims and
their evidence.

During the safety argumentation phase the assurance case editor is used to define an argumentation model
using the GSN graphical notation [5]. Argumentation deals with (a) direct technical arguments of safety,
required behaviour from components, (b) compliance arguments about how prevailing standard has been
sufficiently addressed, and (c) backing confidence arguments about adequacy of arguments and evidence
presented (e.g. sufficiency of Hazard and Risk Assessment).

It also includes mechanisms to support assurance patterns management which offer the possibility to take
advantage of reusing best practices. The argumentation editor is able to re-use predefined patterns just by
άŘǊŀƎ ŀƴŘ ŘǊƻǇέ ǘƘŜ ǇŀǘǘŜǊƴ ƛƴǘƻ ǘƘŜ ǿƻǊƪƛƴƎ ŀǊŜŀΦ Similarly, previously created argument modules can be
ƛƴŎƭǳŘŜŘ ƛƴ ǘƘŜ ŀŎǘǳŀƭ ŘƛŀƎǊŀƳ Ƨǳǎǘ ōȅ άŘǊŀƎ ŀƴŘ ŘǊƻǇέ.

 FMVEA (*)

A new browser-based FMVEA tool has been developed recently (spring/summer 2018) and is available in
the third iteration of the AMASS platform (P2).

FMVEA extends the well-introduced FMEA by security aspects and can be used in those phases of the
lifecycle where a semi-quantitative FMEA is applicable. This applies first to the concept phase where the
traditional safety-oriented HARA (Hazard Analysis and Risk Assessment) can be enhanced by the
assessment of security risks (TARA ς Threat Analysis and Risk Assessment) when FMVEA is used. Further,
FMVEA is beneficial in later development phases when an architectural or a design choice has been taken,
or a concrete implementation is in place, and the resulting system is to be analysed in more detail with
respect to safety and security risks. The goal can be to verify that the designed or implemented safety
functions and security controls satisfy the previously stated safety and security requirements, or to detect

4 https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
5 https://mast.unican.es/

https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://mast.unican.es/

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 124

additional risks resulting from the concrete design or implementation that have not yet been identified in
the early HARA/TARA phase.

FMVEA ς Failure Modes, Vulnerabilities and Effects Analysis is a method developed since 2014 for
supporting a combined safety and security analysis. The method tries to cope with the problem that the
risk of safety threats can be calculated as a quantitative value based on the stochastic failure probability,
but there is no comparable numeric value that can be given for security hazards because many existing
vulnerabilities are yet unknown and there is no analytic method available to determine the attack
probabilities ς criminality is not really predictable. FMVEA therefore adds a traditional semi-quantitative
ǎŜŎǳǊƛǘȅ ŀǎǎŜǎǎƳŜƴǘ ŀǇǇǊƻŀŎƘΣ ƴŀƳŜƭȅ aƛŎǊƻǎƻŦǘΩǎ {¢wL5E classification scheme, to the classical safety-
oriented method FMEA (Failure Modes and Effects Analysis). STRIDE considers the following security threat
mechanisms (whose initials form the acronym STRIDE):

¶ Spoofing of user identity
¶ Tampering
¶ Repudiation
¶ Information disclosure (privacy breach or data leak)
¶ Denial of service (D.o.S)
¶ Elevation of privilege

 Figure 4 shows the FMEA process (white) extended by the security-related aspects (green).

Figure 4. Security-oriented FMVEA elements complementing FMEA

For each Threat Mode, experts assess System Susceptibility and Threat Properties by estimating semi
quantitative values for related attributes:

¶ System Susceptibility is the sum of:
o Reachability (1 = no network, 2 = private network, 3 = public network)
o Unusualness (1 = restricted, 2 = commercially available, 3 = standard)

¶ Threat Properties is the sum of:
o Motivation (1 = opportunity target, 2 = mildly interested, 3 = main target)
o Capabilities (1 = low, 2 = medium, 3 = high)

https://en.wikipedia.org/wiki/Spoofing_attack
https://en.wikipedia.org/wiki/Tampering_(crime)
https://en.wikipedia.org/wiki/Non-repudiation
https://en.wikipedia.org/wiki/Data_privacy
https://en.wikipedia.org/wiki/Data_leak
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Privilege_escalation

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 124

¶ Attack Likelihood is the sum of System Susceptibility and Threat Properties; this yields values
between 4 and 12 and is a semi-quantitative indicator for the attack likelihood.

