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Executive Summary 

This document (D4.8 Methodological guide for multi-concern assurance (b)) is the final deliverable 
associated with the AMASS Task 4.4 Methodological Guide for Multi-Concern Assurance, which provides 
information about how to use the AMASS Multiconcern Assurance approach. This is the final version and it 
is based on the functionality supported by the third prototype (P2) of the AMASS platform.  

This deliverable is conceived as an update3 of the previous version (D4.7 Methodological guide for multi-
concern assurance (a)), which was delivered as a confidential document. 

This document focuses on the techniques developed in WP4. The guide targets a diversified audience, 
mainly composed of process engineers, assurance engineers and development engineers.   

To try to make the document self-contained, first, background information regarding the AMASS multi-
concern concepts is given. Second, the AMASS multiconcern vision is recalled. Third, the potential of the 
tool-supported approach is illustrated via a series of workflow-diagrams. Fourth, the fundamental 
functionality of the tools supporting the execution of the workflows is recalled. Finally, use case-oriented 
scenario instantiations are used to further refine such guidelines. 

To have a more general overview regarding the AMASS approach including the methods and techniques 
provided by other WPs, the reader is referred to D2.5 [12] as well as D3.8 [7] and D6.8 [8], which 
respectively provide guidance for the AMASS Architecture-driven approach and for the AMASS cross- and 
intra-domain reuse approach. D2.5 also includes a user manual, which contains detailed descriptions of 
how to use the specific functions. 

 

                                                
3 The sections modified with respect to D4.7 have been marked with (*), then the details about the differences and 
modifications are provided in Appendix A: Document changes with respect to D4.7 (*) 
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1. Introduction (*)  

Embedded systems have significantly increased in technical complexity towards open, interconnected 
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and 
automation of labour-intensive activities such as the assurance of their dependability. The AMASS project 
builds on the results of two large-scale projects, namely OPENCOSS [26] and SafeCer [25]. These projects 
dealt with the assurance and certification of software-intensive critical systems using incremental and 
model-based approaches. Both projects focused on compositional argumentation, however, neither dealt 
with multiple concerns. Moreover, while the SafeCer approach was more detailed with respect to system 
modelling, OPENCOSS was more detailed with structuring of the assurance case. Since the two approaches 
are complementary, in AMASS, it has been decided to combine them and further refine them. 

More specifically, SafeCer developed a generic process model given as the commonality within a 
configurable process line. Methodological guidelines for the EPF Composer-based Safety-oriented Process 
Line Engineering (SoPLE) [55] were also developed. The AMASS project consolidates and extends SoPLE to 
enable capturing the multi-faceted nature of assurance and thus contributing to the multi-concern 
assurance approach. The AMASS project also combines it with the OPENCOSS solutions for managing multi-
concern compliance. 

OPENCOSS elaborated solutions for assurance case structuring (i.e., vocabulary and structured expressions 
used in the assertions included the argumentation, as well as the composition of the arguments when they 
were provided by different suppliers), but the connection with system modelling was not in focus. 
Furthermore, the assurance case did not consider multiple concerns and how to account for their interplay. 
Hence, in AMASS, the compositional approach for assurance case structuring, properly connected with 
system modelling, and extended for multi concern assurance, has been targeted. 

SafeCer also developed a generic component model and contract-based verification techniques for 
compositional development and certification of CPS. These have been integrated in the CHESS tool support 
[27]. The AMASS project consolidates and extends such support with a wider range of mono-concern 
focused analysis techniques for the system architecture and combines it with the OPENCOSS solutions for 
building an assurance case. The resulting Architecture-Driven Assurance approach (designed in D3.3 [6]) is 
in D4.3 [3], further extended for: multi-concerns (in particular, the interplay between safety and security is 
in focus); and reuse of multi-concern architectural patterns. Moreover, the approach exploits tool 
interoperability mechanisms (designed in D5.3 [9]) to interact with external tools for multi-concern 
modelling and analysis support.  

Figure 1 provides a general overview of the AMASS Scientific Technical Objectives (STOs) and how they are 
implemented in the AMASS project by specific Work Packages (WPs). This deliverable defines the guide to 
be followed to apply the Multi-concern assurance approach developed in WP4. The methodological guide 
describes how to use the AMASS tools with help of examples and detailed process steps. The workflow is 
presented with the aid of activity diagrams or sequences of to-be-followed steps. The steps are meant to 
give an example of usage of the tool trying to cover all relevant features.  
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Figure 1. Assurance Case Specification and Multi-concern Assurance in relation to other AMASS Prototype P2 
building blocks 

 
This deliverable, first, provides an overview of the key concepts, such as contract-based multi-concern 
assurance, dependability assurance modelling, and system dependability co-assessment and analysis. Then, 
it explains what Multiconcern Assurance means, the role of the key concepts in the approach, and how the 
AMASS platform supports it. The core of this deliverable describes the workflows to enact Multiconcern 
Assurance, detailing the activities to be conducted and how to use the tool support. The workflows are 
presented by means of activity diagrams or sequences of steps to follow. To get a detailed explanation 
about the different options, the user may refer to the user manual, included in D2.5 [12]. Finally, the guide 
uses simple case studies to concretely describe the approach.  
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2. Multi-concern Assurance Overview 

This chapter provides an overview of the multi-concern assurance approach. To do that, essential 
information is recalled: first, background information belonging to the solution space, then the vision, and, 
finally, the main functionalities of the individual tools composing the AMASS platform and playing an active 
role within WP4. 

2.1. Background 

The purpose of this section is to recall fundamental concepts in order to make the document self-contained 
and enable the understanding of the guide. The presentation of the concepts builds on top of D4.3 [3]. 

 Contract Based Multi-concern Assurance (*) 

The spine of an assurance case is represented by the top-level requirements and goals that should be met 
by the system, and the evidence supporting the confidence that those requirements are met. Typically, 
those top-level requirements are decomposed based on the system architecture so that assurance of the 
decomposed requirements supports top-level requirements to fulfil dependability properties at system 
level. Confidence in the requirements decomposition needs to be ensured to use the decomposed 
requirements also for the assurance of the top-level requirements. Assumption-guarantee contracts can 
assist in increasing confidence in both requirements and their decomposition. 

This decomposition of requirements to ensure the system level assurance is also reflected in the system 
assurance case. In D4.3 [3], a proposal for the multiconcern assurance case structure was made. The 
system is assured for multiple concerns such that a set of system goals is developed for all the different 
concerns. The system goals are supported by the system requirements developed for all the different 
concerns. The concern-specific system goals are supported by the requirements specific to different 
concerns (safety, security, performance). Interplay of the concerns on all the levels where cross concern 
trade-off occurs (goals, requirement and components) is handled in the trade-off argument module as 
shown in Figure 2. 
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Figure 2. Multiconcern assurance case structure proposal 

Considering allocation of requirements over the system architecture, contracts on the architecture 
elements are defined to correspond to the requirements allocated to those elements. An assumption-
guarantee contract can be used to formalise a requirement such that the contract guarantees formalise the 
requirement by describing the behaviour of the element that implements the requirement, while the 
contract assumptions capture the conditions under which that behaviour is exhibited. Provided that the 
assumptions hold in a particular system, then the guarantee also holds, hence the corresponding 
requirement is met by the element in the given system. Requirement decomposition is captured by the 
contract refinement specification. Just as a requirement may be decomposed to a set of (sub)-
requirements, the contract of an element can be refined by a set of contracts of the sub-elements. 

The contract refinement analysis can be used to increase confidence in the requirements decomposition as 
well as to assure that a particular contract/requirement holds in the given system. To assure that a 
requirement is satisfied with sufficient confidence, it is necessary to argue about: 

1. Is the contract or a set of contracts correctly formalising the requirement? 

2. Can the inputs in the refinement analysis (i.e., can the contracts themselves be trusted? and more 
precisely can the corresponding element be trusted to behave according to the guarantees given 
the assumptions) be trusted? and 

3. Can the outputs from the refinement analysis (i.e., can we the tool itself be trusted) be trusted? 

Assuring these aspects allows the outputs from the contract refinement analysis to be used to support both 
requirements decomposition and requirement satisfaction. The first point may be addressed for example 
by inspection of the requirement and the corresponding contract guarantees, while testing or simulation 
can be used to support the second aspect. The third aspect may be addressed by verification of the tool 
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and methodology used for contract checking. The last aspect is related to the tool qualification activities 
and the level of confidence put on it. 

Considering that each requirement may be related to one or more different concerns such as safety and 
security, assurance of different contracts supports assurance of those concerns related to that contract. 
Furthermore, as the contracts connect additional information to the requirement in terms of assumptions, 
the contract-based assurance supports identification of interactions of those formalisable requirements 
across concerns. Dependency, conflicting as well as supporting relationships between elements and their 
concern-specific requirements can be highlighted through contract-based assurance. 

2.1.1.1. Contract-based Trade-off Analysis in Parameterized Architectures 

Parametrized architectures, as defined and developed in WP3, provide the means to analyse the system 
architecture in different configurations. Each configuration may enable/disable some components, ports, 
connections, and contracts. Different configurations can be analysed and compared with respect to 
different aspects: contract refinement, satisfaction of formal properties, fault tolerance, minimal cut sets, 
reliability measures. Such an approach was for example followed in the analysis of different configuration 
of the next generation of air traffic control design [75]. 

Comparing the different configurations allows the designer to perform trade-off analysis and design space 
exploration. Architectural choices are supported by the mentioned analysis results. In particular, the choice 
whether adding or removing a function (represented by a block or by a contract), enabling or disabling a 
redundancy, or other similar changes is supported by checking which functional and non-functional 
properties hold in the different configurations. This trade-off analysis is enhanced by the information about 
the concern addressed by the different properties and contracts: the analysis provides a direct way to 
evaluate the impact of the trading-off architectural elements on the multiconcern represented by 
properties and contracts. 

 Dependability Assurance Case Modelling 

As it was recalled in D4.1 [2], originally, when the necessity of demonstrating safety management emerged 
[58], the concept of safety case was introduced. Decade after decade, this concept has evolved to include 
other properties such as security, performance, conformance, trust, etc. Nowadays, the concept of 
Assurance Case is used to refer to a case that covers any critical property to be assured. 

An Assurance Case is a set of auditable claims, arguments, and evidences created to support the claim that 
a defined system/service will satisfy some particular requirements [57]. Assurance cases use a structured 
set of arguments and a corresponding body of evidence to justify that a system satisfies specific claims with 
respect to its properties (i.e. safety, security, reliability, availability, etc.). 

With Dependability Assurance Case modelling, advantages of two main concepts are taken. On the one 
hand the compositional argumentation and, on the other hand, the power of argumentation applied on 
dependability. 

Compositional argumentation means to deal with the challenge of complexity and length of the assurance 
cases. By adopting a modular, compositional, approach to the assurance case construction it may be 
possible to: 

• Justifiably limit the extent of the assurance case modification and revalidation required following 
anticipated system changes. 

• Support (and justify) extensions and modifications to a ‘baseline’ assurance case. 

• Establish a family of assurance case variants to justify the dependability of a system in different 
configurations. 

This approach establishes a modular and compositional construction for assurance cases that has a 
correspondence with modular structure of the underlying architecture. As with system architecture, the 
assurance engineer should establish interfaces between the modular elements of the assurance (safety, 
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security, conformance...) justification such that the assurance case elements may be adequately composed, 
removed and replaced. Similarly, it will be necessary to establish the assurance argument infrastructure 
required in order to support modular reasoning. 

In order to provide assurance of the system to carry out its intended function in its intended context, the 
relationships between the dependability aspects of the system (safety, security availability…), the decisions 
made during the development of the system to accommodate them, and the effects of these decisions and 
any other concerns which they impact (in this case, maintainability, performance, and potentially security) 
have to be recorded. 

Assurance cases are not a fixed document but rather a living document, as Denney, Pai and Habli proposed 
in [73], “Dynamic Safety Cases” should be targeted. Artefacts should be checked, validated and updated 
based on actual feedback data. With this conception of dynamic assurance case, in AMASS, the need for an 
explicit notation that shows that a claim has an impact (to reassure, to dismiss or no impact) in another 
claim has been identified. More specifically, the following relationships between dependability properties 
in the assurance case have been identified: 

● Dependency relationship. The claim A of one attribute depends on the fulfilment of claim B of 
another attribute. For example, a fail-safe claim of attribute safety depends on the claim that the 
safety instrumentation system is not tampered of attribute security.  

● Conflicting relationship. The assurance measure of attribute A is in conflict with the assurance 
measure of attribute B. For example, a strong password or blocking a terminal after several failed 
login attempts for security conflicts with the emergency shutdown for safety. Resolution of such a 
conflict need to be noted in the Assurance Case. 

● Supporting relationship. The assurance measure of attribute A is also applicable to assurance of 
attribute B, such that one assurance measure can be used to replace two separate ones if the 
attributes are considered and addressed individually. For example, encryption can be used for 
both: for confidentiality in terms of security and to check data integrity regarding safety. This 
means two goals can be addressed by one argumentation. 

Another challenge that security experts need to face is the temporary effectivity of the assurance decisions. 
As security threats evolve in time, as attacks improve, the security mechanisms put in place need to be re-
assured after some time. Assurance cases need to be checked periodically to ensure that evidence used to 
support the safety and security properties is still valid [60] and if not, provide an impact analysis and modify 
the system to ensure that the vulnerabilities are mitigated and/or avoided. Assurance cases should not be 
seen as a static tool but rather as a dynamic and living mechanism that supports safety and security 
responsible during the impact analysis task. 

 Process-related Dependability Co-assessment 

To achieve a fully functional automated car, car manufacturers are constantly increasing the complexity of 
the functions. Developers of these vehicles have to deal with functional safety on the one hand and 
cybersecurity on the other hand. In that context, cybersecurity gets more and more important because 
automated driving needs information transfer from outside of the vehicle, e.g. between vehicle and 
environment (keyword “V2X – communication”). 

This subsubsection presents the concept of co-engineering and how it could be implemented via Security-
informed Safety-oriented Process Line Engineering (SiSoPLE) [55], supported by the integration of EPF 
Composer (shortened EPF-C) [18] and BVR Tool [24]. Co-engineering supports the combination of cross 
concern activities to a joint process. This method is used during process development (see Figure 3) and 
supports Process-related Dependability Co-assessment. Different domains like automotive and avionics 
have different requirements, which lead to different processes and workflows. From another perspective, 
processes often deal with similar concerns like functional safety, cybersecurity and other quality-related 
concerns. This point of view makes clear that many methods are useable in different realisations in various 
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domains. Product developers follow well-defined domain specific processes and workflows, which should 
cover a wide spectrum of concerns. 

The interaction between functional safety and cybersecurity methodologies has to be defined 
systematically. A “Safety-Security-Co-Engineering” approach has to be offered. The activities concerning 
this approach belong to the block “Process development” in the “Process framework overview” in Figure 3. 
The approach compares relevant standards, for example ISO 26262 for functional safety in the automotive 
domain and SAE J3061 for cybersecurity in vehicle systems and identifies commonalities and variabilities of 
those standards.  

Note: The successor to SAE J3061 is under joint development between ISO and SAE, which is called 
ISO/SAE 21434 - Road Vehicles - Cybersecurity Engineering. 

After identification of relevant standards, the framework leads via process development to process 
management. Additional compliance management and argumentation management is considered. The 
following subsection regards only co-engineering which is part of process development. 

 

 

Figure 3. Process framework overview 

Standards allow flexible but thoroughly justified interpretations and customisations, which can be modelled 
as variabilities. Differences between project specific processes, which arise through instantiation of 
identical base processes may be interpreted as variabilities. Variable activities can be managed with the 
methodology shown in Section 3.3.2 - BVR Workflow. To deal with commonalities based on a co-
engineering approach, we must define two types of commonality. The first definition is related to the 
Safety-oriented Process Line (SoPL) [30], which deals with single concern – cross domain processes. In this 
case, common activities are identified in different domains (e.g. functional safety in the automotive and 
industrial domain). 

For cross concern topics, we have to extend the primary definition of single concern commonality. The 
intention is to “maximize” co-engineering activities and deal with variability in a way that makes elaborated 
processes reusable. Activities in cross concern applications, which must be executed in any case, are called 
safety security co-engineering activities instead of single concern “commonality”. The main difference is 
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that co-engineering activities do not necessarily contain common activities, but they lead to a common 
goal. We must make sure that co-engineering guarantees interaction between different concerns, in our 
example safety and security related activities. This interaction guarantees functional safety at the 
demanded level, and it makes sure that cyber-security issues are considered (in our example based on ISO 
26262 and SAE J3061). SAE J3061 risk levels quantify the risk of successful cyberattacks. Risk levels are 
derived based on “attack potential”, “attack probability”, “severity” and “controllability”. In our case it is a 
criterion that indicates the risk that functional safety can possibly be levered out by an attacker in certain 
circumstances. The task is to combine two different concerns, which apparently may be considered 
independently, but they are not. In our framework, activities concerning functional safety and 
cybersecurity are considered in joint activities. In the concept phase, ISO 26262 demands that the activity 
Hazard Analysis and Risk Assessment (HARA) must be performed. A process, which beyond safety also 
considers security, has also to perform Threat Analysis and Risk Assessment (TARA). That process must 
consider the potential dependence between HARA and TARA and has to perform these two activities in 
parallel but intertwined.  

Safety engineer and security engineer are different roles performed by different persons and depending on 
the role the safety or security activities will be executed. However, in this approach both roles need to be 
synchronized and exchanging information between teams. One of the activities that should be executed in 
combination is analysis approaches like System-theoretic Process Analysis for Security (STPA-Sec) [31] for 
concept phase and Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) [32] for system level are able 
to identify interdependence between functional safety and cybersecurity. Identification of hazards and 
potential causes is an indispensable presupposition for a safe and secure system. We must identify hazards 
and threats from both areas because insufficient controls can lead to unsafe control actions, independent 
whether the cause is related to a hardware fault (classic safety-oriented view) or to a security issue. In 
some cases, we will identify cybersecurity risks, which influence only non-safety areas (e.g. privacy) but 
they are out of scope from our safety perspective. Section 2.1.4 provides additional information concerning 
co-analysis methods. 

The interest is to define measures, which are appropriate to mitigate any identified risks. The co-
engineering approach must cover hazards, which arise due to the combination of safety and security risks. 
As a consequence, we need to perform a safety and security co-analysis, which should guarantee that we 
identify any additional potential hazards, which would stay undiscovered if only one discipline is examined 
in an isolated way. To make sure that measures from competitive disciplines do not influence each other in 
a non-admissible way, we have to consider a trade-off in the risk reduction measures. In other words, 
developers have to decide how much impact is allowed for each single safety and security measure. A 
metric has to be developed as an aid to find out the balance and as an argument why a specific safety-
security constellation has been chosen. Finally, all arguments have to be collected in the assurance case, 
which covers the integrated and harmonized safety and security case. In an assessment, which deals with 
safety and security, evidence is needed to argue why the trade-off between safety and security conforms 
with standards from both domains. 

The tool EPF-C is used to model the safety and security co-engineering process and the tool WEFACT is used 
to execute the process workflow and gather all the required evidences for the argumentation. An example 
which shows how the two tools are used can be found in D4.3 [3]. 

 System Dependability Co-Analysis 

Co-analysis covers a wide range of methods and techniques to identify safety hazards and security threats, 
which are often the activities in the early stage of a product/system development lifecycle, e.g. in the 
requirements engineering as well as the design phase. These analyses are also regarded as approaches to 
risk assessment, because the goal of the analyses is often to identify safety and security risks.  

In the context of the AMASS project, more precisely in the context of D4.3 [3], the following methods were 
identified as an initial reference for co-analysis: 
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• The SAHARA method, which combines the automotive hazard analysis and risk assessment (HARA) 
with the security domain STRIDE approach to quantify impacts of security threats and safety 
hazards on system concepts at initial concept phase. 

• The FMVEA Method, which was developed in the context of the ARROWHEAD project [59] and 
extends the established Failure Mode and Effect Analysis with security related threat modes.  

These two methods are expected to be further developed during the third iteration of the AMASS 
prototype. 

Besides these methods, additional two methods will strengthen the AMASS Co-Analysis approach: 

• The joint analysis performed via fault trees and attack trees conducted via Safety Architect [14], as 
well as the security analysis performed via the EBIOS (Expression des Besoins et Identification des 
Objectifs de Sécurité - Expression of Needs and Identification of Security Objectives) method 
conducted via Cyber Architect [15] . The results of these analyses are expected to be exchanged 
with the AMASS platform. 

• Failure Logic Analysis via ConcertoFLA [34], which is a result of the EU ARTEMIS CONCERTO project 
[88] and was extensively recalled in D4.5 [4] as well as in D4.6 [11]. 

2.2. Vision 

The core vision of the AMASS Multiconcern assurance consists of the exploitation of:  

(1) Synergies between safety and security (among other dependability properties), as it was discussed 
in [55]. Such synergies offer clear opportunities for co-assessment and co-analysis. In AMASS, co-
assessment is enabled via the integration of an open source process engineering tool and a 
variability management tool, plus explicitly indicate equivalences between activities, artefacts and 
requirements in the standards. Co-analysis is enabled via a combination of open-source and non-
open-source analysis techniques, which are expected to offer different advantages and trade-off 
capabilities and evidence. 

(2) Contract-based approaches for compositional assurance developed in OPENCOSS and SafeCer. 
These approaches, which were extended in D4.3 [3] and partially implemented in D4.6 [11], include 
a multi-concern perspective enabling: the decomposition of the requirements (related to different 
concerns) onto the architecture components; the semi-automatic derivation of analysis results 
from the architecture; the definition of a safety/security/multi-concern concept with mitigation 
mechanisms on top of the architecture. 

2.3. Tool Support Overview  

The tool support is based on a collection of Eclipse plugins that provide the different functionalities 
necessary to perform the Multiconcern Assurance Approach. In particular, it includes: EPF Composer 
plugins to model the processes representing e.g., safety and or security plans; Papyrus plugins to model 
SysML diagrams; CHESS plugins to design and perform different model-based analyses, and OpenCert 
plugins to create and link assurance argument fragments. These plugins are part of the AMASS platform, 
which provides the user a single user interface hiding the complexity of the underlying tool architecture. 
The AMASS platform interacts with external backend tools to provide analysis results (via Safety Architect, 
Papyrus for Safety and Security Engineering, and FMVEA) or to execute the process plans (WEFACT).  

Except for FMVEA and WEFACT, the following subsections recall only essential information regarding the 
main functionalities implemented within the different tools. A more extensive description of the tools was 
given in D4.3 [3]. Concerning FMVEA and WEFACT, instead, since a new version of these tools is in the 
process to be released, a more detailed information is provided to enable the reader to have a more 
concrete idea of the potential of the coming support. 
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 CHESS  

CHESS Eclipse Polarsys project [36][27] provides support for system and software modelling, analysis and 

implementation. The CHESS modelling language (CHESSML)4 is implemented as a profile of UML, SysML 
and MARTE modelling languages. CHESSML supports component, contract-based design and the modelling 
of timing and dependability concerns. Analysis support is made available by using the information provided 
within the model and by providing seamless integration with tools for dependability analysis, like 
ConcertoFLA for failure propagation (see 2.3.1.1) and multi-concern fault tree analysis (see 3.5.3), 

xSAP/OCRA for fault tree analysis, contract-based analysis, like OCRA, and timing analysis, like MAST5. 
Regarding software, the specific CHESS methodology [36] for software modelling, analysis and 
implementation is supported, by offering a model driven approach with code generation facility (currently 
Ada is supported as target language). 

2.3.1.1. ConcertoFLA 

The AMASS platform, via inclusion of CHESS toolset, also includes the plugin which implements 
ConcertoFLA, a technique for qualitative dependability analysis. More specifically, this plugin retrieves the 
dependability-related information (behaviour of the components in the presence of faults) and exploits it 
to calculate the behaviour at system level. The analysis results are then back-propagated and annotated on 
the original model.  

 OpenCert –Assurance Case Editor 

This feature manages argumentation information in a modular fashion. Assurance cases are a structured 
form of an argument that specifies convincing justification that a system is adequately dependable for a 
given application in a given environment. Assurance cases are modelled as connections between claims and 
their evidence.  

During the safety argumentation phase the assurance case editor is used to define an argumentation model 
using the GSN graphical notation [5]. Argumentation deals with (a) direct technical arguments of safety, 
required behaviour from components, (b) compliance arguments about how prevailing standard has been 
sufficiently addressed, and (c) backing confidence arguments about adequacy of arguments and evidence 
presented (e.g. sufficiency of Hazard and Risk Assessment).  

It also includes mechanisms to support assurance patterns management which offer the possibility to take 
advantage of reusing best practices. The argumentation editor is able to re-use predefined patterns just by 
“drag and drop” the pattern into the working area. Similarly, previously created argument modules can be 
included in the actual diagram just by “drag and drop”.  

 FMVEA (*) 

A new browser-based FMVEA tool has been developed recently (spring/summer 2018) and is available in 
the third iteration of the AMASS platform (P2). 

FMVEA extends the well-introduced FMEA by security aspects and can be used in those phases of the 
lifecycle where a semi-quantitative FMEA is applicable. This applies first to the concept phase where the 
traditional safety-oriented HARA (Hazard Analysis and Risk Assessment) can be enhanced by the 
assessment of security risks (TARA – Threat Analysis and Risk Assessment) when FMVEA is used. Further, 
FMVEA is beneficial in later development phases when an architectural or a design choice has been taken, 
or a concrete implementation is in place, and the resulting system is to be analysed in more detail with 
respect to safety and security risks. The goal can be to verify that the designed or implemented safety 
functions and security controls satisfy the previously stated safety and security requirements, or to detect 

                                                
4 https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf  
5 https://mast.unican.es/  

https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://mast.unican.es/
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additional risks resulting from the concrete design or implementation that have not yet been identified in 
the early HARA/TARA phase. 

FMVEA – Failure Modes, Vulnerabilities and Effects Analysis is a method developed since 2014 for 
supporting a combined safety and security analysis. The method tries to cope with the problem that the 
risk of safety threats can be calculated as a quantitative value based on the stochastic failure probability, 
but there is no comparable numeric value that can be given for security hazards because many existing 
vulnerabilities are yet unknown and there is no analytic method available to determine the attack 
probabilities – criminality is not really predictable. FMVEA therefore adds a traditional semi-quantitative 
security assessment approach, namely Microsoft’s STRIDE classification scheme, to the classical safety-
oriented method FMEA (Failure Modes and Effects Analysis). STRIDE considers the following security threat 
mechanisms (whose initials form the acronym STRIDE): 

• Spoofing of user identity 
• Tampering 
• Repudiation 
• Information disclosure (privacy breach or data leak) 
• Denial of service (D.o.S) 
• Elevation of privilege 

 Figure 4 shows the FMEA process (white) extended by the security-related aspects (green). 

 

Figure 4. Security-oriented FMVEA elements complementing FMEA 

For each Threat Mode, experts assess System Susceptibility and Threat Properties by estimating semi 
quantitative values for related attributes:  

• System Susceptibility is the sum of: 
o Reachability (1 = no network, 2 = private network, 3 = public network) 
o Unusualness (1 = restricted, 2 = commercially available, 3 = standard) 

• Threat Properties is the sum of:  
o Motivation (1 = opportunity target, 2 = mildly interested, 3 = main target) 
o Capabilities (1 = low, 2 = medium, 3 = high) 

https://en.wikipedia.org/wiki/Spoofing_attack
https://en.wikipedia.org/wiki/Tampering_(crime)
https://en.wikipedia.org/wiki/Non-repudiation
https://en.wikipedia.org/wiki/Data_privacy
https://en.wikipedia.org/wiki/Data_leak
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Privilege_escalation
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• Attack Likelihood is the sum of System Susceptibility and Threat Properties; this yields values 
between 4 and 12 and is a semi-quantitative indicator for the attack likelihood. 

The FMVEA tool realizes a partly automated implementation of the FMVEA method [70]. Basically, FMVEA 
takes the FMEA approach and complements it with security by analysing, in addition, threats and 
vulnerabilities of the item under consideration.  

The FMVEA tool interfaces with the AMASS platform on the one hand with the SysML model provided e.g. 
with Papyrus, and on the other hand with the created safety and security requirements via ReqIF format, 
which can be imported in the AMASS platform. More details about the integration and the interfacing 
platform can be found in D4.6 [11].  

Figure 5 shows the FMVEA model editor user interface. 

 
 

Figure 5. User Interface of the FMVEA model editor. 

It is possible to edit the model within the FMVEA tool or, alternatively, to reuse a model from the AMASS 
platform created e.g. with Papyrus, and enhance it with the respective dependability properties in the 
FMVEA tool. After the model instances of the system including these properties are ready, they are 
analysed with respect to safety and security and saved again in this scheme. 

Efficient security analysis can be obtained using a pre-populated threats database, which allows semi-
automatic security analysis. Similarly, a semi-automatic safety analysis is supported when a predefined 
failure database is used. Irrespective of whether automatic or manual analyses have been chosen, FMVEA 
allows extending the model according to the resulting combined set of safety and security requirements 
and storing it – via the SysML interface – in the AMASS platform instance. 

 EPF Composer and BVR Tool 

The Eclipse Process Framework (EPF) Composer [23] is an integrated development environment which is 
built on top of the Eclipse platform and works as a stand-alone application. The EPF Composer provides a 
process-management platform based on SPEM [19] for authoring, maintaining and sharing development 
process frameworks between the various stake-holders of the software development organization. The 
outcomes of processes, which are represented in the EPF Composer as work products, provide evidence 
supporting process and product argumentation. This provides a means for co-engineering of safety and 
cybersecurity analysis, development and argumentation. 

As it was recalled in D6.3 [10], BVR (Base Variability Resolution) [61] is a language built on top of CVL 
(Common Variability Language) [62] to enable variability modelling in the context of the engineering of 
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families of safety-critical systems. BVR is a result of the VARIES project [64]. The specification of the BVR 
meta-model is given in VARIES D4.2 [63]. 

BVR enables orthogonal variability management for any model (called Base model) instance of a Meta-
Object Facility (MOF)-compliant metamodel. BVR supports the modelling of: feature diagrams, resolution, 
realization and derivation of specific family members, as well as their analysis. Variability engineers create 
three kinds of models: 

• VSpec models are an evolution of the Feature-Oriented Domain Analysis (FODA) [65]. More 
specifically, VSpec extends FODA by including additional concepts such as variables, references and 
multiplicities. Constraints by using the Basic Constraint Language (BCL) can also be added to specify 
cross-cutting constraints that constrain inclusion/exclusion within a subtree based on choices on 
other subtrees. The grammar of BCL is given in Appendix of D6.3 [10]. 

• Resolution models, which specify the desired inclusion/exclusion choices for the specific 
configuration/resolution. Note that to confirm whether the resolution corresponds to the VSpec 
model, a validation process might be executed. The Software Product Line Covering Array (SPLCA) 
tool is integrated with the BVR bundle for checking constraints and structural consistency of the 
resolution [66]. 

Realization models, which specify the placements6 and replacements within the fragment substitutions. A 
Fragment substitution is an operation that, if executed, substitutes a model fragment (placement fragment) 
for another (replacement fragment).  

The process model developed using the EPF Composer serves as the Base Model to the BVR Tool, which is 
used to model variability and derive specific processes based on feature constraints and cardinality.  

 WEFACT 

The goal of the workflow engine WEFACT is to support the entire engineering lifecycle of safety and or 
security relevant systems based on pre-defined processes. To achieve this goal every project in WEFACT 
contains Requirements, Processes and Workflow Tools. 

WEFACT is an (independent) Eclipse RCP application, which operates on a PostgreSQL database. As WEFACT 
is an external tool, this database is independent of the AMASS platform database. 

WEFACT provides the following main features: 

• selecting a project or creating a new one 

• defining users and roles 

• importing requirements (currently from a DOORS database, for the future, also ReqIF import is 
planned) or defining them in WEFACT 

• defining activities to be performed by the workflow engine 

• assigning activities to requirements and to tools (including parameters as well as input and output 
directories), thus supporting traceability 

• executing these activities (by invoking the tools) 

• setting the fulfilment status of the requirements to PASS or FAIL, depending on the result of the 
activities. 

These basic features are complemented by the following functionalities: 

• Definition of user accounts and user authorization. 

• Importing UMA process models created in EPF-C. The imported activities form then the basis for 
the V&V activities in WEFACT. 

• Assigning tools. A list of tools is maintained in WEFACT and individually assigned to V&V activities. 

                                                
6 A placement fragment is a set of elements forming a conceptual hole in a base model, which may be replaced by a 
replacement fragment [67]. 
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• Traceability. 

WEFACT is an Eclipse application, not an Eclipse plugin; thus, no Eclipse installation is required but WEFACT 
is started as an independent executable. In order to start working with WEFACT, the user first has to 
register with his credentials (see Figure 6). 

 

Figure 6. WEFACT user authorisation 

and to select an existing project or create a new one (see Figure 7). 

 

Figure 7. WEFACT project selection dialog box 

Then the project is displayed in the main user interface of WEFACT, as shown in Figure 8. 
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Figure 8. WEFACT user interface 

The default WEFACT GUI is divided into three main parts. The usual process flow inside the application is 
from the left-hand side to the right-hand side. On the left-hand side, there are 3 different explorers. This 
area displays the project specific requirements, processes and tools and their structure. The details of the 
selected requirement can be viewed and edited in the part on the right side of the explorers called 
“Requirement Details”. 

Details on how the user interface is operated can be found in the WEFACT user manual [37]. In the 
following sections, terms are explained and guidance is given how WEFACT shall be applied, in particular in 
the context of AMASS assurance projects. 

Requirements 

As mentioned above, WEFACT is a requirements-based workflow engine. The tool allows to create and 
delete requirements but also to import them from external sources (currently DOORS databases). 
Moreover, they can be locked against unintended modification by ticking the respective checkbox. Figure 9 
shows the input-box for the requirements in WEFACT. 
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Figure 9. Requirement data input in WEFACT 

Requirements are defined as the entities needed to achieve the objectives of the project. This includes 
process and product requirements. Requirements can be structured in different levels, where a top-level 
Requirement can be seen as the sum of its sublevel Requirements. Once all sublevel Requirements are 
fulfilled, the top-level Requirement enters the state of completion. A Requirement can hold a connection to 
predefined processes (V&V activities). If all processes are executed successfully, the Requirement’s status 
changes to “fulfilled”. 

Requirements have a responsible user assigned and can come from different sources. In a typical assurance 
workflow, process requirements are modelled in EPF-C and imported in WEFACT. Product requirements, in 
turn, are often created using tools, sometimes they are simple Excel files. WEFACT allows also the import of 
DOORS requirements, and for a future version also ReqIF import is planned.  

Processes/Activities 

WEFACT allows to assign processes (activities) to a requirement which shall show its validity. In the user 
interface, the Section “Linked Processes” shows requirements that need to be fulfilled and that are linked 
to this process. By selecting “Add Link…”, a process can be assigned to a requirement. By clicking “Remove 
Link…” certain links can be removed. 

Such an activity usually includes a call to a tool (“Workflow tool”), and a due deadline can be defined for 
processing it. For the selected tool, input artefacts (“Input Files”) and output artefacts (“Output Files”) shall 
be defined. A button allows then to start the process, which yields as a result whether PASS or FAIL, and 
successful activities (PASS) lead to changing the status of the requirement to “fulfilled”. 

If required, subsequent calls of tools in a defined and success-dependent sequence can be forced by 
defining activities per tool and linking them in the desired sequence by defining “Previous Processes” and 
“Following Processes”. In this case, the process can only be executed when all predecessor processes have 
been executed successfully. This can, for instance, be used to start an automatic test case generation tool 
before running the test created cases. 
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Apart from tool-based requirement verification, WEFACT allows also user decisions as basis for setting a 
process result – without running the activity. To enable this, a “Fulfil Manually” button has to be ticked.  

Similar as requirements, also processes can be secured against unintended modification by ticking a button, 
and also processes have a status. 

Tools 

Figure 10 shows the dialog box for defining workflow tools. 

 

Figure 10. Tool definition box in WEFACT 

As mentioned earlier, WEFACT supports assigning a tool to a process. This is done by writing the URL of the 
executable or script file into the text field “Tool path”. WEFACT supports different types of tools w.r.t. the 
call mechanism, namely manual/automatic and internal or external. Manual tools are those that cannot be 
started automatically, e.g. an EMC test bench for a HW component. 

Traceability 

Through inherent traceability, WEFACT tracks the status of requirements continuously. Based on the 
consistent and, if necessary, staged structure of requirements and the execution status of the associated 
processes, WEFACT is able to determine which processes still need to be run or to be re-run after a 
modification. 

A more detailed description about using the WEFACT user interface is contained in the Handbook for 
WEFACT [37]. 

How WEFACT Supports Multiconcern Assurance 

WEFACT itself is a workflow tool and not an assurance tool. It provides capabilities to define the detailed 
assurance process activities (including respective assurance tools to be started) and to run them. 

The process model can be defined within the WEFACT user interface or imported from EPF-C reading its 
UMA output. Figure 11 presents the typical way how WEFACT is intended to be used in the AMASS context. 
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Figure 11. Typical use of WEFACT in AMASS 

As mentioned, the process model can be modified in WEFACT, and the activities defined in the process 
model are implemented by assigning (and providing) a tool to perform the activity, including the input and 
output artefacts in the respective directories. If necessary, dependencies between activities can be defined 
(i.e. their sequence: e.g. an activity can be performed only after another activity has been completed 
successfully). 

WEFACT maintains consistent links between requirements, process activities and all affected artefacts, 
allowing full traceability. Moreover, WEFACT stores the status of the requirements, which is set to 
FULFILLED when the associated activities are performed successfully (PASS). On the other hand, changes in 
system artefacts or requirements are recorded by WEFACT and the status of the respective (associated) 
requirements is reset. By this mechanism, WEFACT controls, after changes, which activities need to be re-
executed in order to restore the assurance status of the system. 

After running an activity, the results (output files) are stored in the SVN directory associated with the 
activity, and the requirement is set according to the result (PASS or FAIL). A “PASS” result represents an 
evidence for the respective sub-goal in the GSN argumentation of the AMASS assurance case editor. 
Currently (October 2018), the transfer of the evidence into the argument has to be done manually, i.e. by 
using the assurance case editor. 

In WEFACT, activities can be combined in order to construct multi-concern functionalities. This doesn’t 
require a specific multiconcern WEFACT tool feature but can be implemented by using the standard 
WEFACT functionalities for assigning tools, which treat (e.g. analyse or test) different quality attributes. 

As an example, an activity can be defined calling a security analysis tool; AIT has tried this out with the 
Microsoft Threat Analysis tool. Similarly, another activity calling a FMEA or a HAZOP tool can be defined in 
WEFACT to implement the safety analysis part. Also in WEFACT, the (multiconcern) requirement 
demanding a security-aware HARA can be subdivided into a sub-requirement demanding a security-related 
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analysis and another one for the traditional safety-related hazard analysis. By linking the two 
aforementioned activities (in WEFACT) to these two sub-requirements, we have realized a combined safety 
and security analysis. The multiconcern process could be extended by inserting a subsequent interaction 
point activity, which depends on the successful execution of the two above mentioned (parallel) analyses. 
This activity can be designed such that contradictions between safety or security-oriented mitigation 
measures and requirements related to the other quality attribute lead to a FAIL result for the entire 
composed process, and the (combined) safety AND security analysis requirement is not FUFILLED until a re-
iteration of the analyses end up with a non-conflicting set of mitigation measures. 

 Safety Architect and Cyber Architect  

Safety Architect (SA) [14] is initially dedicated to perform classical FTA by generating FT from system model 
and failure condition analysis of model components. Thanks to the MERgE project [16] the classical FT can 
be enriched with malicious events which can be caused by an attacker. An example of SA FT extended with 
a malicious event is shown in Figure 12. 

 

 

Figure 12. Example of SA FT exported in Arbre Analyste [28] 

As illustrated in Figure 12, the SA FT is composed by: 

• a top event (e.g., “Top_Feared_Event”),  

• intermediate events (e.g., “[C2_In](E)” that represents an erroneous stage of the input of system 
component 2),  

• gates (e.g., AND, OR and others not represented in this example), 

• basic events, which can be:  
- safety viewpoint basic events (e.g., “[C1_In](E)” that represents an erroneous state of the input 

of system component 1)  
- security viewpoint basic event (e.g., “[C1_In](M)” that represents a malicious  event caused by 

an attacker by exploiting the vulnerability of the input of system component 1).  