The FMVEA tool realizes a partly automated implementation of the FMVEA method [70]. Basically, FMVEA
takes the FMEA approach and complements it with security by analysing, in addition, threats and
vulnerabilities of the item under consideration.

The FMVEA tool interfaces with the AMASS platform on the one hand with the SysML model provided e.g.
with Papyrus, and on the other hand with the created safety and security requirements via ReqIF format,
which can be imported in the AMASS platform. More details about the integration and the interfacing
platform can be found in D4.6 [11].

Figure 5 shows the FMVEA model editor user interface.

Figure 5. User Interface of the FMVEA model editor.

It is possible to edit the model within the FMVEA tool or, alternatively, to reuse a model from the AMASS
platform created e.g. with Papyrus, and enhance it with the respective dependability properties in the
FMVEA tool. After the model instances of the system including these properties are ready, they are
analysed with respect to safety and security and saved again in this scheme.

Efficient security analysis can be obtained using a pre-populated threats database, which allows semi-
automatic security analysis. Similarly, a semi-automatic safety analysis is supported when a predefined
failure database is used. Irrespective of whether automatic or manual analyses have been chosen, FMVEA
allows extending the model according to the resulting combined set of safety and security requirements
and storing it ς via the SysML interface ς in the AMASS platform instance.

 EPF Composer and BVR Tool

The Eclipse Process Framework (EPF) Composer [23] is an integrated development environment which is
built on top of the Eclipse platform and works as a stand-alone application. The EPF Composer provides a
process-management platform based on SPEM [19] for authoring, maintaining and sharing development
process frameworks between the various stake-holders of the software development organization. The
outcomes of processes, which are represented in the EPF Composer as work products, provide evidence
supporting process and product argumentation. This provides a means for co-engineering of safety and
cybersecurity analysis, development and argumentation.

As it was recalled in D6.3 [10], BVR (Base Variability Resolution) [61] is a language built on top of CVL
(Common Variability Language) [62] to enable variability modelling in the context of the engineering of

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 124

families of safety-critical systems. BVR is a result of the VARIES project [64]. The specification of the BVR
meta-model is given in VARIES D4.2 [63].

BVR enables orthogonal variability management for any model (called Base model) instance of a Meta-
Object Facility (MOF)-compliant metamodel. BVR supports the modelling of: feature diagrams, resolution,
realization and derivation of specific family members, as well as their analysis. Variability engineers create
three kinds of models:

¶ VSpec models are an evolution of the Feature-Oriented Domain Analysis (FODA) [65]. More
specifically, VSpec extends FODA by including additional concepts such as variables, references and
multiplicities. Constraints by using the Basic Constraint Language (BCL) can also be added to specify
cross-cutting constraints that constrain inclusion/exclusion within a subtree based on choices on
other subtrees. The grammar of BCL is given in Appendix of D6.3 [10].

¶ Resolution models, which specify the desired inclusion/exclusion choices for the specific
configuration/resolution. Note that to confirm whether the resolution corresponds to the VSpec
model, a validation process might be executed. The Software Product Line Covering Array (SPLCA)
tool is integrated with the BVR bundle for checking constraints and structural consistency of the
resolution [66].

Realization models, which specify the placements6 and replacements within the fragment substitutions. A
Fragment substitution is an operation that, if executed, substitutes a model fragment (placement fragment)
for another (replacement fragment).

The process model developed using the EPF Composer serves as the Base Model to the BVR Tool, which is
used to model variability and derive specific processes based on feature constraints and cardinality.