 
Cyber Architect (CA) [15] is a security analysis tool based on the EBIOS method (Expression des Besoins et 
Identification des Objectifs de Sécurité - Expression of Needs and Identification of Security Objectives) [17] 
used to assess and treat risks.  The tool implements the five modules of EBIOS method (Module 1 - Study of 
the context, Module 2 - Study of the feared events, Module 3 - Study of threat scenarios, Module 4 - Study 
of the risks, Module 5 - Study of the control). Here, we focus on Module 2, whose objective is to 
systematically identify generic scenarios and feared events that need to be avoided within the study's 
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boundaries. From this systematic analysis, Attack Tree (AT) can be automatically generated in the tool. An 
example of CA AT is shown in Figure 13. 

 

Figure 13. Example of CA AT 

The CA AT is composed by: 

• a cyber-attack goal (e.g., “Remote no-modification of command fails”),  

• an operation event which is an intermediate event or action that can be performed by a system 
operator (involuntarily) or an attacker (deliberately, e.g. “Attacker runs the remote exploitation 
attack”), 

• gates (e.g., AND, OR), 

• threats (e.g., “modification of item”), 

• vulnerabilities (e.g., “data can be manipulated”), 

• an assertion, which is a statement that represents a condition to be validated in order to consider 
true a certain branch of the AT (e.g., “any data may be input”). 

 
Difference between SA FT and CA AT. SA FT is a logical structure expressing the relationships and 
dependencies between a high-level top-event and lower level events, while CA AT is a graph that describes 
the steps of an attack process. A mapping can be done with some elements of SA FT and CA AT. The main 
difference between the SA FT and CA AT is the “operation event” that can be really performed by an 
attacker. While in a SA FT (e.g., Figure 12) we only know the probabilities of occurrence of the basic events, 
in a CA AT the probability of the “operation events”, which are intermediate events in the tree, can be also 
taken into account.  

 Papyrus for Safety and Security Engineering 

Papyrus for Safety and Security Engineering (Papyrus SSE) is a framework developed by the CEA to support 
systems engineering from early phases of the development cycle. Figure 14 shows a two-dimensional 
workflow. The horizontal axis shows that Papyrus SSE is customized according to the standards from where 
the fundamental concepts, requirements, and analysis methods are extracted and implemented. The 
vertical axis shows that Papyrus SSE provides an environment to support several phases of systems design 
ranging from requirements capturing up to the analysis (validation, verification, tests) of safety and security 
aspects.  
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Figure 14. Papyrus SSE supports safety and security analyses during early phases of systems engineering 

Regarding safety concerns, Papyrus SSE supports typical safety-oriented analyses like Hazard Analysis and 
Risk Assessment (HARA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA) as well as the 
formal verification of properties refined from high level requirements. The referred analyses are supported 
via dedicated profiles which are deployed according to the application-domain and respective standards: 

• ISO/IEC 61508, for functional safety of electrical, electronic, and electronically programmable 
devices [38] 

• ISO 26262, for functional safety of road vehicles [39] 

• ISO/DIS 13482, for safety of personal care robots [40] 

• ARP 4754 [41] and 4761 [42], for safety of aerospace artefacts and airplanes 

Regarding security concerns, Papyrus SSE deploys several profiles to support security-oriented analyses. 
More specifically, the tool has been customized to support the security risk analysis of information 
technology, cyber-physical and industrial systems. It supports techniques and methods that cover several 
phases: modelling and analysis of feared events (including requirements), threats scenarios, vulnerabilities, 
and countermeasures, Attack Trees, and risks calculation. In addition, a dedicated module allows to 
formally validate the effectiveness of security countermeasures based upon security test cases. The 
referred analyses are supported in compliance with the following standards: 

• ISO 27001/27005, for the security risk management of information technology systems [43] 

• ISO 15408, the evaluation criteria for information technology security [44] 

• IEC 62443, targeting the security of industrial automation and control systems [45] 

• EUROCAE ED-202 [46] and ED-203 [47], for the airworthiness security process and methods, 
respectively. 
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3. Methodological Guide 

This chapter constitutes the core of the document. It provides guidance for each functionality of the AMASS 
platform contributing to the AMASS Multiconcern Assurance approach. This guidance is given as a series of 
workflows illustrating the main activities to be executed by users to apply the approach. In some cases, 
workflows are graphically represented as UML activity diagrams, in some other cases they are informally 
given in a textual format.  

3.1. Contract-Based Multiconcern Assurance (*) 

The system design comprises the specification of contracts for component, as documented in D3.8 [7] and 
performed by a combination of development engineer and assurance engineer. This activity is supported by 
the AMASS platform by means of the CHESS modelling language (CHESSML). In particular component 
contracts can be modelled as formalisation of requirements by the assurance engineer. Moreover, 
refinement of contracts can also be modelled along the hierarchical architecture of the system.  

Concerning the specification of the contract, it must include the specification of the concern(s) addressed; 
this has to be done according to the concern(s) addressed by the requirements which are formalised by the 
contract itself, depending of the typology of the property, the safety or security engineer will be the 
responsible if doing it. The AMASS platform supports the specification and analysis of contracts where 
assumptions and guarantees are expressed in Linear-time Temporal Logic (LTL), where LTL can be used to 
express multi-concern contracts, like safety and security. 

Figure 15 shows an example about a CHESS FormalProperty KeepSafeDistance_Req formalizing a safety 
requirement; the FormalProperty is represented with its name, its specification (in OCRA in this case) and 
with its addressed concern (safety). The FormalProperty represents the guarantee of the KeepSafeDistance 
contract. We can image that according to same safety analysis, the requirement formalized by 
KeepSafeDistance_Req is then refined with requirement related to the performance; the formalization of 
the latter is represented in Figure 15 by the BrakeTime_Req FormalProperty. Then BrakeTime_Req is 
modelled as the guarantee of the BrakeTime contracts. The refinement of the KeepSafeDistance contract 
into the BrakeTime contract can also be modelled in CHESS (not shown in Figure 15). 

 

Figure 15. Multi-concern contracts 

Contracts can then be used for co-analysis, by using the analysis provided by WP3, like the contract 
refinement analysis, and to enable architecture-driven assurance, so as a way to link the system design to 
the assurance case. 

Figure 16 presents the argument-pattern that is instantiated based on the component contracts, its 
relations to requirements, the specified refinement as well as evidence supporting confidence in the 
contracts. The claims “contractKAssume” and “contractKRefine" connect the contract K with other related 
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contracts. The “contractKAssume” connects the contract with other related contracts in its environment. 
For example, those contracts in the environment that guarantee properties assumed by the contract K.  
Similarly, the “contractKRefine” connects the contract with the dependent sub-contracts specified by the 
refinement. In this way, the “contractKAssume” presents the relevant “external” contracts from the 
environment of a particular component, while “contractKRefine” presents its relevant “internal” contracts, 
i.e., relevant contracts of its sub-components. Since instantiations of this pattern for different requirements 
may belong to argument modules for different concerns, the established connections between different 
contract-specific claims (for which away goals are used) display the interaction points between different 
concerns. The concern information is embedded in the resulting argument-fragment in the id of its 
contract-specific claims. When generating a multi-concern argument that a component meets all of its 
requirements, we can then distinguish between the parts of the argument that belong to different 
concerns. Similarly, we can generate concern-specific arguments, which would include only those parts 
associated with a particular concern. That means that the pattern instantiation assuring a safety 
requirement would include its related both safety and contracts associated with other concerns such as 
security or performance. Further assurance of those contracts would again not be limited to a single 
concern but all relevant contracts.  

 
Figure 16. The argument pattern for contract-based requirements assurance 

For example, by considering the refinement of the contracts, it is possible in the associated argumentation 
to add information about their dependencies, for instance a contract about safety could be refined by a 
contract related to performance (e.g. as in Figure 15) or security. Moreover, the argumentation should 
state about contracts compatibility, e.g. by using the contract-based analysis provided by WP3 and so the 
produced evidences. 
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 Contract-based Trade-off Analysis in Parameterized Architectures 

As shown in Figure 17, the contract-based trade-off analysis requires as input the target parameterized 
architecture and the set of configurations used to instantiate the parameterized architecture. The 
methodological guide to parameterize an architecture and to instantiate it is described in the D3.8 [7].  

 

 

Figure 17. Contract-based Trade-off Analysis takes in input the parameterized architecture and a set of configurations. 

The process is decomposed in 2 sub-processes; the execution of contact-based checks for each instantiated 

architecture, and the visualization of the compared results of the checks. 

The steps the user must follow are itemized below: 

1. The user selects the root component of the parameterized architecture. 

2. From the CHESS popup menu, the user executes the contract-based trade-off analysis command. 

3. A popup appears showing the options related to the command. 

4. The user selects, among the available configurations, the ones he/she wants to analyse. 

5. The user selects the contract-based checks, he/she wants to perform (at the release date of this 
document the check contract refinement is the only check supported). 

6. The user confirms the inputs. 

7. A dedicated view shows the output of the contract-based trade off analysis in a tabular 
representation. Columns are the checks, rows are the contracts of each configuration grouped by 
concern type (safety, security and performance). Each cell shows the result of one check for one 
configuration.  

3.2. Dependability Assurance Case Modelling (*)  

The system dependability Assurance Case Modelling workflow is depicted in Figure 18. This workflow 
describes the work that should be conducted by using the Assurance Case editor provided by OpenCert.  
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Figure 18. Workflow for Dependability Assurance Case modelling 

The system should be assured for dependability properties such that a set of system goals is developed for 
all the different properties or concerns (safety, security, performance, availability, etc.). The concern-
specific goals are the basis for the concern-specific assurance informed of other properties, e.g., security-
informed safety assurance. The system goals are supported by the system requirements, which should take 
into account the needs for all dependability properties (safety, security, performance, availability, etc.). For 
example, a system goal may be supported by just safety requirements, just by security requirements or 
both safety and security requirements. The system requirements are allocated into different components 
and consequently the system assurance case should take into account the assurance case associated to the 
different components. Each component assurance case might include supporting evidences for one or 
more dependability properties. For example, a safety-related argument module of one component may be 
supported by the security-related argument module of that or some other component. The argument 
modules are used to encapsulate arguments. Interplay of the concerns on all the levels, where cross 
concern trade off occurs (goals, requirements, components), is handled in the trade-off module. 
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Define your Assurance Case architecture 

In this first step, the Assurance Manager should create the assurance case diagram taking advantage of the 
assurance case editor provided in OpenCert. To do that, the user could take advantage of the modular 
argumentation approaches mentioned in D4.3 [3]. In OPENCOSS, it was mentioned that we can encapsulate 
arguments associated with one component in a module, or in a set of modules. The strategy here is to 
encapsulate argumentation into modules for organizational purposes. In the GSN Community Standard [5], 
it also includes a modular extension for GSN which we support by the OpenCert tool, specifically the 
assurance case editor. 

When defining the assurance case structure, the Assurance Manager is also defining the system level goals 
to be fulfilled. 

 

Figure 19. Screenshot of the Assurance Case editor defining the assurance case structure 

The way the Assurance Manager structure the assurance case might differ from one to another. The 
assurance manager could decompose it in a similar way that the system high level architecture, so there 
will be argument modules per component of the system. Or the Assurance Manager could choose to 
decompose the assurance case into the different concerns the system should take into account in the 
design such as safety, security, reliability, compliance, etc. 

It is highly recommendable to include an argument module for the arguments integration. Its content will 
be discussed in further steps. 

Allocate system goals to concerns 

The design of a system should achieve certain goals. Allocate the predefined system level goals to the 
different argument modules and tag the goals to the different concerns. These goals are usually extracted 
after some preliminary analysis such as HARA (Hazard Analysis and Risk Assessment) or TARA (Threat 
Analysis and Risk Assessment) are performed. Each of the system level goals is transformed into a claim in 
the assurance case. The Assurance engineer should identify which goals are defined in relation to one 
concern or a subset of concerns. The Safety and Security engineer will agree on which goals are responsible 
for the safety of the system and which ones with the security. 
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Derive system requirements 

For each of the system goals of each of the concerns, the Assurance engineer should derivate the definition 
system level requirements in order to fulfil those requirements. This step is highly related with previous 
Section 3.1. Requirements may be formalised as contract properties and then link them to sub-claims by 
using the argument pattern depicted in Figure 16. 

Edit assurance case 

The Assurance engineer should edit the assurance case in order to provide arguments that support the 
created claims. In Figure 20 the six steps method is explained as shown in. This method is used to define 
the different claims and evidences to support the assurance case.  

 

Figure 20. Six Step Process for developing goal structures [5] 

The assurance case editor provided in OpenCert supports the user in this step. The GSN elements are found 
on the left hand of the screen in Figure 21. To support the user on the edition, a library of argument 
patterns can be used. The user can check the available patterns and reusable argument modules on the 
Templates view. 
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Figure 21. Screenshot of the Assurance Case editor editing a claim 

Argue about concerns solutions 

When editing the assurance case, it is important to argue about the proposed solutions to achieve the 
previous identified goals. In safety, the Safety engineer should think in the “safety” concept and once the 
safety concept is designed, it should be translated into safety requirements. Then, the safety requirements 
should be decomposed into technical requirements in order to progressively and in a traceable manner 
reach sub-goal by sub-goal the supportive evidence. Similarly, the Security engineer should identify the 
security assets and security zones. Then after a vulnerability analysis the security engineer should identify 
the vulnerable assets, which need security protection, and derivate the security solutions. Those proposed 
solutions should be decomposed into technical security requirements and include them in the assurance 
case in form of assertions.  

Analyse the interplay 

When editing the assurance case for each of the concerns, the user (safety or security engineer) typically 
does not take into account the effect of the decisions in other concerns. In this stage both, the safety and 
security teams should exchange information and together should analyse the interplay between concerns. 
Different tools mentioned in Section 3.5, such as FMVEA, can be used to ensure the right analysis is done 
and the interplay is shown.  

Explicitly show the interplay 

The interplay or trade-off between the different concerns can be explicitly shown using the “dependency 
relationship” explained in D4.3 [3]. The Safety and Security engineers should collaborate at this step. 

Dependency relationship: The claim A of one attribute depends on the fulfilment of claim B of another 
attribute. It uses “in the context of” notation with a closed white arrow, as shown in Figure 22 (a). 

Conflicting relationship: The assurance measure of attribute A is in conflict with the assurance measure of 
attribute B. The graphical notation proposed is a red arrow with a slash in the middle as shown in Figure 22 
(b). The target of the arrow is a Claim D which is conflicting and will become false if the source of the arrow, 
Claim C, becomes true. In a final assurance case, the one produced at delivering the system, this kind of 
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relationships should already be solved. They are useful to exchange the rationale behind the technical 
decisions.  

Supporting relationship: To ensure attribute A, different assurance measure can be used, so if necessary, 
just one assurance measure can be used to replace other measures if they are considered and addressed 
individually. The graphical notation used is already present in argument patterns: the choice symbol which 
is used to represent choices between lines of argumentation used to support a particular claim. For 
example, Claim E is supported either if one of the claims, Claim F or Claim G is true. It is highly 
recommended to denote the nature of the choice made for example in Figure 22 (c) where it says “1 out of 
2”, so one of the claims must be true to support the top claim. 

 

Figure 22. Graphical notations used to show the interplay between concerns 

A clear view of the impacts reduces the time needed for maintenance and evolution of systems while 
further guaranteeing safety and security. 

Solve the interferences 

If a conflicting relationship is identified in the previous step, the arguments involved are not valid. The 
solutions should be analysed and the assurance case updated once the Safety and Security engineers agree 
on a solution. Add a justification to the new solution so as when reviewing the assurance case, the rationale 
behind the deprecated solutions are also listed. 

Check argument modules integration 

As mentioned in the step “Define your assurance case architecture”, when the arguments modules are 
edited, user should also take into account the integration. The OPENCOSS project did work on this point 
[74]. Before the system integrator can integrate the architecture components, the system assurance case 
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must first be developed by integrating the argumentation modules belonging to each component 
comprising the system. 

Validate assurance case 

In this step the assurance case responsible should ensure that all evidences are traced within the evidence 
manager. The evidences exist and they provide the expected results to support the goals. At this phase, is 
advisable that external experts or auditors review the assurance case. 

3.3. Process-related Dependability Co-assessment via EPF-C and BVR 
Tool 

In this section, the guide regarding process-related dependability co-assessment is given. More specifically, 
its workflow is depicted in Figure 23. This workflow describes the work that should be conducted by a 
process engineer with multi-concern expertise or by a team of process engineers with single-concern 
expertise for using the integration of EPF Composer and Base Variability Resolution (BVR) Tool in order to 
perform process-related co-assessment. This workflow is constituted of two inter-related sub-workflows, 
which can be executed in parallel to some extent.  

 

Figure 23. Workflow for System Dependability Co-Assessment 

The EPF Composer workflow segment is used to develop and maintain the (software) development process 
incorporating the dependability requirements through reusable method content which can be methodically 
combined and organized into process arrangements for a specific project. This allows for exploitation of 
synergies between safety and security assurance assets by way of reuse. The BVR workflow segment is 
used to build the multi-concern (software) process line through steps of feature modelling, resolution, 
mapping of the base model (which has been created through the EPF Composer workflow) and realization 
of specific models.  

A detailed description of the two workflows follows. These are further elucidated using the relevant parts 
of ISO 26262 [21] and SAE J3061 [22] standards addressing safety and cybersecurity requirements 
respectively in the case study in Chapter 4.3. The description provided does not include step by step 
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instructions as these are well-covered in the relevant user manuals [19], [20]. The description builds on top 
of findings, which were presented in [29]. 

The reason for having chosen normative documents within the automotive domain is twofold: 1) for 
continuity with D6.3, where cross-concern reuse in the automotive domain was in focus; 2) for internal 
documents availability and expertise. 

 EPF Composer Workflow 

In this subsection, the steps contained in the left-hand side workflow depicted in Figure 23 are explained. 

3.3.1.1. Define Method Content (or Process-related Assurance Assets) 

This subsubsection explains the step Define Method Content, which corresponds to the Block (A) of the 
workflow depicted in Figure 23.  

As extensively explained in [68] and [69] and also presented in the AMASS User Manual, Method Content 
consists of Roles, Tasks, Work Products and Guidance. Roles describe who performs the work, Tasks 
describe how work is performed, Work Products are either what are produced or consumed (Deliverable, 
Outcome, Artefact) and finally Guidance describes information relevant to the Method Content and is used 
in the execution of the Tasks. Method Content is defined using the ‘Authoring Perspective’, which is 
organised in a method plug-in.  

Figure 24 depicts the organisation of Method Content and the relationships of its components in the case 
of ISO 26262 - Software unit implementation verification. More specifically, the task ‘Software unit 
implementation verification concerning safety’ is performed by the ‘Software Tester’ in a primary role and 
‘Safety Engineer’ and ‘Software Designer’ as additional performers. Also, the task has ‘Software Unit 
Implementation’ as a mandatory input and ‘Software Unit Design Specification’ as optional input. 

 

Figure 24. Organization of Method Content 

The definition of the Method Content is in itself a composite step that can be depicted as a sequence of 
sub-steps. Figure 25 depicts such sequence. The details of the various sub-steps follow (see steps from 
Subsubsubsection 3.3.1.1.1 to Subsubsubsection 3.3.1.1.6).  



              

         AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 43 of 124 

 

The steps ‘Create Method Plug-in’ and ‘Create Content Package’ are essentially the first two steps which 
need to be performed while the remainder steps can also be performed in any other order. The suggested 
sequence is to minimize switching between various steps thereby offering an efficient work practice.  

 

Figure 25. Method Content Workflow 

3.3.1.1.1. Create Method Plug-in 

This corresponds to the Block (A-1) of the workflow depicted in Figure 25. A Method Plug-in contains the 
Method Content package which is being created. As mentioned earlier, we use the ISO 26262 and SAE 
J3061 standards in our process model. The created plug-in can be reused in other plug-ins which are 
created in the future to reuse the content of this plug-in. The Method Plug-in screenshot is depicted in 
Figure 26. Besides the plug-in description, related change history is maintained providing necessary audit 
trails.  