 WEFACT

The goal of the workflow engine WEFACT is to support the entire engineering lifecycle of safety and or
security relevant systems based on pre-defined processes. To achieve this goal every project in WEFACT
contains Requirements, Processes and Workflow Tools.

WEFACT is an (independent) Eclipse RCP application, which operates on a PostgreSQL database. As WEFACT
is an external tool, this database is independent of the AMASS platform database.

WEFACT provides the following main features:

¶ selecting a project or creating a new one

¶ defining users and roles

¶ importing requirements (currently from a DOORS database, for the future, also ReqIF import is
planned) or defining them in WEFACT

¶ defining activities to be performed by the workflow engine

¶ assigning activities to requirements and to tools (including parameters as well as input and output
directories), thus supporting traceability

¶ executing these activities (by invoking the tools)

¶ setting the fulfilment status of the requirements to PASS or FAIL, depending on the result of the
activities.

These basic features are complemented by the following functionalities:

¶ Definition of user accounts and user authorization.

¶ Importing UMA process models created in EPF-C. The imported activities form then the basis for
the V&V activities in WEFACT.

¶ Assigning tools. A list of tools is maintained in WEFACT and individually assigned to V&V activities.

6 A placement fragment is a set of elements forming a conceptual hole in a base model, which may be replaced by a
replacement fragment [67].

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 124

¶ Traceability.

WEFACT is an Eclipse application, not an Eclipse plugin; thus, no Eclipse installation is required but WEFACT
is started as an independent executable. In order to start working with WEFACT, the user first has to
register with his credentials (see Figure 6).

Figure 6. WEFACT user authorisation

and to select an existing project or create a new one (see Figure 7).

Figure 7. WEFACT project selection dialog box

Then the project is displayed in the main user interface of WEFACT, as shown in Figure 8.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 124

Figure 8. WEFACT user interface

The default WEFACT GUI is divided into three main parts. The usual process flow inside the application is
from the left-hand side to the right-hand side. On the left-hand side, there are 3 different explorers. This
area displays the project specific requirements, processes and tools and their structure. The details of the
selected requirement can be viewed and edited in the part on the right side of the explorers called
άwŜǉǳƛǊŜƳŜƴǘ 5ŜǘŀƛƭǎέΦ

Details on how the user interface is operated can be found in the WEFACT user manual [37]. In the
following sections, terms are explained and guidance is given how WEFACT shall be applied, in particular in
the context of AMASS assurance projects.

Requirements

As mentioned above, WEFACT is a requirements-based workflow engine. The tool allows to create and
delete requirements but also to import them from external sources (currently DOORS databases).
Moreover, they can be locked against unintended modification by ticking the respective checkbox. Figure 9
shows the input-box for the requirements in WEFACT.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 124

Figure 9. Requirement data input in WEFACT

Requirements are defined as the entities needed to achieve the objectives of the project. This includes
process and product requirements. Requirements can be structured in different levels, where a top-level
Requirement can be seen as the sum of its sublevel Requirements. Once all sublevel Requirements are
fulfilled, the top-level Requirement enters the state of completion. A Requirement can hold a connection to
ǇǊŜŘŜŦƛƴŜŘ ǇǊƻŎŜǎǎŜǎ ό±ϧ± ŀŎǘƛǾƛǘƛŜǎύΦ LŦ ŀƭƭ ǇǊƻŎŜǎǎŜǎ ŀǊŜ ŜȄŜŎǳǘŜŘ ǎǳŎŎŜǎǎŦǳƭƭȅΣ ǘƘŜ wŜǉǳƛǊŜƳŜƴǘΩǎ ǎǘŀǘǳǎ
ŎƘŀƴƎŜǎ ǘƻ άŦǳƭŦƛƭƭŜŘέΦ

Requirements have a responsible user assigned and can come from different sources. In a typical assurance
workflow, process requirements are modelled in EPF-C and imported in WEFACT. Product requirements, in
turn, are often created using tools, sometimes they are simple Excel files. WEFACT allows also the import of
DOORS requirements, and for a future version also ReqIF import is planned.

Processes/Activities

WEFACT allows to assign processes (activities) to a requirement which shall show its validity. In the user
ƛƴǘŜǊŦŀŎŜΣ ǘƘŜ {ŜŎǘƛƻƴ ά[ƛƴƪŜŘ Processesέ ǎƘƻǿǎ ǊŜǉǳƛǊŜƳŜƴǘǎ ǘƘŀǘ ƴŜŜŘ ǘƻ ōŜ ŦǳƭŦƛƭƭŜŘ ŀƴŘ ǘƘŀǘ ŀǊŜ ƭƛƴƪŜŘ
ǘƻ ǘƘƛǎ ǇǊƻŎŜǎǎΦ .ȅ ǎŜƭŜŎǘƛƴƎ άAdd LinƪΧέΣ ŀ ǇǊƻŎŜǎǎ Ŏŀƴ ōŜ ŀǎǎƛƎƴŜŘ ǘƻ ŀ ǊŜǉǳƛǊŜƳŜƴǘΦ .ȅ ŎƭƛŎƪƛƴƎ άwŜƳƻǾŜ
[ƛƴƪΧέ ŎŜǊǘŀƛƴ ƭƛƴƪǎ Ŏŀƴ ōŜ ǊŜƳƻǾŜŘΦ

Such an activity usually includes ŀ Ŏŀƭƭ ǘƻ ŀ ǘƻƻƭ όά²ƻǊƪŦƭƻǿ ǘƻƻƭέύΣ ŀƴŘ ŀ ŘǳŜ ŘŜŀŘƭƛƴŜ Ŏŀƴ ōŜ ŘŜŦƛƴŜŘ ŦƻǊ
processing it. For the selected tool, input arǘŜŦŀŎǘǎ όάLƴǇǳǘ CƛƭŜǎέύ ŀƴŘ ƻǳǘǇǳǘ ŀǊǘŜŦŀŎǘǎ όάhǳǘǇǳǘ CƛƭŜǎέύ ǎƘŀƭƭ
be defined. A button allows then to start the process, which yields as a result whether PASS or FAIL, and
ǎǳŎŎŜǎǎŦǳƭ ŀŎǘƛǾƛǘƛŜǎ όt!{{ύ ƭŜŀŘ ǘƻ ŎƘŀƴƎƛƴƎ ǘƘŜ ǎǘŀǘǳǎ ƻŦ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ǘƻ άŦǳƭŦƛƭƭŜŘέΦ

If required, subsequent calls of tools in a defined and success-dependent sequence can be forced by
ŘŜŦƛƴƛƴƎ ŀŎǘƛǾƛǘƛŜǎ ǇŜǊ ǘƻƻƭ ŀƴŘ ƭƛƴƪƛƴƎ ǘƘŜƳ ƛƴ ǘƘŜ ŘŜǎƛǊŜŘ ǎŜǉǳŜƴŎŜ ōȅ ŘŜŦƛƴƛƴƎ άtǊŜǾƛƻǳǎ tǊƻŎŜǎǎŜǎέ ŀƴŘ
άCƻƭƭƻǿƛƴƎ tǊƻŎŜǎǎŜǎέΦ Lƴ ǘƘƛǎ ŎŀǎŜΣ ǘƘe process can only be executed when all predecessor processes have
been executed successfully. This can, for instance, be used to start an automatic test case generation tool
before running the test created cases.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 124

Apart from tool-based requirement verification, WEFACT allows also user decisions as basis for setting a
process result ς ǿƛǘƘƻǳǘ ǊǳƴƴƛƴƎ ǘƘŜ ŀŎǘƛǾƛǘȅΦ ¢ƻ ŜƴŀōƭŜ ǘƘƛǎΣ ŀ άFulfil aŀƴǳŀƭƭȅέ ōǳǘǘƻƴ Ƙŀǎ ǘƻ ōŜ ǘƛŎƪŜŘΦ

Similar as requirements, also processes can be secured against unintended modification by ticking a button,
and also processes have a status.