 

Create M ethod 

Plug-in (A-1)

Create Content 
Package (A-2)

Create Work 

Product (A-3)

Create Guidance 

(A-4)

Create Role (A-5)

Create Task (A-6)
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Figure 26. Method Plug-in 

3.3.1.1.2. Create Content Package 

This corresponds to the Block (A-2) of the workflow depicted in Figure 25. We next create the Content 
Package. The content package contains the underlying work products, roles, tasks and guidance. The 
Content Package screenshot is depicted in Figure 27. 

 

 

Figure 27. Content Package 

3.3.1.1.3. Create Work Product 

This corresponds to the Block (A-3) of the workflow depicted in Figure 25. Three types of Work Products 
may be created, namely Artefact, Outcome and Deliverable. An Artefact is a tangible Work Product while 
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an Outcome is an intangible Work Product such as a result or a state. A Deliverable is a collection of Work 
Products which define typical content to be delivered. Screenshots of two Work Products are depicted in  
Figure 28 (Software Unit Design Specification) and Figure 29 (Software Unit Implementation). In this 
example, Software Unit Design Specification is an input work product to several tasks while Software Unit 
Implementation is an output work product of the design tasks. 

 

 

Figure 28. Work Product 1 

 

Figure 29. Work Product 2 
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3.3.1.1.4. Create Guidance 

This corresponds to the Block (A-4) of the workflow depicted in Figure 25. Guidance provides 
supplementary information for performing the task. Several guidelines are defined and Figure 30 depicts a 
screenshot of ‘Modelling Guidelines’. 

 

Figure 30. Guideline 

3.3.1.1.5. Create Role 

This corresponds to the Block (A-5) of the workflow depicted in Figure 25. Roles define responsibilities for 
Work Products which are produced, the work to be done by the role and the results to be produced. Figure 
31 depicts a screenshot showing the relationship between the created role and tasks. 

 

Figure 31. Role and Work Product Relationship 
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3.3.1.1.6. Create Task 

This corresponds to the Block (A-6) of the workflow depicted in Figure 25. A Task defines the steps needed 
to perform the purpose of the task and are related to the Roles defined (who performs the task), Work 
Products which are either produced or consumed, and any Guidance which may be defined. Tasks may be 
assigned to one or more roles. For example, in the co-analysis and design of safety and cybersecurity 
requirements, a task may be assigned to both a ‘Safety Engineer’ and a ‘Security Engineer’ who work 
together. Several Work Products may be specified. Input Work Products may be either mandatory or 
optional in nature. Tasks are composed of steps which may or may not be performed in a certain order and 
a step may also be omitted for a particular instance of the task. Figure 32 depicts the screenshot of creation 
of a Task (Design Concerning Safety), Figure 33 depicts the various steps which makeup the Task and Figure 
34 depicts the relationships between the Task with the Roles, Work Products and Guidance. 

The task consists of the following three steps: 

• Design software units by using notation that depends on ASIL and the recommendation level. 

• Describe functional behaviour and internal design in the specification of the software units. 

• Apply design principles for software unit design depending on the ASIL and the recommendation 
levels. 

The Task/Role relationship for ‘Design Concerning Safety’ shows that the task is performed primarily by the 
Safety Engineer and additionally by the Software Designer. The Task/Work Product relationship shows that 
the task has ‘Software Unit Design Specification’ and ‘Software Safety Requirements’ as mandatory inputs 
and ‘Software Unit Implementation’ as output. The Task/Guidance relationship shows that the task uses 
Design Notations, Rationale Design Notations, Design Principles and Rationale Design Principles as 
guidance. 

 

Figure 32. Create a Task 
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Figure 33. Task Steps 

 

Figure 34. Task Relationships with Roles, Work Products and Guidance 

3.3.1.2. Define Capability Patterns 

This corresponds to the Block (B) of the workflow depicted in Figure 25. Capability Patterns reflect best 
practices which can be further integrated into Delivery Processes. Capability Patterns thus provide a means 
of rapidly defining Delivery Processes by use of these building blocks as well as capturing the defined best 
practices. Capability Patterns are similar in structure and definition to Delivery Processes. Capability 
Patterns for ‘Cybersecurity’ and ‘Multi Concern’ Software Design and Implementation practices are 
depicted in Figure 35 and Figure 36 respectively. 
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Figure 35. Cybersecurity Capability Pattern 

 

Figure 36. Multi Concern Capability Pattern 

3.3.1.3. Define Delivery Processes 

This corresponds to the Block (C) of the workflow depicted in Figure 25. Processes are defined to show how 
work is performed as part of a development cycle and also help in defining project milestones and how 
they can be achieved. Processes may be either ordered sequentially or be semi-ordered as iterations of 
work as appropriate to the development process employed. Further, the tasks can be modelled iteratively 
while defining processes to factor the impact of a task on the behaviour of a previous task and vice versa. 
These iterations can be carried on until you reach a design where such impact is absent or acceptable.  
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To illustrate the definition of a delivery process in the context of process-related dependability co-
assessment, previous work is reused. In particular, the work presented in [56] is reused. In this work, a co-
analysis and co-engineering approach to linking safety and security architectural patterns, called ‘Pattern 
Engineering Lifecycle’ (depicted in Figure 37), is described, within the context of ISO 26262 (automotive 
domain specific safety standard) and SAE J3061 (cybersecurity process framework). 

In [56], no process-related pattern (no capability pattern) is detailed. Authors only explain how the abstract 
process given in Figure 37 could be instantiated via some more detailed process steps which include the 
exploitation of architectural patterns.  

Here, instead, the focus is on process-related patterns and on how the abstract process given in Figure 37 
could be interpreted and modelled in a more refined way in EPF Composer. A possible interpretation would 
be that each engineering block is modelled into a process-based pattern (capability pattern in EPF 
Composer). 

Since, however, in what follows the goal is to illustrate a re-configuration of a safety-related process model, 
the safety-related engineering block is simply modelled as an instantiation of a safety-related capability 
pattern. 

 

Figure 37. Pattern Engineering Lifecycle [56] 

The Security Pattern Engineering block shown in Figure 37 corresponds to the Capability Pattern for 
Cybersecurity depicted in Figure 35. In the example illustrated in Figure 39, we instantiate the Delivery 
Process for Safety (note that also for the Safety Pattern Engineering block, a Capability Pattern could have 
been used).  

In Figure 36, the Capability pattern encompassing both Safety Pattern Engineering and Security Pattern 
Engineering is depicted. An interpretation of the ‘Pattern Engineering Lifecycle’ is depicted in Figure 38. 
Figure 38 depicts the iterations to factor the impact of safety and cybersecurity requirements on design. 
Similar iterations may be performed for implementation also.  

The blocks Design Concerning Safety and Review Concerning Safety (in Figure 38) correspond to the block 
Safety Pattern Engineering (in Figure 37) while the blocks Design Concerning Cybersecurity and Review 
Concerning Cybersecurity (in Figure 38) correspond to the block Security Pattern Engineering (in Figure 37). 
Also, the blocks Safety Pattern Engineering and Security Pattern Engineering (in Figure 37) correspond to 
the Multi Concern Capability Pattern depicted in Figure 36. The Safety and Security Co-Engineering Loop (in 
Figure 37) is represented by the decisions boxes in Figure 38 and realized by the iterations defined in Figure 
36 (Unit Design And Review – Variability and Unit Implementation And Review – Variability). 
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Figure 38. Iterative Design Process Factoring Safety and Cybersecurity Requirements 

Processes may be expressed as work breakdown structures or workflows. Figure 39 depicts a fragment of 
the safety design process (Software Unit Design and Implementation) as a work breakdown structure 
organized into phases, iterations, activities and tasks as well as their precedence relations. Also, role and 
work product associations to activities are specified in the work breakdown structure. Further, the roles, 
work products and task steps can be modified (addition, suppression, resequencing) to match the frame of 
reference of the process being defined. The ‘Software Unit Design and Implementation’ (SUDI) process can 
be defined as a Capability Pattern which may be further reused to define either a safety-based design 
process, a cybersecurity based design process or a combined design process. The SUDI process (Safety) is 
composed of two phases, namely, ‘Design and Design Review’ and ‘Implementation and Implementation 
Review’ for commonality and two similar phases for variability. Each phase is broken down into iterations 
and the activities and the tasks to be repeated in the iterations. 
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Figure 39. Software Unit Design and Implementation Delivery Process 

Figure 40 depicts the Process Diagram of the delivery process while Figure 41 depicts the Detailed Activity 
Diagram. The Process Diagram is at the phase level while the Detailed Activity Diagram is at an activity 
level. The Detailed Activity Diagram shows the tasks which make up the activity, the associated roles and 
work products. 

 

 

Figure 40. Process Diagram - Software Unit Design and Implementation Delivery Process 
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Figure 41. Detailed Activity Diagram – Software Unit Implementation 

3.3.1.4. Publish Method Configuration 

This corresponds to the Block (D) of the workflow depicted in Figure 25. Publishing Method Configuration 
enables sharing of method content, guidance and processes with members of the Project Team. Publishing 
is a two-stage activity consisting of defining a Method Configuration made up of a selection of method 
content and processes from one or more plugins followed by publishing it as a website. The contents of the 
published website, allow navigation between the various elements contained, by way of hyperlinks. A 
fragment of the Published Method Content is depicted in Figure 42. 
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Figure 42. Fragment of Published Method Content 

 BVR Workflow 

In this subsection, the BVR Workflow is explained. This workflow exploits the process model modelled by 
applying the EPF Composer-related workflow (left-hand side sub-workflow in Figure 25). 

3.3.2.1. Create Variability Model 

This corresponds to the Block (E) of the workflow depicted in Figure 25. The Variability Model is created 
using the VSpec editor of the BVR tool thus enabling modelling the features of the software development 
process in the form of a feature diagram.  

The VSpec editor also provides means to specify multiplicity (concepts such as exclusive-or, one of, etc.) 
and constraints. Constraints represent cross-feature dependencies. A feature may require the presence or 
absence of another feature.  

The Software Unit Design and Implementation variability models for Safety, Cybersecurity and Multi 
Concern are created using the VSpec editor and are derived essentially from the base model (with the 
exception of constraints) described in Subsection 3.3.1. A fragment of the feature diagram using the BVR 
VSpec editor is depicted in Figure 43. Note that the ‘+’ symbol indicates that the VSpec Model displays a 
feature, which has been minimised.  

As it can be seen in Figure 43, the feature ConcernChoice takes one of three values, namely Safety, 
Cybersecurity and MultiConcern, which are depicted as an exclusive-or feature. The constraint is specified 
in the parallelogram and is composed of features connected by operators ‘and’, ‘not’, ‘implies’ and 
parentheses. Optional features, as determined by the specified constraints, are connected with dotted lines 
while mandatory features are connected with solid lines. The Variability Model use case is described in 
Subsection 4.3.8.  
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Figure 43. BVR Feature Model using VSpec Editor 

3.3.2.2. Resolve Configuration 

This corresponds to the Block (F) of the workflow depicted in Figure 25. The resolution results in the 
generation of the Resolution model from the Variability model which was created using the VSpec editor. 
This is performed using the Resolution editor. The Variability Constraints represent valid resolutions of the 
model. The resolution model also looks very similar to the variability model created earlier and resembles a 
tree structure. The Resolution editor allows for validation of the resolved model allowing the ability to 
resolve the model correctly based on the specified constraints and cardinality. Figure 44 and Figure 45 
depict cases of valid resolution and invalid resolution respectively. 

 

 

Figure 44. BVR Resolution Model with Valid Resolution 

 

 

Figure 45. BVR Resolution Model with Invalid Resolution 
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In Figure 45, we can see that both ‘Safety’ and ‘Cybersecurity’ choices are True in an exclusive-or 
relationship, thereby resulting in an invalid resolution of the model. Resolution of all variabilities correctly is 
a prerequisite for proceeding to the product realization steps, namely ‘Define Mappings’ and ‘Generate 
Process Model’. 

3.3.2.3. Realise Model 

This corresponds to the Block (G) of the workflow depicted in Figure 25. The Realisation Model is created 
by using the Realization Editor. During the editing of the Realization Model, the Resolution Model and the 
Base Model are used. In particular, the Resolution Model indicates which features should be part of the 
Realization Model. The Realization Model is obtained by modifying the Base Model through a series of 
transformations, which apply fragment substitutions (consisting of Placements and Replacements). Once 
the Realisation Model is created, it can be exported back to the Base Model Editor (i. e., EPF Composer).  

For instance, Software Unit Design and Implementation Safety Delivery Process, depicted in Figure 39, can 
be used as Base Model to create a new process model representing a multi-concern process. A complete 
illustration regarding the creation of a realisation model is given in Chapter 4. 

3.4. Standard-related Dependability Co-assessment via OpenCert 
Workflow (*)  

This section is connected with the previous one, but here the focus is on the standard-related dependability 
co-assessment.  

Standardization for safety and security is still separate. In AMASS we have tried to show this separation 
using OpenCert, where the different standards are modelled as different reference frameworks, however 
we support the specification of equivalences between the standards. An expert in both standards, or 
different experts, each with expertise in a single standard, working together, must map concepts (activities, 
artefacts, and requirements) from source and target standards by using OpenCert Equivalence Maps. As a 
result of this activity, a model of Equivalence Maps between source and target Reference Frameworks will 
be generated. More specifically, its workflow is depicted in Figure 46. This workflow describes the work 
that should be conducted by using OpenCert. The complete process is described in deliverable D6.8 [8] as 
“Cross-Standard reuse”.  
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Figure 46. Sub-activities related to the Preparation of Cross-Standard Reuse 

3.5. System Dependability Co-Analysis (*) 

In this section, the workflows for guiding users interested in performing system dependability co-analysis 
are given. More specifically, three different techniques can be used. 

 System Dependability Co-Analysis via Papyrus SSE 

To address multi-concern assurance, Papyrus SSE strongly relies upon the principle of elements reuse. In 
particular, the reuse of modelling artefacts is a core technique of the approach. As it is seen in Figure 47, a 
model of the target system is first designed by the user. To do so, several standardised languages are 
supported like UML, SysML, BPMN and RobotML [49]. Languages specific to an engineering domain can be 
specified and implemented in Papyrus SSE, if they are based on the Core supported languages, as for 
example CHESSML. 
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Figure 47. Annotation of the system model to conduct safety and/or security analyses 

Once a first version of the system model is complete, the user can select to conduct safety and/or security 
analyses. To do so, the user should apply the dedicated profile(s) which, among others, allow to annotate 
the system model by adding the elements required by the analysis: the annotations introduce functional 
and non-functional attributes to be addressed and/or evaluated. The annotations finally extend and 
produce safety and security-oriented models. The annotated models and the analyses outcomes can always 
be traced from their sources, including the requirements they fulfil. Such traceability plays a key role for 
identifying commonalities between analyses (and respective modelling elements), which is necessary to 
support a joint safety-security analysis. In the following subsections, we illustrate the main tasks to be 
executed by users in order to apply the approach.  

3.5.1.1.  Papyrus for Safety 

Papyrus for Safety (Papyrus4Safety) denotes the platform used to analyse safety aspects. In Figure 48, we 
illustrate the lifecycle that is supported by the tool to conduct safety-oriented analyses (HARA, FMEA, FTA, 
etc.). Each analysis demands the application of a profile to be applied on the system model. The profile 
stereotypes can be managed either manually or automatically. In the first case, the user creates basic 
elements, apply the needed stereotype and fill its attributes. In the second case, dedicated functions are 
available via pop-up menus which can be executed targeting all elements in the model.  
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Figure 48. Lifecycle supported by Papyrus4Safety for model-based safety analysis 

3.5.1.2. Papyrus for Security 

Papyrus for Security (Papyrus4Security) denotes the platform used to analyse security aspects. In Figure 49, 
we illustrate the main phases supported by the framework. The phases correspond to the workflow a user 
can follow in order to cover a full cycle of the risks assessment and the system securing processes: 1) 
definition of the perimeter of the analysis and security metrics (criteria and scales) parameterisation; 2) 
primary assets, and security goals definition; 3) supporting assets analysis, vulnerabilities identification and 
security countermeasures definition; 4) threats scenarios, propagation analysis and impact evaluation; 5) 
attacks trees definition and likelihood evaluation: and 6) security risk assessment and reduction. The details 
about the different analyses are already explained in D3.8 [7] and will not be repeated here. 

 

Figure 49. Main phases supported by Papyrus4Security 

3.5.1.3. Exploiting Papyrus SSE mono-concern results for multi-concern perspective 

Papyrus for Safety and Security Engineering (Papyrus SSE) targets three major milestones: 

• Support for safety standalone engineering 
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• Support for security standalone engineering 

• Support for safety-security co-engineering 

For now, the safety and security standalone functionalities of Papyrus SSE are the most developed and 
mature. The safety-security co-engineering has emerged in recent years as a viable and promising approach 
that aims to identify and exploit commonalities and dependencies between analyses from early phases of 
design. As part of this multi-concern perspective, the CEA team is currently developing Papyrus extensions 
to integrate multi-concern aspects. To do so, several standards are being taken as reference. Among them, 
we can mention the following:  

• EUROCAE ED-202 [46] and ED-203 [47], for the airworthiness security process and methods, 
respectively. 

• DO-356 [48], airworthiness considerations and methods. 

Of course, these standards are oriented to the aeronautics domain, however, they provide important 
insights on the processes and methods for safety-security co-engineering for any critical domain. On one 
side, the aeronautics domain is clearly safety critical. On the other side, the increasing connectivity of 
airplane on-board systems (civil and military) is motivating the involved sectors to initiate discussions on 
the potential impact of security threats. Indeed, as in other systems (e.g., Industrial Control Systems), the 
todays aeronautics systems were mostly designed without security in mind and their increasing 
connectivity imposes several risks that need to be evaluated. In this context, the road map of Papyrus SSE 
extensions already considers the next aspects for multi-concern assurance: 

• Commonalities: the commonalities between safety and security analyses need to be thoroughly 
considered. On one side, the syntactical similarity of fundamental notions is one of the major 
stakes. It has been identified as necessary to regroup the concepts that are syntactically similar; 
however, in the end, it is not sufficient. Indeed, a major challenge emerge when considering the 
semantical differences of syntactically similar concepts. For instance, the notion of feared events 
exists in both safety and security analyses. However, the nature, techniques and conceptual 
elements involved in feared events elicitation may considerably differ for safety and security 
analyses and for specific study cases. It is becoming clear that a one-to-one security-safety 
concepts mapping is not any more a target but a possible reference to construct. 

• Particularities: as a consequence of the drawbacks already identified for settling a full and 
consistent match between safety and security aspects, concepts and methods, the identification of 
safety and security particularities and their co-existence arise, i.e., multi-concern co-engineering. 
Regarding Papyrus for SSE, the meta-models and profiles already implemented to support 
standalone security and safety analyses are the basis to construct and specify not only 
commonalities but also their particularities. Thus, for instance, the notions of security criteria (also 
named security attributes) namely confidentiality, authenticity, privacy, etc. (which do not have a 
safety-oriented counterpart) will be part of the security approach particularities. On the other side, 
the notions of accidental failure, failure rate, failure propagation, etc., will be part of the safety 
approach particularities. 

• Evaluation metrics: safety and security methods already introduce metrics to evaluate risks. 
However, the nature of safety and security events is not necessarily the same. Even if statistical and 
probabilistic methods can be applied to evaluate both safety and security events occurrence, the 
first ones mostly obey to the physical nature of the components and their exposition to operational 
conditions whereas the second ones mostly obey to the motivations, gains and rationales of human 
beings. Regarding Papyrus for SSE, a perimeter is settled to separate common from specific 
aspects. By doing so, it is ensured that the evaluation metrics, which can be independently used for 
standalone safety or security risks evaluation, truly converge over common spaces. 

• Safety-security techniques integration: the identification of commonalities and particularities, and 
the – well – defined evaluation metrics are the basis upon which the safety and security-oriented 
techniques can be integrated. In particular, the integration of Fault Trees and Attack Trees 



              

         AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 61 of 124 

 

techniques is a promissory but challenging task targeted in the Papyrus SSE roadmap. Indeed, even 
if there exist several approaches that show the feasibility of such integration, several issues still 
need to be addressed, e.g., language, formalization, semantics, etc. Even so, several aspects are 
currently inspected, implemented and evaluated. In particular, a consistent hybrid Fault-Attack-
Defence Tree can be constructed upon the notion of safety-oriented attack and non-safety-
oriented attack. To accomplish a consistent integration, several issues still need to be solved: 

o Abstraction levels heterogeneity: the safety and security parts of a hybrid tree may need to 
be imported from models developed as standalone entities. The different levels of 
abstraction used for modelling need to be considered and harmonized. This becomes 
evident when targeting the integration of knowledge bases, e.g., attacks, vulnerabilities, 
attack scenarios, etc. 

o Safety and security events complexity:  as previously mentioned, the nature of safety and 
security events is not necessarily the same. For instance, the propagation of a failure is 
determined by a cause-effect rule that is often written as a Boolean formula. However, the 
propagation of an attack is often based upon the notion of attack action or step. Whereas 
the propagation of a failure obeys the cause-effect rule involving binary inputs and outputs, 
the propagation of an attack action is far more complex since it may involve other elements 
like vulnerabilities, countermeasures, attacker resources, skills and motivations, window of 
opportunity, etc. The sound evaluation of propagations complexity needs to be thoroughly 
considered. 

• Safety-security border: as long as the Papyrus SSE extensions are developed and tested on use 
cases, it becomes clear that a logical border between safety and security spaces may soon appear. 
Indeed, for some cases, the security analysis may be limited to cover only safety-oriented impacts. 
In those cases, the targets of an attack are inferred (by considering the safety impacts) and a 
border between attack vectors and failures propagations can be settled. For other cases, a safety 
analysis may be extended or completed by a security one. When this happens, first the potential 
attacks are elicited and then cross-related to the safety analysis; in addition, a logical border 
between attacks and safety analysis can also be identified and settled. The cases in which neither 
priority nor sequencing exist between safety and security analyses are rare. That is why, the 
identification of a logical border between safety and security spaces can be foreseen. If present, 
such a border can be exploited when addressing the particularities of safety and security analyses.  

 System Dependability Co-Analysis via Safety Architect 

The methodological guide proposed for using Safety Architect [14] and Cyber Architect [15] (presented 
briefly in Section 2.3.6) is based on separation of concerns and co-engineering approaches. The main 
motivation for separation of concerns is that every engineer (be it an architect, a security or a safety 
engineer) can focus on his/her concern solely because certain domains, such as safety and security 
domains, are quite different in terms of practices and concepts used. The main motivation for co-
engineering is that today no single modelling language and tool can cover all the system engineering 
activities (specification, analysis, design, verification and validation) and multi-concerns (e.g., Safety and 
Safety co-analysis and co-validation).  

The methodology is based on the seamless interoperability between AMASS platform (CHESS tool and 
OpenCert) and ALL4TEC’s tools as presented in Figure 50. 
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Figure 50. Interoperability between AMASS platform (CHESS and OpenCert) with Safety/Cyber Architect tools 

A possible usage scenario is composed by the following steps: 

• Step 1: System architecture model in CHESS tool. 

• Step 2: Export/Import system architecture model from CHESS to Safety Architect for safety 
analysis.  

• Step 3: Cyber-security analysis in Cyber Architect. 

• Step 4: Import of security analysis artefacts from Cyber Architect in Safety Architect for co-analysis. 

• Step 5: Safety & Security co-analysis in Safety Architect. 

• Step 6: Generation of Safety & Security propagation trees for manual trade-offs between safety 
and security engineers. 

• Step 7: Visualisation of propagation trees in the AMASS Platform (CHESS) to facilitate the co-
engineering between Safety & Security Engineer and System Architect in order to facilitate the re-
design of system architecture if needed. 

• Step 8: Use of Safety & Security propagation trees as Safety & Security evidences in AMASS 
platform (OpenCert).  

A workflow including the previously listed steps is given in Figure 51. 
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Figure 51. Workflow regarding system dependability co-analysis via Safety Architect 

 System Dependability Co-Analysis via ConcertoFLA 

In this subsection, ConcertoFLA is proposed as a means for performing system dependability co-analysis. 
More specifically, it is proposed that the Safety engineer models the safety-related threats (e.g., fault, 
error, failure) and their propagation and that the Security engineer models the security-related threats 
(e.g., attack, vulnerability and threat) and related propagation. Once this is done, it is proposed to apply 
ConcertoFLA dependability co-analysis and automatically generate a multi-concern fault tree using the 
results of this co-analysis. In addition to the generation of certifiable evidence for assurance purposes, the 
analysis results also contribute in the evaluation of the trade-offs between the multi-concerns. In what 
follows, the general workflow for addressing system dependability co-analysis via ConcertoFLA is given and 
then applied on a simple example. 

3.5.3.1. Workflow 

This subsubsection describes the workflow for defining a system and performing dependability analysis for 
assuring different non-functional properties of the system. The AMASS platform, via inclusion of CHESS 
toolset, enables the support for system design, dependability modelling and analysis.  

The activity diagram shown in Figure 52, illustrates the steps for system design and co-analysis via 
ConcertoFLA. The initial step is to define the system by modelling its components and the interactions. The 
next step is to model the failure behaviour for all components. After that, the failure behaviour of the 
components is specialized to address the security concern for these components.  Then, the ConcertoFLA 
dependability co-analysis is performed on the system design to identify the system behaviour in the 
presence of faults and security attacks. In the next step, the ConcertoFLA co-analysis results are 
transformed to generate the multi-concern fault tree.  Based on this, a decision is made for introducing the 
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robustness, safety and/or security measures by refactoring the system. This process is repeated iteratively, 
until the sufficient level of these concerns (safety and security) is not met.  

 

 
Figure 52. System Dependability Co-Analysis via ConcertoFLA 

In the following subsubsections, the above-mentioned steps are detailed. 

3.5.3.2. System Definition 

In this first step, expected to be performed by an engineer with architecture engineering expertise, the 
system is modelled as a composite component. A composite component consists of different composing 
components and their relationship. Each of the composing components is defined in isolation (independent 
of composite component for reusability) and has input/output ports for interaction with the environment. 
To demonstrate the methodology, a simple system is used. This simple system is represented as a 
composite component named “CompositeDemoSystem”. The system represents a hypothetical controller 
and is composed of two components i.e., “SensorComponent” and “ControllerComponent”. The former 
acquires the raw data of a physical phenomenon of the environment on its input port, transforms it into 
sensor measurement and provides the result on the output port. Whereas the latter takes this 
measurement on its input port, performs computation and provides the processed data on its output port. 
This interaction and the above-mentioned functionality of the components is realized through interfaces 
and component implementations.  

To model this simple system, the following steps should be followed: 

1. Create a UML Class Diagram under the package “modelComponentView” in Model Explorer view. 
The diagram allows to define components and other entities e.g., component implementation, 
interfaces and relationships etc., using the Palette on the right. All components including the 
composite component are defined in this class diagram. Figure 53 shows all three components i.e., 
CompositeDemoSystem, SensorComponet and ControllerComponent along with their interfaces 
and component implementations.  
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Figure 53. Component, Interfaces and other entities definition 

2. Create a UML Composite Structure Diagram for each of the defined components. This diagram 
allows to define the input/output ports for the components by enabling “CHESS FunctView” in the 
Palette. Additionally, other entities e.g., connectors and property etc. could be defined using same 
view. Figure 54 shows the ControllerComponent being decorated with the input and output ports 
i.e., sensorData and processedData respectively. Similarly, the SensorComponent is also decorated 
with its input and output ports. 

 

 

Figure 54. Assigning input/output ports to a component 

3. The composite component is also decorated with input/output ports using the editor provided by 
UML Composite Structure Diagram of the composite component (see Figure 55). Additionally, the 
composing components and their ports are dragged from the Model Explorer view and dropped in 
the composite component. The components and ports are then connected using the connector 
entity from the Palette to realize the system definition. The CompositeDemoSystem component 
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shown inFigure 55, has one input and output port i.e., rawData and processedData and is 
composed of “sensorcomponent” and “controllercomponent” which are defined in previous steps.  

 

 

Figure 55. Composite Component 

3.5.3.3. Failure Behaviour Modelling 

Once, the system is modelled and its components are defined, the safety engineer is expected to model the 
input-output failure behaviour for each individual component. To perform this modelling, the following 
step should be followed: 

1. Apply “FLABehavior” stereotype to each component and define the failure behaviour using FPTC 
(Failure Propagation Transformation Calculus) rules (see Figure 56). More specifically, Figure 56 
shows one FPTC rule of “SensorComponent”. This rule indicates that if “valueCoarse” (type of fault) is 
received on the input port called “rawData”, the component propagates valueCoarse to the output 
port called “SensorData”. 
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Figure 56. Decorating the components with their failure behaviour 

3.5.3.4. Specialising Failure Behaviour for Security Concern 

After defining the failure behaviour of each component, a specialisation of this failure behaviour is 
performed by the security engineer, to address a particular concern e.g., security. This specialisation is 
achieved via the following steps: 

1. Create a StateMachine Diagram under the component, for which the failure behaviour shall be 
specialized for security concern. Figure 57 shows the state machine diagram created for specializing 
the “SensorComponent”. 

2. Apply “ErrorModel” stereotype to the state machine and define the states and erroneous 
transitions, using the ErrorModel palette. Figure 57 shows a security attack model for the 
“SensorComponent”. An attack causes a transition from initial state to the State1. The kind of 
attack, which depicts its nature, is specified under the “Attack” stereotype along with the threat it 
would enable if successful. For example, in Figure 57 the “dataSpoofingAttack” is shown, which 
causes the “unauthorizedModificationofService” threat. The attack exploits a vulnerability to cause 
a transition to the State2. Similar to the attack, the kind of vulnerability is specified under the 
“Vulnerability” stereotype. This erroneous transition causes a failure and have a failure mode. This 
failure mode is specified under the “Failure” stereotype and can be seen in  Figure 58.  The failure 
mode is specified as a combination of the port and type of failure i.e., “portname.typeoffailure”, 
and is similar to the failure behaviour specification shown in Figure 56.  The specialization of failure 
behaviour corresponds to the initial input/output failure behaviour and is meant to enrich its 
implementation. In this particular case, the failure behaviour of “SensorComponent” is specified as 
the “valueCoarse” type of failure on “sensorData” port in the presence of “valueCoarse” failure on 
the “rawData” port. In the context of security, the “dataSpoofingAttack” on the “rawData” port 
enables the “unauthorizedModificationofService” threat on “sensorData” port due to a 
“missingDataIntegritySchemes” vulnerability. Each failure of a component can be specialized with 
corresponding security attack, vulnerability and threat or vice-versa. 
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3. Next, “ErrorModelBehavior” stereotype is applied to the component of interest. Figure 59 shows 
the “SensorComponent” and the “ErrorModelBehavior” stereotype. The “Security Attack Model”, 
defined in previous step, specializes the failure behaviour of this component. 

 

Figure 57. State Machine Diagram illustrating the ErrorModel Stereotyped Security Attack Model 

 

 

Figure 58. Security Attack Model showing Failure Stereotype State Transition 
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Figure 59. Sensor Component with ErrorModelBehavior Stereotype 

3.5.3.5. Performing ConcertoFLA Co-analysis 

To perform the ConcertoFLA co-analysis, following steps should be followed:  

1. After defining the failure behaviour of the components and specializing it for security concern, the 
input port of the composite component is annotated with “FPTCSpecification”. The comment is 
used to specify the type of faults injected to the system. Change the view to “Extrafunctionalview” 
to enable FPTC drawer in the Palette. Attach FPTCSpecification comment to the input port of 
composite component. The comment is used to specify the type of faults injected to system. Figure 
60 illustrates the type of faults that can be injected in system. The “CompositeDemoSystem” is 
injected with “valueCoarse” type of fault on its input port (rawData). 

2. Create component with “FailurePropagationAnalysis” stereotype in a UML Class Diagram under the 
package “modelDependabilityAnalysisView” in Model Explorer view. Build the instances of 
composite component and assign to this newly created component as a resource platform (see 
Figure 61).  

3. Execute the ConcertoFLA co-analysis via “Concerto-FLA co-analysis” menu entry, to generate the 
failure propagation paths. These paths are stored in a file using Failure Logic Analysis Meta Model 
(FLAMM) representation. In addition to this, the failures are backpropagated and annotated to the 
output port of the actual system. Figure 62 shows “CompositeDemoSystem” component with a 
“valueCoarse” type of failure backpropagated and annotated at its output port (processedData). 
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Figure 60. Specifying the injected faults at the input ports of composite component 

 

 

Figure 61. Creating FailurePropagationAnalysis component and assigning resource platform 
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Figure 62. Back-propagated failure on the output port of composite system 

3.5.3.6. Generating Multi-Concern Fault Tree 

A multi-concern fault tree is generated from the results (failure propagation paths) of Concerto-FLA 
analysis using following steps: 

1. Navigate to the “Generate FT via Concerto-FLA” menu as shown in Figure 63. 

 

Figure 63. Generate FT via Concerto-FLA menu 

2. Upon the selection of this menu a file chooser shall appear. Select the failure propagation paths file 
generated in previous steps. A corresponding fault tree is generated as shown in Figure 64. Since, 
the fault tree is generated from the results of failure logic analysis, which supports qualitative 
analysis, the generated fault tree is also of qualitative nature and does not have probabilities.   
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Figure 64. Automatically generated multi-concern fault tree 

3.5.3.7. Trading Off 

Once the multi-concern fault tree is generated, trade-offs can be evaluated by the engineer (architect) 
together with the safety and security engineer and if needed the system has to be re-designed. 
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3.6. Privacy Analysis 

Dependability of a system can also be considered with regard to how it handles personal data and 
addresses privacy issues. In this section, we explore how privacy concerns can be tackled by following a 
methodology and will give two examples. We will first make an overall tour of the relevant privacy 
concerns. Then we will present the essence of an assurance case-based methodology focusing on privacy 
concerns. Finally, we will illustrate how existing tools could be used and the requirements in terms of 
interfacing with the rest of the AMASS framework. 

 Relevant Privacy Concerns 

With the increasing amount of personal data processed at large-scale and the rising of artificial intelligence 
approaches, privacy concerns driven by public’s growing expectations are recognised as gaining importance 
in the industry. However, privacy is intrinsically vernacular and can designate many different concepts. We 
will exemplify this by taking a tour of different sources such as regulations targeting privacy. We will then 
select a couple of privacy concerns from these sources to detail them, show how they are linked, and put 
the assurance case-based methodology in context. 

3.6.1.1. Privacy Regulations 

Privacy is differently addressed in the world and obligations incumbent to entities processing personal data 
might be more or less stringent. For example, in US, federal data protection laws are traditionally sectorial  
(Health Insurance Portability and Accountability Act (HIPAA) for the health sector and Gramm-Leach-Bliley 
Act (GLB) for the finance sector for instance) while there are also state-level regulations (California Civil 
Code §1798.82 for breach notifications for instance) in parallel to many institutional (such as the Fair 
Information Practice Principles (FIPP) recommended by the Federal Trade Commission (FTC)) and private 
best practices guidelines (such as the cross-industry Self-Regulatory Principles for Online Behavioral 
Advertising) [76]. On the other hand, the approach chosen in most of European countries has been early 
national legislations later aligned in 1995 through a directive (95/46/EC) in the European Union, which 
needed transcription into national laws by member states (the Data Act in Sweden in 1973 for instance), 
sometimes even in their constitution (Portugal in 1976 and Spain and Austria in 1978 for instance).  

Recently, a new regulation, the General Data Protection Regulation (GDPR, 2016/679) [77], has been voted 
and entered into force to be applicable today without any need for transcription into national legal laws. 
This new regulation aims at finding a balance between favouring the free transfer of personal data and 
providing the adequate protections needed for such transfers and associated processings. It can be noted 
that the impact of the GDPR is extremely large as it rules, in its Article 3, that not only processings 
happening in EU are subject to the regulation, but also those processings which, though taking place 
outside from the EU, concern EU residents. Among other points, the GDPR states the conditions for data 
protection impact assessments (DPIA) and processings carrying high risks for the data subjects. These two 
notions will be central to define our methodology. In the following, we will stay close to the GDPR 
regulatory framework as it is expensive and consistently covers a large economic area. 

3.6.1.2. Data Protection Impact Assessment for High Risk Data Processing 

In case processing a piece of personal data “is likely to” make the data subject carry a high risk, the data 
controller (under which the responsibilities and liabilities related to this processing are attached), Article 35 
of the GDPR rules that a DPIA should be carried out. In fact, the GDPR let some space here for member 
states and data controllers: supervisory authorities have been given the possibility to give their positions on 
the conditions for processings to satisfy this criterion (as did the Belgian authority for instance [78]) and 
data controllers are free to choose their methodology to perform the DPIA as long as it satisfies established 
criteria as explained in an opinion from the WP29 [79]. The main goal of all these methods is the same: to 
help choosing relevant measures to address the risks identified and to demonstrate this has been done for 
compliance purposes. 
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3.6.1.3. Organisational and Technical Measures 

When risks to rights and freedoms of data subject have been identified through the combination of 
sufficiently high severity and likelihood, measures aiming at reducing these risks have to be selected. These 
measures can be of different sorts and belong mainly to two different sorts: organisational measures, on 
one hand, which target governance, processes and people, and technical on the other hand, which rely on 
technical components and/or changes to be added to the filing system. A knowledge base of such measures 
has been published by the CNIL [80], the French supervisory authority, to help data controllers to better 
protect personal data when designing their systems. Other sources exist to find such measures such as for 
instance the NIST SP 800-53 and its Security and Privacy Controls which can act as a guide and support 
knowledge base to find ways to engineer privacy in a system [81]. 

3.6.1.4. Accountability through Compliance Demonstration 

Beyond mere data protection by design as imposed by Article 25 of the GDPR, the new standard is to be 
able to also demonstrate compliance (a principle called “accountability”) set out in Article 5 of the GDPR. 
To comply with this obligation, it is needed to document all the elements which are artefacts of the data 
protection related aspects of a system processing such data. In particular, the DPIA has to be carefully 
driven and decisions made based on its outcomes must be well motivated. In this context, an assurance 
case can help to show how arguments are supported and by which claims and evidences. 

 Privacy Assurance Case Methodology 

3.6.2.1. Privacy-Related Requirements 

Regulations tend to be prescriptive corpus which can be considered as requirements which should be 
satisfied by economical actors. Concerning data protection, this still constitutes a challenge as the GDPR, 
for instance, is a long and dense regulation which could be decomposed in many requirements, stratified at 
different levels to organise them all. We take here as an example a series of requirements taken from the 
GDPR. Generating such requirements in a structured way constitutes a field already addressed by other 
works [82][83]. 

We take a simple example that we will develop in the following to show how an assurance case can be used 
for data protection purposes. One of the keystones of data protection standards and regulations is the 
concept of purpose limitation. This is an indispensable requirement which states in Article 5§1(b) of the 
GDPR: 

“[...] personal data shall be […] collected for specified […] purposes and not further 
processed in a manner that is incompatible with those purposes […]” 

Once such a requirement has been identified, it has to be met by the implementation and this should be 
reflected in unit/integration test/verification cases results. 

3.6.2.2. Requirements Traceability  

In order to demonstrate compliance to regulations through satisfaction of requirements, the traceability of 
these latter has to be ensured between multi-layer artefacts. The traceability can for instance link a high-
level requirement to several low-level requirements, or requirements to verification cases. Coming from 
the development of critical systems area, such as avionics or automotive, such approaches are also relevant 
for systems dealing with highly sensitive personal data. There is also a need to maintain the traceability 
between these requirements and the solution chosen to satisfy them. Contracts can be used to this aim to 
formalize privacy requirements and ensure the architectural level consistency. 
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3.6.2.3. Privacy Assurance Case and Evidences 

The demonstration of which solutions can be used for evidences to satisfy a requirement can be made 
through an assurance case. For example, Figure 65 shows an assurance case in the context of the GDPR. 
The root targets compliance with Article 5§1 while the requirement expressed above is the sub-goal G5.1.b. 
 

 
Figure 65. Example of data protection assurance case 

 

It can be seen that goal G5.1.b is split into four other sub goals which are linked to solutions. These 
solutions cover several layers of the system thus benefitting from the multi-concern approach of AMASS 
since it will build on some elements already defined for other concerns. 