Tools

Figure 10 shows the dialog box for defining workflow tools.

Figure 10. Tool definition box in WEFACT

As mentioned earlier, WEFACT supports assigning a tool to a process. This is done by writing the URL of the
executable or script file ƛƴǘƻ ǘƘŜ ǘŜȄǘ ŦƛŜƭŘ ά¢ƻƻƭ ǇŀǘƘέΦ ²9C!/¢ ǎǳǇǇƻǊǘǎ ŘƛŦŦŜǊŜƴǘ ǘȅǇŜǎ ƻŦ ǘƻƻƭǎ ǿΦǊΦǘΦ ǘƘŜ
call mechanism, namely manual/automatic and internal or external. Manual tools are those that cannot be
started automatically, e.g. an EMC test bench for a HW component.

Traceability

Through inherent traceability, WEFACT tracks the status of requirements continuously. Based on the
consistent and, if necessary, staged structure of requirements and the execution status of the associated
processes, WEFACT is able to determine which processes still need to be run or to be re-run after a
modification.

A more detailed description about using the WEFACT user interface is contained in the Handbook for
WEFACT [37].

How WEFACT Supports Multiconcern Assurance

WEFACT itself is a workflow tool and not an assurance tool. It provides capabilities to define the detailed
assurance process activities (including respective assurance tools to be started) and to run them.

The process model can be defined within the WEFACT user interface or imported from EPF-C reading its
UMA output. Figure 11 presents the typical way how WEFACT is intended to be used in the AMASS context.

 AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 124

Figure 11. Typical use of WEFACT in AMASS

As mentioned, the process model can be modified in WEFACT, and the activities defined in the process
model are implemented by assigning (and providing) a tool to perform the activity, including the input and
output artefacts in the respective directories. If necessary, dependencies between activities can be defined
(i.e. their sequence: e.g. an activity can be performed only after another activity has been completed
successfully).

WEFACT maintains consistent links between requirements, process activities and all affected artefacts,
allowing full traceability. Moreover, WEFACT stores the status of the requirements, which is set to
FULFILLED when the associated activities are performed successfully (PASS). On the other hand, changes in
system artefacts or requirements are recorded by WEFACT and the status of the respective (associated)
requirements is reset. By this mechanism, WEFACT controls, after changes, which activities need to be re-
executed in order to restore the assurance status of the system.

After running an activity, the results (output files) are stored in the SVN directory associated with the
ŀŎǘƛǾƛǘȅΣ ŀƴŘ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ƛǎ ǎŜǘ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǊŜǎǳƭǘ όt!{{ ƻǊ C!L[ύΦ ! άt!{{έ ǊŜǎǳƭǘ ǊŜǇǊŜǎŜƴǘǎ ŀƴ
evidence for the respective sub-goal in the GSN argumentation of the AMASS assurance case editor.
Currently (October 2018), the transfer of the evidence into the argument has to be done manually, i.e. by
using the assurance case editor.

In WEFACT, activities can be combined in order to construct multi-ŎƻƴŎŜǊƴ ŦǳƴŎǘƛƻƴŀƭƛǘƛŜǎΦ ¢Ƙƛǎ ŘƻŜǎƴΩǘ
require a specific multiconcern WEFACT tool feature but can be implemented by using the standard
WEFACT functionalities for assigning tools, which treat (e.g. analyse or test) different quality attributes.

As an example, an activity can be defined calling a security analysis tool; AIT has tried this out with the
Microsoft Threat Analysis tool. Similarly, another activity calling a FMEA or a HAZOP tool can be defined in
WEFACT to implement the safety analysis part. Also in WEFACT, the (multiconcern) requirement
demanding a security-aware HARA can be subdivided into a sub-requirement demanding a security-related