 Verification of Privacy-Related Requirements 

In the context of the AMASS project, the Frama-C software analysis platform can be used to address 
privacy-related concerns. Our method is inspired from the way to model privacy purposes suggested by 
[84] applied to Secure Flow [85], a plug-in from the Frama-C software analysis platform [86]. This plug-in 
allows to reason about information flow in a C program and can be leveraged for privacy purposes. 

3.6.3.1. Architecture-Level Privacy-Related Requirements 

The requirements at the architectural level are expressed in formal contracts. A data flow-oriented view of 
the architecture can be used and augmented with specific privacy-related attributes for some of its 
elements. An example of a concrete case is shown in Figure 66.  
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Figure 66. Architectural view of the data flow diagram and its attributes (white values correspond to Sn5.1.b.1 and 

grey values correspond to Sn5.1.b.2 from Figure 65) 

This small architecture shows an external entity (Customer) which send two pieces of data (salary and 
assets) to a process (Rate credit) before this latter sends an output value (rate) to another part of the 
system (not shown in this example). This set of basic elements constitutes a collection of personal data and 
is thus subject to the GDPR and in particular its purpose limitation principle which corresponds to the 
requirement described above. 

In order to deal with privacy concepts, the classical view has been augmented with attributes attached to 
each its constituting elements. They are manually input by the designer in the model design software and 
define to identifiers (Data id and Process id), names (for Data and for Process), and purposes (for Collection 
and for Processing). At this stage, the purposes need to be ordered by their permissivity. For example, it 
can be considered that processing data with a marketing purpose is more permissive than with a restriction 
to a non_targeted_marketing only. This relation can be defined as shown in Equation 1. Filling in these 
attributes values, which have a white background in Figure 66, and defining the ordering of purposes 
correspond to solution Sn5.1.b.1 from Figure 65. 
 

”non_targeted_marketing” ≤ “non_targeted_marketing” 

“marketing” ≤ ”marketing” 

”marketing” ≤ ”non_targeted_marketing” 

Equation 1. Definition of the ≤ purposes ordering 

The following step is to reason about the architecture to deduce new attribute values with the information 
input. For instance, the Processing purpose of the data rate is inherited from the Processing purpose of the 
process Rate credit. Similarly, the Input and Output data from the Rate credit process are generated from 
its input datas in the architecture and qualified as input or output before being assigned variable beginning 
with a $ sign, acting as placeholders, which will be used to make the link with the source code at a later 
stage. The result of this generation, which corresponds to solution Sn5.1.b.2 from Figure 65 is denoted with 
a grey background in the tables in Figure 66. 

3.6.3.2. Code-Level Privacy-Related Requirements 

Two main steps are considered at code-level before performing the verification: a program corresponding 
to the architecture has to be written on one hand and the privacy-related requirements have to be 
specified on the other hand. 
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3.6.3.2.1. Program Generation 

The development of a program which will be verified with regard to the privacy properties expressed above 
will be based on code generation. The C code which will be generated will mainly handle two kinds of 
aspects: inputs and outputs. The template used for inputs is shown in Code 1 where the name of this 
specific data is declared and assigned to name input_i, a specific purpose is declared and assigned to 
input_purpose_i, this purpose is then added to a key-value dictionary purposes storing the link between 
data and purposes, a comment line which will be later (explained and) used for information flow control is 
added, and an integer value is input from outside through a call to a function called read_input_i_value. 
The letter i contained in variable names (input_i, input_purpose_i, and input_i_value) is a placeholder for 
the identifiers Data id visible on Figure 66 (this remain the case throughout this section without any new 
mention of it). Please note that there are also strings beginning with $ (such as $data_i and 
$data_i_purpose) and which also corresponds to their counterpart from the architectural level from Figure 
66 . 

char input_i[] = “$data_i“; 

char input_purpose_i[] = ”$data_i_purpose”; 

insert(purposes, input_i, input_purpose_i); 

//@  

int input_i_value = read_input_int(); 

Code 1. Template for input purpose limitation 

The template used for output data is shown in Code 2. It follows the same principles as for the input data. It 
can be noted it calls another function which consists in processing personal data before returning its result. 

char output[] = ”$data_i”; 

char output_purpose[] = ”$process_i_purpose”; 

insert(purposes, output, output_purpose); 

int output_value = $process(input_i_value, …); 

//@  

return output_value; 

Code 2. Template for output purpose limitation 

Given the architecture from Figure 66 which contains two inputs and one output data, the consolidated 
template shown in Code 3 can be generated by instantiating the i corresponding to the identifiers of the 
data elements. 

int main(void) 

{ 

    char input_0[] = “$data_0“; 

    char input_0_purpose[] = $data_0_purpose; 

    insert(purposes, input_0, input_0_purpose); 

    //@  

    int input_0_value = read_input_int(); 

     

    char input_1[] = “$data_1“; 

    char input_1_purpose[] = $data_1_purpose; 

    insert(purposes, input_1, input_1_purpose); 

    //@  

    int input_1_value = read_input_int(); 

     

    char output[] = “$data_2“; 

    char output_purpose[] = $process_0_purpose; 

    insert(purposes, output, output_purpose); 

    int output_value = $process(input_0_value, input_1_value); 

    //@  

    return output_value; 

} 

Code 3. Consolidated template for main function of Rate credit application 
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This process satisfies solution Sn5.1.b.3 from Figure 65 about template filling to preserve architectural 
properties at the code-level. 

3.6.3.2.2. Privacy Specification 

As mentioned above, this consolidated template contains comment locations (lines beginning with //@) 
which are places in which a formal specification will be input. This specification is expressed in a formal 
language called ACSL [87], which will be used by Frama-C/SecureFlow to verify the C implementation meets 
the specification. The privacy-related requirements thus need to be translated in ACSL such that 
SecureFlow can use them. The current version of SecureFlow follows a pattern commonly used by 
information flow control tools which relies on the annotation of variables with annotations denoting their 
level of confidentiality. These two levels are private and public. To declare a variable to be private, a 
comment //@ private must be added at the line preceding its declaration in the source code; if not done, 
the variable is considered as public. 

In terms of privacy-related requirements, the output data annotation will be public and data associated 
with restrictive purposes will be set as private. It will then be verified if some data for which only a 
restrictive purpose has been allowed are used or not to compute output data (considered to have a non-
restrictive purpose by definition). The algorithm corresponding to this is shown in Algorithm 1. 

for 0 ≤ i < n: 

    if (lookup(purposes, input_i) ≤ lookup(purposes, output)): 

        input_i_value.status <- public 

    else: 

        input_i_value.status <- private 

output_value.status <- public 

Algorithm 1. Purpose limitation ACSL specification generation 

 
This algorithm calls a function called lookup which applies to a dictionary and is the counterpart of insert 
introduced in input and output templates: it searches for the value corresponding to a key. The assignment 
of the public or private annotation is specified as a status of the variable and is done through the sign <-. 

Following the example and the purposes indicated in Figure 66, the output rate will be public, the input 
salary will be public (as it has a permissive purpose), and assets will be private (as it is restricted to 
non_targeted_marketing only). This result is combined with the filling of the template coming from Code 3 
where all $-variables are substituted by values coming from the architecture (see Figure 66). The result of 
this is shown in Code 4. The latest comment //@ assert is written in this long form in order to trigger the 
information flow verification. 
 

int main(void) 

{ 

    char input_0[] = "salary"; 

    char input_0_purpose[] = "marketing"; 

    insert(purposes, input_0, input_0_purpose); 

    //@  

    int input_0_value = read_input_int(); 

     

    char input_1[] = "assets"; 

    char input_1_purpose[] = "non_targeted_marketing"; 

    insert(purposes, input_1, input_1_purpose); 

    //@ private 

    int input_1_value = read_input_int(); 

     

    char output[] = "rate"; 

    char output_purpose[] = "marketing"; 

    insert(purposes, output, output_purpose); 

    int output_value = rate_credit(salary_value, assets_value); 
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    //@ assert security_status(output_value) == public; 

    return output_value; 

} 

Code 4. Purpose-limited main function of Rate credit application 

The specification of the program made following this method prepares the satisfaction of solution Sn5.1.b.4 
from Figure 65. In order for this verification to be performed, it is necessary to add a couple of other 
annotations and content in the code. First, all functions called need to be, at least, abstractly described for 
the SecureFlow to be able to deduce information flow properties from the main program. An ACSL 
specification is thus added which indicates which variables are used to assign a value to the return value of 
the function. For instance, for the function read_input_int, a technical variable *__fc_stdin (denoting data 
coming from the standard input) is used to compute \result as shown in Code 5. 
 

//@ assigns \result \from *__fc_stdin; 

char* read_input_int(void); 

Code 5. Flow-oriented ACSL specification of read_input_int abstract function  

The same is done for the insert function which serves to populate the purposes dictionary as shown in Code 
6. 
 

//@ assigns table \from table, key, value; 

void insert(dict table, char key[], char value[]); 

Code 6. Flow-oriented ACSL specification of insert abstract function  

For the sake of completeness, the body of the rate_credit function must be filled and will be used by 
SecureFlow to perform its verification. An example of this is shown in Code 7 where the content of assets is 
only used if the salary is not enough. 
 

int rate_credit(int salary, int assets) { 

    int rate = salary * 12 / 100; 

    if (rate < 200) { rate += assets / 250; } 

    return rate; 

} 

Code 7. Definition of credit_rate function 

3.6.3.3. Traceability to Architecture Level 

The verification performed by SecureFlow in this specific example indicates that the content of a private 
variable flows towards a public variable. This is because assets has been associated a restrictive purpose 
with regard to the purpose for which the data is processed by credit_rate (which is a permissive purpose 
associated to its output value rate). This verification completes the use of sequential solutions suggested in 
the privacy assurance case described in Figure 65 and the artefacts from the verification can be used as 
evidences of contracts satisfaction at the architecture level. This will be used to demonstrate compliance to 
the GDPR and may also be used for other concerns (for instance for security properties related to 
confidentiality issues). 
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4. Cases Studies 

In this chapter, some case studies are used to illustrate the execution of the workflows presented in the 
Chapter 3. In particular, the AMASS CS11 is used to illustrate dependability co-analysis via ConcertoFLA; the 
AMASS CS3 is used to illustrate the dependability multiconcern assurance approach; and the AMASS CS1 is 
used to illustrate the dependability co-analysis via Safety Architect. Finally, the normative documents used 
in the automotive domain are used to illustrate the process-related dependability co-assessment. 

4.1. Case Study CS11 - Attitude and Orbit Control System (*) 

Attitude and Orbit Control System (AOCS) is a satellite-on board application that provides two 
functionalities: 1) attitude control, which controls the orientation of a satellite relative to a reference frame 
(e.g., celestial bodies such as Sun and Earth etc.) and, 2) orbit control, which controls the position of a 
satellite in an orbit. AOCS collects the attitude data from the attitude sensors and calculates control 
torques to be applied on satellite using the actuators to achieve desired attitude and position in orbit.  

European Cooperation for Space Standardization (ECSS) provides standards for engineering, management 
and qualification of a space system, more specifically, ECSS-E-ST-40C [50] for software engineering and 
ECSS-Q-ST-80C [51] for product assurance. ECSS-Q-ST-80C defines different criticality levels for a system 
based on the severity of consequences of the failure. AOCS is categorized as critical system due to the 
severe consequences of its failure and is required to fulfil the requirements applicable through ECSS 
throughout its engineering process.        

To this end, this case study is focused only on the attitude control function which will be addressed as 
Attitude Control System (ACS) hereafter. ACS controls the orientation of satellite by applying the torques 
through attitude actuators (reaction wheel and/or thrusters) in a closed loop over following steps: 

• Reading data from the attitude sensors. 

• Estimating the current attitude of the satellite relative to the reference frame of interest. 

• Calculating the deviation from the targeted attitude.  

• Calculating the control torque to minimize and converge to the targeted attitude. 

• Generating and sending the commands to the attitude actuators to apply the computed torque on 
satellite.  

ACS has different functioning modes which correspond to different pointing requirements. These pointing 
requirements are formulated according to the satellite mission and its objectives. For example, ACS in safe 
mode is required to point its solar panels towards the Sun to power up all its critical parts, thus controlling 
the attitude relative to the Sun. Similarly, ACS in mission mode for a telecommunication mission needs to 
control the attitude relative to the Earth. 

 Description of the Use Case Scenario 

We have considered a simple use case of ACS i.e., ACS in Sun Pointing mode to demonstrate the co-analysis 
methodology. In this mode, ACS controls the attitude of a satellite relative to the Sun as the requirement is 
to point to the Sun. ACS requires a sun sensor to acquire the attitude data, which provides the direction of 
the Sun in the sensor’s reference frame. Attitude of the satellite is estimated from this attitude data and is 
represented as an estimated sun vector, which depicts the satellite orientation in sun reference frame. 
Estimates for the angular velocity of the satellite are computed from the measured angular rates using a 
gyroscopic sensor. Additionally, gyroscopic disturbance torque is also calculated from these angular rates 
to compensate for gyroscopic coupling in dynamics.  
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In this use case, the generation of actuation commands to apply the computed control torque on the 
satellite is considered out of the scope.        

 Demonstration of the Methodology  

We start with the system definition and model five components to fulfil the above-mentioned ACS 
functions, as illustrated in Figure 67. 

As done in [34] and [72], the ACS system is defined as a composite component, which contains the 
following components: 

• SignalConditioner, which process and transforms sensor data to satellite reference frame. 

• StateEstimator, which estimates the satellite state using the current state measurements and 
historical data. 

• PDController, which calculates the proportional and derivative torque using estimated sun vector 
and angular velocities. 

• SteerController, which calculates the torque using only the estimates of sun vector. 

• FeedforwController, which computes the gyroscopic coupling torque. 

• TorqueSelector, which selects the appropriate torque from the torques computed by PDController 
and SteerController, as the control torque based on the current attitude of satellite. 

A detailed description of each of the components and the difference between the controllers can be found 
in [34], which represents an initial step towards a complete case study of AOCS (CS11 in D1.1 [1]).  All of the 
above-mentioned components along with the ACS composite component are defined along with their 
interfaces, implementations and other entities and is shown in Figure 67. 

 

 

Figure 67. Class diagram showing the components of the ACS system 

Next, input and output ports for all these components are defined along with their failure behaviours. And 
then, all of these components are connected together to compose the ACS composite component as shown 
in Figure 68. In the next step, the failure behaviour for all components is specified. In this use case, we 
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consider the “valueCoarse” type of failure and specified the failure behaviour only for this case – as 
motivated in [33]. This failure on the input port of ACSComposite i.e., SunVec corresponds to the scenario, 
where the Sun Sensor is providing incorrect measurements. To address the security concern, we model a 
scenario that these incorrect values are due to a data spoofing attack and are not actually originated from 
the Sensor unit. To demonstrate this, a state machine (Error Model) is created for the “SignalConditioner” 
component, which shows the “dataSpoofingAttack” along with the “missingDataIntegritySchemes” 
vulnerability and causing an “unauthorizedModificationOfService” threat. This has been demonstrated in 
the Figure 69. Once, the failure behaviour and specialization is modelled, the input ports of the composite 
component are injected with the faults and failure logic analysis is executed. As a result of the execution, 
the calculated failure behaviour is back-propagated to the initial input model and stored in the FLAMM 
based file.  

 

 

Figure 68. ACS Composite component 

 

Figure 69. SignalConditioner Component Security Attack Model 

ECSS Standard for product assurance has dedicated documents for dependability and safety i.e., ECSS-Q-ST-
30C [52] and ECSS-Q-ST-40C [53] respectively. The former puts an emphasis on the reliability attribute of 
the dependability, where the latter targets safety explicitly. Both documents require the reliability and 
safety analysis at all the stages of product design and development. The standards suggest various analysis 
methods both top-down and bottom-up approaches, where fault tree analysis is one of the methods. In 
addition to this, a recently introduced standard ESSB-ST-E-008 [71] provides requirements of cyber security 
risk assessment analysis at all levels of development of space missions.     
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The resulting failure propagation paths stored in FLAMM file are utilized to generate multi-concern fault 
tree. Figure 70 shows the complete fault tree for the ACS composite component for a system level failure 
as “valueCoarse failure of ctrlTorque in ACSComposite” with the highlighted area corresponding to the 
“SignalConditioner” component”. This highlighted part of the fault tree is shown in Figure 71 , which shows 
both (safety and security) causes for the top-level event to occur. It shows that the 
“unauthorizedModificationOfService” or a valueCoarse failure at port “condSunVec” of “SignalConditioner” 
component can cause the “valueCoarse” failure on the “condSunVec” input port of “StateEstimator” 
component. The “unauthorizedModificationofService” threat is caused due to the combination of 
“dataSpoofingAttack” on the input port of “SignalConditioner” component and 
“missingDataIntegritySchemes” vulnerability.   
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Figure 70. Automatically generated fault tree from failure propagation paths with highlighted SignalConditioner 
Component tree 
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Figure 71. SignalConditioner Component fault tree illustrating multi-concern causes 

4.2. Case Study CS3 - Cooperative Adaptive Cruise Control (CACC)  

In this section, a case study related to CS3 Automotive Case Study: Collaborative automated fleet of 
vehicles described in D1.1 [1] is considered. First a specific scenario is explained and then the 
methodological guide is applied on it. 

 Description of the Use Case Scenario 

This scenario is an excerpt of CS3 Automotive Case Study: Collaborative automated fleet of vehicles 
described in D1.1 [1]. This Case Study handles a typical example of a collaborative safety-critical system: a 
platoon of several vehicles.  

In this subsection, a partial argument for CACC is presented. More specifically, the argument focuses on the 
“rear collision” hazard under nominal, malfunctioning and malicious attack conditions, see Figure 72. The 
nominal behaviour module assures our confidence that the risk of rear collision occurring is acceptable 
when there is neither malfunctioning behaviour nor malicious attacks. The malfunctioning behaviour 
module focuses on safety in presence of failures in the system, while the malicious intent module 
addresses risks of rear collision due to malicious attack. 

 Demonstration of the methodology  

The nominal behaviour module is assured through decomposition of requirements on assumption-
guarantee contracts that deal with properties such as deceleration capability of the remote vehicles under 
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platoon and CACC mode, the timing of the communication, the accuracy of the sensors as well as the 
guaranteed distance based on these properties. 

To address the malfunctioning behaviour, we go through each identified failure combination and show that 
it is adequately addressed. For example, for value failures in the signal between the two cars (failComb2 
goal) that are not clearly detectable, we rely on the accuracy of the remote sensor and the data integrity 
during the transmission. Since the link between two cars depends on the security of the channel 
(commChannel goal), we denote it with the dependency impact relationship. 

Finally, in the malicious intent module we argue over all identified vulnerabilities. For example, if the 
communication channel is unsecure, the attacker can send wrong messages to different cars and hence 
cause the car2x value failures that may lead to rear collision. Hence, we encrypt the channel and secure the 
encryption key. The problem of using encryption in this system is that it impacts the timing of 
communication between the vehicles. On the one hand, using encryption conflicts with the timing contract 
specified in the nominal behaviour module. This conflicting relationship will make us re-work the design 
highlighted in red. A final Assurance Case should have all the conflicting relationships resolved. On the 
other hand, using encryption facilitates assuring the data integrity in the malfunctioning behaviour module, 
besides the implemented checksum. Hence, we use the choice symbol to depict that the data integrity is 
adequately addressed by either checksum or encryption module.  

 

Figure 72. Assuring “rear collision” hazard in platooning/CACC capable vehicle 

4.3. Process-related Dependability Co-Assessment: An Automotive 
Case 

In this section, process-related safety & security co-assessment in the automotive domain is in focus. More 
specifically, this section builds on top of the work presented in [29] in which the alignment of ISO 26262 
and SAE J3061 at the level of ‘Software Design and Implementation’ was discussed. Commonalities and 
variabilities in terms of work products and breaking down of the work was also discussed in [29]. 
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In this section, first the main results presented in [29] are recalled, then the workflow, which was 
presented in Figure 23, is applied to co-assess safety and security at the software design and 
implementation level.  

The following subsubsections are aimed at identifying the process elements, which can be retrieved from 
the normative documents, and using them within the integration of EPF Composer and BVR Tool in order to 
enable co-assessment. 

 Commonalities and Variabilities between SAE J3061 and ISO 26262 

This subsection recalls the main findings, which were presented in [29]. More specifically, the process 
related requirements at software design and implementation level were extrapolated (see Figure 73 and 
Figure 74) and compared in order to retrieve common and variation points (see Figure 75) to be exploited 
within the integration of EPF Composer and BVR Tool. 

 

Figure 73. Requirements from ISO 26262 

 

Figure 74. Requirements from SAE J3061 



              

         AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 88 of 124 

 

 

Figure 75. Common and Variation Points identification 

 Work Products 

Based on the information contained in the two normative documents, the following work products are 
defined in our case study: 

• Software Unit Design Specification 

• Software Unit Implementation 

• Software Safety Requirements 

• Software Cybersecurity Requirements 

Software Unit Design Specification, Software Safety Requirements and Software Cybersecurity 
Requirements serve as inputs to the various design tasks. These inputs have been created in another phase 
of the software development process, which is outside the scope of the current use case. Software Unit 
Implementation is an output of the design tasks and also serves as input to the review and implementation 
tasks. 

 Roles 

Based on the experience achieved in the context of critical system engineering, the following roles are 
defined in our case study. These roles (played by engineers with different expertise) perform the design, 
implementation and review tasks: 

• Software Designer (assumption regarding expertise: non-safety and non-security) 

• Safety Engineer (assumption: safety expert) 

• Security Engineer (assumption: cybersecurity expert) 

• Programmer, i.e., engineer with programming expertise (assumption regarding expertise: non-
safety and non-security) 

• Software Tester, i.e., engineer with testing expertise 

The Software Designer, the Safety Engineer and the Security Engineer are responsible for design tasks (see 
4.3.5) and are also responsible for the Software Unit Implementation work product. The Programmer is 
responsible for all implementation tasks while the Software Tester is responsible for review tasks, both 
design review as well as implementation review. 

 Guidance 

Based on what is stated in the normative documents, various Guidance elements relevant to the various 
tasks can be defined. These elements are listed below: 

Fig. 2. Process elements comparison between SAE J3061 and ISO 26262.

partial commonality-tasks, characterized by a variation point
that takes into consideration the variability. For example, the
activity software unit design is a partial commonality point
(CP) in both processes. However, for safety, safety-related units
are designed, while cybersecurity-related units are designed
for cybersecurity. This kind of specificities are referred as
the variability points (VP) in the model. The commonalities
identification is presented in Table 3 and the resulting SiSoPL
is presented in Figure 3.

TABLE III. ACTIVITIES COMPARISON ISO 26262/SAE J3061.

ID IR JR Common Name

CP1 IA1 JA1 Unit design

VP1a IA1 Design concerning safety

VP1b JA1 Design concerning cybersecurity

CP2 IA2 JA3 Unit design review

VP2a IA2 Design review concerning safety

VP2b JA3 Design review concerning cybersecurity

CP3 IA3 JA2 Unit implementation

VP3a IA3 Unit implementation concerning safety

VP1b JA2 Unit implementation concerning cybersecurity

CP4 IA4 JA4 Unit implementation review

VP4a IA4 Implementation review concerning safety

VP4b JA4 Implementation review concerning cybersecurity

Fig. 3. SiSoPL model.

C. Formalising the rules

To formalise the rules, we take the set of requirements
presented in each standard, organize them according to the

activity to which they are applied8, and decompose them
in atomic expressions9. For example requirement IR1 (see
Table I) can bedecomposed in two atomic expressions, namely,
1) There is a software design and implementation phase
(sdip)10, and 2) (sdip) have available the softwarearchitectural
design (sad). The first atomic expression corresponds to a fact,
and the second atomic expression corresponds to a strict rule.
Facts and strict rules are indisputable statements, and both are
represented as strict rules, using the symbol ! (see R1 and R2
in Table IV). The difference in the representation of strict rules
and facts is that facts do not have antecedent. When the atomic
expression refers to a rule that is weakened by other rule, it is
represented as a defeasible rule. For example, requirement IR2
(see Table I) can be decomposed in the atomic expressions:
1) A software unit (sui) is usually implemented as a model
(im) and 2) A software unit (sui) is usually implemented as
source code (isc). As seen the adverb ” usually” is added to the
description of the rule. The defeasible rule is defined using the
symbol ) (see R27 and R30 in Table IV). Rules that prevent
conclusions (defeaters) are defined using the symbol  , and
the verb ” prevents” is added to the description of the rule. An
example of this type or rules can be found with the two de-
feasible rules described before: Implementing as a model (im)
prevents the direct implementation as a source code (-isc) (see
R33 in Table IV). Priority relations are created when there
are two rules that are in conflict. An example of a priority
relations iscreated when modelling requirements IR6 and IR10
for ISO 26262 (see Table I). The formalization of these two

8This step makes the rules derived from the standards requirements appear
in a different order.

9An atomic expression, in the context of this paper, is an expression that
is equivalent to a proposition in logic (statement which is either true or false,
but not both [17]).

10For every atom (or variable) presented in the rule, we define acronyms,
so the visualization of the defeasible rules is easier.

VP3b 
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• Design Notations 

• Rationale about Design Notations 

• Design Principles 

• Rationale about Design Principles 

• Verification Methods 

• Rationale about Verification Methods 

• Design Activities Analysis 

• Design Assessment Refinement 

• Modelling Guidelines 

• Source Code Guidelines 

• Implementation Verification Methods 

• Rationale about Implementation Verification Methods 

• Implementation Verification Methods (Safety-related) 

• Cybersecurity Implementation Activities Analysis 

• Cybersecurity Implementation Assessment Refinement 

Design of software units is done using Design Notations and Design Principles which are selected according 
to ASIL and recommendation levels for safety-related design. They are supported by Rationale about 
Design Notations and Rationale about Design Principles respectively. Software unit design verification is 
done using Verification Methods. Verification Methods for safety design are selected according to ASIL and 
recommendation levels. Verification Methods are also supported by Rationale about Verification Methods. 
For cybersecurity-related design, software unit design has Design Activities Analysis and Design Assessment 
Refinement. Software implementation is either done as a model or as source code which has Modelling 
Guidelines and Source Code Guidelines respectively. Software implementation verification is done using 
Implementation Verification Methods and supported by Rationale about Implementation Verification 
Methods. Safety-related Implementation Verification Methods are selected according to ASIL and 
recommendation levels. Cybersecurity-related implementation verification, Cybersecurity Implementation 
Activities Analysis and Cybersecurity Implementation Assessment Refinement are used. 

 Tasks 

The following tasks related to ISO 26262 and SAE J3061 are defined. The defined tasks are related to the 
Work Products, Roles and Guidance defined in Sections 4.3.1, 4.3.3 and 4.3.4. These relationships are 
depicted in Table 1. 

Table 1.  Task/Work Product/Roles/Guidance Relationships 

Task Work Products Roles Guidance 

Unit Design 
(Common) 

(Input) Software Unit Design 
Specification. 
(Output) Software Unit 
Implementation. 

Software Designer. Design Notations. 
Rationale about Design 
Notations. 
Design Principles. 
Rationale about Design 
Principles. 

Design 
Concerning 
Safety (ISO 
26262) 

(Input) Software Unit Design 
Specification. 
(Input) Software Safety 
Requirements. 
(Output) Software Unit 
Implementation. 

(Primary) Safety 
Engineer. 
(Additional) 
Software Designer. 

Design Notations. 
Rationale about Design 
Notations. 
Design Principles. 
Rationale about Design 
Principles. 

Design 
Concerning 
Cybersecurity 

(Input) Software Unit Design 
Specification. 
(Input) Software 

(Primary) Security 
Engineer. 
(Additional) 

Design Notations. 
Rationale about Design 
Notations. 
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Task Work Products Roles Guidance 

(SAE J3061) Cybersecurity Requirements. 
(Output) Software Unit 
Implementation. 

Software Designer. Design Principles. 
Rationale about Design 
Principles. 

Unit Design 
Review 
(Common) 

(Input) Software Unit Design 
Specification. 
(Input) Software Unit 
Implementation. 

(Primary) Software 
Tester. 
(Additional) 
Software Designer. 

Verification Methods. 
Rationale about Verification 
Methods. 

Design Review 
Concerning 
Safety (ISO 
26262) 

(Input) Software Unit Design 
Specification. 
(Input) Software Unit 
Implementation. 

(Primary) Software 
Tester. 
(Additional) 
Software Designer. 
(Additional) Safety 
Engineer. 

Verification Methods. 
Rationale about Verification 
Methods. 

Design Review 
Concerning 
Cybersecurity 
(SAE J3061) 

(Input) Software Unit Design 
Specification. 
(Input) Software Unit 
Implementation. 

(Primary) Software 
Tester. 
(Additional) 
Software Designer. 
(Additional) 
Security Engineer. 

Design Activities Analysis. 
Design Assessment Refinement. 

Unit 
Implementation 
(Common) 

(Optional Input) Software 
Unit Design Specification. 
(Input) Software Unit 
Implementation. 

Programmer. Modelling Guidelines. 
Source Code Guidelines. 

Implementation 
Concerning 
Safety (ISO 
26262) 

(Optional Input) Software 
Unit Design Specification. 
(Input) Software Unit 
Implementation. 

Programmer. Modelling Guidelines. 
Source Code Guidelines. 

Implementation 
Concerning 
Cybersecurity 
(SAE J3061) 

(Optional Input) Software 
Unit Design Specification. 
(Input) Software Unit 
Implementation. 

Programmer. Modelling Guidelines. 
Source Code Guidelines. 

Unit 
Implementation 
Review 
(Common) 

(Optional Input) Software 
Unit Design Specification. 
(Input) Software Unit 
Implementation. 

(Primary) Software 
Tester. 
(Additional) 
Software Designer. 

Implementation Verification 
Methods. 
Rationale about 
Implementation Verification 
Methods. 

Implementation 
Review 
Concerning 
Safety (ISO 
26262) 

(Optional Input) Software 
Unit Design Specification. 
(Input) Software Unit 
Implementation. 

(Primary) Software 
Tester. 
(Additional) 
Software Designer. 
(Additional) Safety 
Engineer. 

Implementation Verification 
Methods (Safety-related) 

Implementation 
Review 
Concerning 
Cybersecurity 
(SAE J3061) 

(Optional Input) Software 
Unit Design Specification. 
(Input) Software Unit 
Implementation. 

(Primary) Software 
Tester. 
(Additional) 
Software Designer. 
(Additional) 
Security Engineer. 

Cybersecurity Implementation 
Activities Analysis. 
Cybersecurity Implementation 
Assessment Refinement. 
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 Work Break Down Structure 

The Software Unit Design and Implementation Safety process is defined as a Work Break Down Structure 
(WBS). The WBS is composed of phases (delivery milestones), iterations, activities, tasks and their 
respective precedence rules. The defined WBS is shown in Table 2. The work products and team allocation 
are also defined for the tasks in the WBS. 

Table 2. Work Break Down Structure 

Index Process/Phase/Activity/Task Type Predecessors 

0 Software Unit Design and Implementation Delivery Process  

1     Design And Design Review (One) Phase  

2         Unit Design And Review – Commonality Iteration  

3             Unit Design – Commonality Activity  

4                 Unit Design Task  

5             Unit Design Review – Commonality Activity 3  

6                 Unit Design Review Task  

7     Implementation And Implementation Review (One) Phase 1 

8         Unit Implementation And Review – Commonality Iteration  

9             Unit Implementation – Commonality Activity  

10                 Unit Implementation Task  

11             Unit Implementation Review – Commonality Activity 9  

12                 Unit Implementation Review Task  

13     Design And Design Review (Two) Phase 7 

14         Unit Design And Review – Variability Iteration   

15             Unit Design – Variability Activity  

16                 Design Concerning Safety Task  

17             Unit Design Review – Variability Activity 15 

18                 Design Review Concerning Safety Task  

19     Implementation And Implementation Review (Two) Phase 13 

20         Unit Implementation And Review – Variability Iteration   

21             Unit Implementation – Variability Activity  

22                 Implementation Concerning Safety Task  

23             Unit Implementation Review - Variability Activity 21  

24                 Implementation Review Concerning Safety Task  

 Domain Engineering 

During the domain engineering phase, which is aimed at generating a Security-informed Safety-oriented 
Process Line (SoPL), all process elements, identified in the previous subsubsections, are interpreted as 
features (listed in Table 3). These features can be mandatory for all concerns or can be selected only if 
needed (i.e., optional feature).  

Constraints among features are also specified during this phase. The constraints are specified to enforce 
rules for valid combinations of feature selection. To minimize the number of complex constraints, multiple 
simple constraints are specified instead and associated to a feature.  

Table 3. Feature Tree – Variability Model 

Feature Mandatory/ 
Optional 

Cardinality Reference 

Software Unit Design and Implementation - -  

ProcessModel - -  

ConcernChoice Mandatory 1..1  
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Feature Mandatory/ 
Optional 

Cardinality Reference 

    Safety Optional -  

    Cybersecurity Optional -  

    MultiConcern Optional -  

Activities Mandatory -  Section 4.3.5 

    Commonality Point Mandatory -  

        DesignCom Mandatory -  

        DesignReviewCom Mandatory -  

        ImplementationCom Mandatory -  

        ImplementationReviewCom Mandatory -  

    Variability Point Mandatory -  

        DesignVar Mandatory 1..1  

            DesignSafety Optional -  

            DesignCybersecurity Optional -  

            DesignMultiConcern Optional -  

                DesignSafety Mandatory -  

                DesignCybersecurity Mandatory -  

        DesignReviewVar Mandatory 1..1  

            DesignReviewSafety Optional -  

            DesignReviewCybersecurity Optional -  

            DesignReviewMultiConcern Optional -  

                DesignReviewSafety Mandatory -  

                DesignReviewCybersecurity Mandatory -  

        ImplementationVar Mandatory 1..1  

            ImplementationSafety Optional -  

            ImplementationCybersecurity Optional -  

            ImplementationMultiConcern Optional -  

                ImplementationSafety Mandatory -  

                ImplementationCybersecurity Mandatory -  

        ImplementationReviewVar Mandatory 1..1  

            ImplementationReviewSafety Optional -  

            ImplementationReviewCybersecurity Optional -  

            ImplementationReviewMultiConcern Optional -  

                ImplementationReviewSafety Mandatory -  

                ImplementationReviewCybersecurity Mandatory -  

Work Products Mandatory - Section 4.3.2 

    SoftwareUnitDesignSpecification Optional -  

    SoftwareUnitImplementation Optional -  

    SoftwareSafetyRequirements Optional -  

    SoftwareCybersecurityRequirements Optional -  

Guidance Mandatory - Section 4.3.4 

    DesignNotations Optional -  

    RationaleDesignNotations Optional -  

    DesignPrinciples Optional -  

    RationaleDesignPrinciples Optional -  

    VerificationMethods Optional -  

    RationaleVerificationMethods Optional -  

    DesignActivitiesAnalysis Optional -  

    DesignAssessmentRefinement Optional -  
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Feature Mandatory/ 
Optional 

Cardinality Reference 

    ModellingGuidelines Optional -  

    SourceCodeGuidelines Optional -  

    ImplementationVerificationMethods Optional -  

    RationaleImplementationVerificationMethods Optional -  

    ImplementationVerificationMethodsSafety Optional -  

    CybersecurityImplementationActivitiesAnalysis Optional -  

    CybersecurityImplementationAssessmentRefinement Optional -  

Roles Mandatory 1..* Section 4.3.3 

    SoftwareDesigner Optional -  

    SafetyEngineer Optional -  

    Programmer Optional -  

    SoftwareTester Optional -  

  

 Variability Model Creation (VSpec Editor) 

The features, which were engineered and presented in Table 3, are, in this subsection, organized in a tree 
structure, which represents the SoPL model regarding the software design and implementation. More 
precisely, by using the VSpec Editor in BVR, the SoPL model is created and its representation is shown in 
Figure 76. This model shows that a Process Model can be configured in various ways depending on the 
feature selection. The features that compose the Process Model are: ConcernChoice, Activities, 
WorkProducts, Guidance and Roles. 

  

 

Figure 76. Feature Tree – Top Level 

A step by step evolution of the SoPL model, along with the related constraints, is depicted in the following 
figures (Figure 77 through Figure 97). 

Figure 77 depicts a view with ConcernChoice, Roles and Activities expanded. ConcernChoice is expanded 
with three choices, Safety, Cybersecurity and MultiConcern, and any one and only one (cardinality 1..1) 
may be chosen at a time. The Roles are SoftwareDesigner, SafetyEngineer, Programmer and 
SoftwareTester. At least one Role must be selected for any process model. However, one may select more 
than one Role too (cardinality 1..*). Activities are split into two sub trees, CommonalityPoint (activities 
which are common to the choices of ConcernChoice) and VariabilityPoint (activities which differ for each 
one of the choices of ConcernChoice). 

 



              

         AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 94 of 124 

 

 

Figure 77. ConcernChoice, Roles and Activities Expanded 

The WorkProducts subtree is depicted in Figure 78 along with the relevant constraints. The WorkProducts 
are SoftwareUnitDesignSpecification, SoftwareUnitImplementation, SoftwareSafetyRequirements and 
SoftwareCybersecurityRequirements. WorkProducts are optionally chosen for a Process Model. The 
constraints specify the need for SoftwareSafetyRequirements in the case ConcernChoice is Safety or 
MultiConcern and the need for SoftwareCybersecurityRequirements in the case ConcernChoice is 
Cybersecurity or MultiConcern. 

The Guidance sub tree is depicted in Figure 79 and Figure 80. The sub tree has been split into two figures to 
ensure readability. The relevant constraints are also shown. For example, RationaleDesignNotations implies 
the existence of DesignNotations. 

 

 

Figure 78. WorkProducts Subtree 
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Figure 79. Guidance Subtree (1 of 2) 

 

Figure 80. Guidance Subtree (2 of 2) 

The CommonalityPoint and VariabilityPoint subtrees are depicted in Figure 81. The CommonalityPoint 
subtree consists of activities, which are common to all choices of ConcernChoice. These common activities 
are: DesignCom, DesignReviewCom, ImplementationCom, and ImplementationReviewCom.  

The VariabilityPoint subtree consists of activities, which contribute to discriminate the concerns. These 
activities are: DesignVar, DesignReviewVar, ImplemenationVar, and ImplementationReviewVar.  

 

 

Figure 81. CommonalityPoint and VariabilityPoint Subtrees 

The subtree corresponding to DesignCom is depicted in Figure 82. This subtree does not contain any further 
levels. There are three constraints related to Roles, Work Products and Guidance specified. 
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Figure 82. DesignCom Subtree 

The subtree corresponding to DesignReviewCom is depicted in Figure 83. This subtree does not contain any 
further levels. There are three constraints related to Roles, Work Products and Guidance specified. 

 

 

Figure 83. DesignReviewCom Subtree 

The subtree corresponding to ImplementationCom is depicted in Figure 84. This subtree does not contain 
any further levels. There are three constraints related to Roles, Work Products and Guidance specified. 
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Figure 84. ImplementationCom Subtree 

The subtree corresponding to ImplementationReviewCom is depicted in Figure 85. This subtree does not 
contain any further levels. There are three constraints related to Roles, Work Products and Guidance 
specified. 

 

 

Figure 85. ImplementationReviewCom Subtree 

The DesignVar and DesignSafety subtrees are depicted in Figure 86. The DesignVar subtree consists of three 
elements, DesignSafety, DesignCybersecurity and DesignMultiConcern, related to each one of the choices 
of ConcernChoice and connected in exclusive-OR manner. The constraint restricting DesignSafety only to a 
choice of Safety for ConcernChoice ensures the exclusive-OR relation. Besides, DesignSafety also consists of 
constraints for Roles, WorkProducts and Guidance. DesignSafety does not have any further level. 
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Figure 86. DesignVar and DesignSafety Subtrees 

The DesignVar and DesignCybersecurity subtrees are depicted in Figure 87. The constraint restricting 
DesignCybersecurity only to a choice of Cybersecurity for ConcernChoice ensures the exclusive-OR relation. 
Besides, DesignCybersecurity also consists of constraints for Roles, WorkProducts and Guidance. 
DesignCybersecurity does not have any further level. 

 

 

Figure 87. DesignVar and DesignCybersecurity Subtrees 

The DesignVar and DesignMultiConcern subtrees are depicted in Figure 88. The constraint restricting 
DesignMultiConcern only to a choice of MultiConcern for ConcernChoice ensures the exclusive-OR relation. 
Besides, DesignMultiConcern also consists of constraints for Roles, WorkProducts and Guidance. 
DesignMultiConcern also has a next level consisting of elements DesignSafety and DesignCybersecurity to 
cover multi concern design tasks. 
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Figure 88. DesignVar and DesignMultiConcern Subtrees 

The DesignReviewVar and DesignReviewSafety subtrees are depicted in Figure 89. The DesignReviewVar 
subtree consists of three elements, DesignReviewSafety, DesignReviewCybersecurity and 
DesignReviewMultiConcern, related to each one of the choices of ConcernChoice and connected in 
exclusive-OR manner. The constraint restricting DesignReviewSafety only to a choice of Safety for 
ConcernChoice ensures the exclusive-OR relation. Besides, DesignReviewSafety also consists of constraints 
for Roles, WorkProducts and Guidance. DesignReviewSafety does not have any further level. 

 

 

Figure 89. DesignReviewVar and DesignReviewSafety Subtrees 

The DesignReviewVar and DesignReviewCybersecurity subtrees are depicted in Figure 90. The constraint 
restricting DesignReviewCybersecurity only to a choice of Cybersecurity for ConcernChoice ensures the 
exclusive-OR relation. Besides, DesignReviewCybersecurity also consists of constraints for Roles, 
WorkProducts and Guidance. DesignReviewCybersecurity does not have any further level. 
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Figure 90. ReviewVar and DesignReviewCybersecurity Subtrees 

The DesignReviewVar and DesignReviewMultiConcern subtrees are depicted in Figure 91. The constraint 
restricting DesignReviewMultiConcern only to a choice of MultiConcern for ConcernChoice ensures the 
exclusive-OR relation. Besides, DesignReviewMultiConcern also consists of constraints for Roles, 
WorkProducts and Guidance. DesignReviewMultiConcern also has a next level consisting of elements 
DesignReviewSafety and DesignReviewCybersecurity to cover multi concern design review tasks. 

 

 

Figure 91. DesignReviewVar and DesignReviewMultiConcern Subtrees 

The ImplementationVar and ImplementationSafety subtrees are depicted in Figure 92. The 
ImplementationVar subtree consists of three elements, ImplementationSafety, 
ImplementationCybersecurity and ImplementationMultiConcern, related to each one of the choices of 
ConcernChoice and connected in exclusive-OR manner. The constraint restricting ImplementationSafety 
only to a choice of Safety for ConcernChoice ensures the exclusive-OR relation. Besides, 
ImplementationSafety also consists of constraints for Roles, WorkProducts and Guidance. 
ImplementationSafety does not have any further level. 
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Figure 92. ImplementationVar and ImplementationSafety Subtrees 

The ImplementationVar and ImplementationCybersecurity subtrees are depicted in Figure 93. The 
constraint restricting ImplementationCybersecurity only to a choice of Cybersecurity for ConcernChoice 
ensures the exclusive-OR relation. Besides, ImplementationCybersecurity also consists of constraints for 
Roles, WorkProducts and Guidance. ImplementationCybersecurity does not have any further level. 

 

Figure 93. ImplementationVar and ImplementationCybersecurity Subtrees 

The ImplementationVar and ImplementationMultiConcern subtrees are depicted in Figure 94. The 
constraint restricting ImplementationMultiConcern only to a choice of MultiConcern for ConcernChoice 
ensures the exclusive-OR relation. Besides, ImplementationMultiConcern also consists of constraints for 
Roles, WorkProducts and Guidance. ImplementationMultiConcern also has a next level consisting of 
elements ImplementationSafety and ImplementationCybersecurity to cover multi concern implementation 
tasks. 
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Figure 94. ImplementationVar and ImplementationMultiConcern Subtrees 

The ImplementationReviewVar and ImplementationReviewSafety subtrees are depicted in Figure 95. The 
ImplementationReviewVar subtree consists of three elements, ImplementationReviewSafety, 
ImplementationReviewCybersecurity and ImplementationReviewMultiConcern, related to each one of the 
choices of ConcernChoice and connected in exclusive-OR manner. The constraint restricting 
ImplementationReviewSafety only to a choice of Safety for ConcernChoice ensures the exclusive-OR 
relation. Besides, ImplementationReviewSafety also consists of constraints for Roles, WorkProducts and 
Guidance. ImplementationReviewSafety does not have any further level. 

 

 

Figure 95. ImplementationReviewVar and ImplementationReviewSafety Subtrees 

The ImplementationReviewVar and ImplementationReviewCybersecurity subtrees are depicted in Figure 
96. The constraint restricting ImplementationReviewCybersecurity only to a choice of Cybersecurity for 
ConcernChoice ensures the exclusive-OR relation. Besides, ImplementationReviewCybersecurity also 
consists of constraints for Roles, WorkProducts and Guidance. ImplementationReviewCybersecurity does 
not have any further level. 
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Figure 96. ImplementationReviewVar and ImplementationReviewCybersecurity Subtrees 

The ImplementationReviewVar and ImplementationReviewMultiConcern subtrees are depicted in Figure 
97. The constraint restricting ImplementationReviewMultiConcern only to a choice of MultiConcern for 
ConcernChoice ensures the exclusive-OR relation. Besides, ImplementationReviewMultiConcern also 
consists of constraints for Roles, WorkProducts and Guidance. ImplementationReviewMultiConcern also 
has a next level consisting of elements ImplementationReviewSafety and 
ImplementationReviewCybersecurity to cover multi concern implementation review tasks. 

 

 

Figure 97. ImplementationReviewVar and ImplementationReviewMultiConcern Subtrees 

 Configuration Resolution (Resolution Editor) 

An example of a valid resolution of the Variability Model is depicted in Figure 98 for the choice 
‘MultiConcern’. All specified constraints are resolved correctly in the model depicted. 

 
 

 

Figure 98. Example - Valid Resolution with ConcernChoice ‘MultiConcern’ 

The same valid resolution showing cardinality is depicted in Figure 99.  
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Figure 99. Example - Valid Resolution Showing Cardinality with ConcernChoice ‘MultiConcern’ 

 Model Realization (Realization Editor) 

After the usage of the VSpec Editor (to build the Variability Model) and the Resolution Editor (to resolve 
valid configurations), variability management is continued by use of the Realization Editor.  

The Base Model produced using the EPF Composer is used as input by the Realization Editor and fragment 
substitutions are applied to modify the Base Model according to the new resolved configuration.  

For example, if the Base Model represents a safety-related (mono-concern = safety) process model (e.g., 
Figure 39) and if the mono-concern cybersecurity is chosen, the entire capability pattern for cybersecurity 
(shown in Figure 35) replaces (Replacement) the tasks concerning safety (Placement) in the base model 
(listed in Table 2).  

Figure 100 through Figure 104 illustrate the creation of fragment substitutions. Figure 100, for instance, 
illustrates the fragment substitution which indicates that the fragment UnitDesignReviewSafety 
(Placement) should be replaced by the fragment UnitDesignReviewCybersecurity (Replacement). 

 

Figure 100. Creation of Fragment Substitution 

Figure 101 depicts the creation of Placements and Replacements. More specifically, in Figure 101, an 
example of the creation of a Placement (Unit Design Review) concerning Safety is shown. The associated 
activity, task descriptors, role descriptors and work product descriptors are displayed. 
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Figure 101. Creation of Placement/Replacement 

Figure 102 depicts the binding between the elements (abstract features) created using the VSpec editor 
with the chosen concrete fragments. The elements created in the VSpec editor correspond to the elements 
depicted in Figure 90 for Design Review concerning Cybersecurity. 

 

 

Figure 102. Linking VSpec to Fragment Substitution 

In this example, Unit Design Review Safety is the substitution fragment which is selected as a Placement 
fragment, and hence, is to be removed from the model being realized. This is depicted in Figure 103. 
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Figure 103. Placement Unit Design Review Safety 

Also in this example, Unit Design Review Cybersecurity is the substitution fragment which is selected as a 
Replacement fragment, and hence is to be added to the model being realized. This is depicted in Figure 
104. 

 

Figure 104. Replacement Unit Design Review Cybersecurity 

The Realization Model created using the Realization Editor by a series of substitutions consisting of 
Placements and Replacements can be exported back to the Base Model Editor (EPF Composer).  

The consolidated activity diagram of the realized cybersecurity model is depicted in Figure 105 through 
Figure 107. The activity diagram is split into three parts to enhance readability. Figure 105 depicts the 
phases, iterations and activities of the delivery process. The phases are executed sequentially. The activities 
which make up each phase are executed iteratively as described. The tasks which make up the activities are 
depicted in Figure 106 and Figure 107. Figure 106 depicts the Commonality tasks while Figure 107 depicts 
the Variability tasks related to Cybersecurity. 
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Figure 105. Detailed Activity Diagram Cybersecurity (1 of 3) 

 

Figure 106. Detailed Activity Diagram Cybersecurity (2 of 3) 
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Figure 107. Detailed Activity Diagram Cybersecurity (3 of 3) 

The consolidated activity diagram of the realized multi concern model is depicted in Figure 108 through 
Figure 110. The activity diagram is split into three parts to enhance readability. Only the Variability 
elements for multi concern are depicted as the elements shown in Figure 105 and Figure 106 are the same 
for multi concern. The diagram corresponds to our interpretation of the ‘Pattern Engineering Lifecycle’ 
depicted in Figure 37. 

 

 

Figure 108. Detailed Activity Diagram Multi Concern (1 of 3) 
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Figure 109. Detailed Activity Diagram Multi Concern (2 of 3) 

 

Figure 110. Detailed Activity Diagram Multi Concern (3 of 3) 

 Case Study Conclusion 

The parts of the use case modelled in the EPF Composer provide a process model and the related process-
related assurance assets for co-assessment. The parts of the use case modelled in the BVR tool provide a 
means to deal with cross-concern reuse/co-assessment of the software development process factoring 
safety and cybersecurity requirements. 
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4.4. CS1: Industrial and Automation Control Systems (IACS) (*) 

In this section, the CS1: Industrial and Automation Control Systems (IACS) described in D1.1 [1] is 
considered to illustrate the dependability co-analysis via Safety Architect. Two use case scenarios have 
been defined for the CS1: US1 (Compliance Management), US2 (Safety and security co-assessment). The 
illustration of the dependability co-analysis via Safety Architect is explained for US2. 

 Description of the Use Case Scenario 

We have considered Schneider Electric Saitel® RTUs – high-level architecture, depicted in Figure 111, to 
demonstrate the system safety and security co-analysis methodology presented in Section 3.5.2.   

 

Figure 111. High-level Archiecture of SchneiderElectric Saitel RTU 

The objective of CS1-US2 (Safety and security co-assessment) is to support the RTU Safety & Security 
Assurance Case with AMASS platform and dedicated external tools. In this use case, the Safety Architect 
and Cyber Architect tools are integrated with the AMASS platform as external tools to provide this safety 
and security co-analysis support. 

 Demonstration of the Methodology  

As explained in Section 3.5.2 (System Dependability Co-analysis via Safety Architect), a possible usage 
scenario for Safety & Security co-analysis is composed by 8 steps. These steps are illustrated below: 

Step 1: System engineers can design its system architecture model with CHESS tool. The Schneider Electric 
Saitel® RTUs – high-level architecture model in CHESS is shown in Figure 112 . 
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Figure 112. SchneiderElectric Saitel RTU High-level Architecture model in CHESS 

Step 2: Safety Engineers can import system model from the AMASS platform – CHESS tool to Safety 
Architect tool for safety analysis thanks to the connector between CHESS and Safety Architect, as illustrated 
in Figure 113 and Figure 114. 

 

Figure 113. Import from CHESS tool to Safety Architect tool 
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Figure 114. Safety Architect WBS model from CHESS WBS model 

Step 3: Security engineers (in parallel to safety analysis or based on the process defined in other AMASS 
platform tools, such as EPF or external tools, such as WEFACT) can perform its security analysis in Safety 
Architect as illustrated in Figure 115. 

 

Figure 115. Cyber Architect project initialised with EBIOS knowledge bases 

Step 4: Assurance Engineers (Safety & Security experts), can exploit the bridge between Safety Architect 
and Cyber Architect to perform it co-analysis. For example, to analyse the impact of security into safety, 
assurance engineers can import threats sources or vulnerabilities from Cyber Architect into Safety 
Architect, as illustrated in Figure 116. 
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Figure 116. An interface between Safety Architect and Cyber Architect 

Step 5: Assurance Engineers can activate the Security Viewpoint in Safety Architect tool to perform Safety 
and Security Co-analysis. The activation of Safety & Security viewpoint in Safety Architect allows the 
annotation of input and output ports of system components with vulnerability modes (e.g., communicated 
flows may be altered) imported in previous step. The co-analysis is realized thanks to security analysis 
artefacts (e.g., vulnerabilities and threats sources) and safety analysis artefacts (e.g., internal failure, failure 
modes), as illustrated in  Figure 117. 
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Figure 117. Safety & Security viewpoint in Safety Architect 

Step 6: Assurance Engineers can generate propagation trees, i.e., fault trees extended with malicious 
events, thanks to the previous Safety & Security co-analysis and the Safety Architect propagation engine 
with the “Safety & Security” viewpoint selection shown in Figure 118. 

 

Figure 118. Safety & Security viewpoint selection in Safety Architect 
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The propagation tree generated in Safety Architect can be exported in OpenPSA format (.xml files) and can 
be read by OpenPSA based tools, such as Arbre Analyste, as illustrated in Figure 119.  
 

 

Figure 119. Propagation Tree (fault tree extended with malicious events) in Safety Architect 

Step 7: System Architect can import the previous propagation from Safety Architect to CHESS to display the 
propagation tree as a critical path in its architecture. For this, go in AMASS Platform (the eclipse bundle) 
then in “CHESS – Fault Tree Viewer – view fault tree diagram from .xml file”, as illustrated in Figure 120. 

 

Figure 120. Import Safety Architect propagation tree in CHESS tool 

Step 8: Assurance engineer can indicate the location of the evidence resource in OpenCert, such as 
Fault/Attack Trees or FMEA/FMVEA tables generated in Safety Architect tool, as illustrated in Figure 121. 

 
Figure 121. Evidence resource location in OpenCert  
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5. Conclusions 

The Multiconcern Assurance approach of AMASS aims at capturing the multi-faceted nature of assurance 
with a variety of techniques that provides multi-faceted evidence (e.g. co-analysis, co-assessment) and 
argument fragments (multi-concern assurance) to the assurance case.  

In this document, the guide for the AMASS Multiconcern Assurance approach has been given. More 
specifically, a set of workflows has been specified that indicates the activities to be conducted to use the 
AMASS Multiconcern Assurance Approach. Some case studies have been used to exemplify the execution 
of the workflows.  

This version of the guide is related to the third and final prototype of the AMASS platform, called P2. It 
provides the sustainable basis for efficient, partly automated, model-based multiconcern assurance in 
compliance with applicable standards.  
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Abbreviations and Definitions 

Abbreviation Explanation 

ACS Attitude Control System 

AOCS Attitude and Orbit Control System 

ARP Aerospace Recommended Practice 

ARTEMIS 
ARTEMIS Industry Association is the association for actors in Embedded Intelligent 
Systems within Europe 

ASIL Automotive Safety Integrity Level 

AT Attack Tree 

ATA Attack Tree Analysis 

BCL Basic Constraint Language 

BPMN Business Process Model and Notation 

BVR 
Base Variability Resolution - a domain-specific language designed specifically to 
enable software product-line engineering (SPLE) 

CA Cyber Architect 

CACC Cooperative Adaptive Cruise Control 

CACM Common Assurance and Certification Metamodel 

CCL Common Certification Language 

CHESSML CHESS Modelling Language 

CNIL Commission Nationale de l'Informatique et des Libertés 

CPS Cyber-Physical Systems 

CS Case Study 

CVL Common Variability Language 

DOORS Dynamic Object-Oriented Requirements System 

DPIA Data Protection Impact Assessments 

EBIOS Expression des Besoins et Identification des Objectifs de Sécurité 

ECSEL Electronic Components and Systems for European Leadership 

ECSS European Cooperation for Space Standardization 

EMC2 
Embedded multi-core systems for mixed criticality applications in dynamic and 
changeable real-time environments 

EPF-C Eclipse Process Framework-Composer 

EU European Union 

FLAMM Failure Logic Analysis Meta Model 

FMEA Failure Modes and Effects Analysis 

FMVEA Failure Modes, Vulnerabilities and Effect Analysis 

FODA Feature-Oriented Domain Analysis 

FT Fault Tolerance 

FPTC Failure Propagation Transformation Calculus 

FTA Fault Tree Analysis 

GDPR General Data Protection Regulation 

GSN Goal Structured Notation 

GUI Graphical User Interface 

HARA Hazard Analysis and Risk Assessment 
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HAZOP HAZard and OPerability study 

HW Hardware 

IACS Industrial and Automation Control Systems 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

ISO International Organization for Standardization 

IT Information Technology 

JU Joint Undertaking 

LTL Linear-time Temporal Logic 

MARTE Modelling and Analysis of Real Time and Embedded systems 

MAST Modelling and Analysis Suite for Real-Time Applications 

MERgE Multi-Concerns Interactions System Engineering 

MOF Meta-Object Facility 

NIST National Institute of Standards and Technology 

OCRA Othello Contracts Refinement Analysis 

OPENCOSS Open Platform for EvolutioNary Certification of Safety-critical Systems 

ReqIF Requirements Interchange Format 

RCP Rich Client Format 

RobotML Robot Modelling Language 

RTU Remote Terminal Unit 

SA Safety Architect 

SACM Structured Assurance Case Metamodel 

SAE Society of Automotive Engineers 

SAHARA Security-aware Hazard Analysis and Risk Assessment 

SIL Safety Integrity Level 

SL Security Level 

SiSoPLE Security-informed Safety-oriented Process Line Engineering 

SoPLE Safety-oriented Process Line Engineering 

SPEM Software & Systems Process Engineering Metamodel 

SPLCA Software Product Line Covering Array 

SSA System Safety Assessment 

SSE Safety and Security Engineering  

STL Signal Temporal Logic 

STO Scientific Technical Objective 

STPA-SEC STAMP (Systems- Theoretic Accident Model and Processes) Based Process Analysis 

STRIDE 
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation of 
privilege 

SUDI Software Unit Design and Implementation  

SUT System Under Test 

SVN Subversion 

SW Software 

SysML System Modelling Language 

TARA Threat Analysis and Risk Assessment  

UMA Unified Method Architecture 

UML Unified Modelling Language 



              

         AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 119 of 124 

 

URL Uniform Resource Locator 

V&V Verification and Validation 

WBS Work Break Down Structure  

WEFACT Workflow Engine for Analysis, Certification and Test 

WP Work Package 

XML EXtensible Markup Language 

xSAP Extended Safety Analysis Platform 
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Appendix A. Changes with respect to D4.7 (*) 

 
New Sections: 

Section Title 

2.1.1.1. Contract-based trade-off analysis in parameterized architectures 

3.1.1 Contract-based trade-off analysis in parameterized architectures 

3.4 Standard-related dependability co-assessment via OpenCert 

3.6 Privacy Analysis 

4.4 CS1: Industrial and Automation Control Systems (IACS) 

Sections whose number has changed: 

Former 
Section No. 

New  
Section No. 

Title 

3.4 3.5 System Dependability Co-Analysis 

Modified Sections: 

Chapter/Section Title Change 

1 Introduction Minor changes to better explain the 
context/motivation of the final version of this 
deliverable. 

2.1.1 Contract Based Multi-concern 
Assurance  

Addition of 2.1.1.1 

2.3.3 FMVEA Extension 

3.1 Contract-Based Multiconcern 
Assurance 

Extension 

3.2 Dependability assurance case 
modelling 

Enhancement of the guidelines and 
restructuring 

4.1 Case Study CS11 - Attitude and Orbit 
Control System 

Extension of the case study and application of 
multi-concern analysis. 

 


