e
ECSEL £

X Joint Undertaking ok
European

Commission
I

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Methodological guide for multiconcern
assurance (b)
D4.8

Work Package: WP4: Multi-Concern Assurance

Dissemination level: PU = Public

Status: Final

Date: 31 October 2018

Responsible partner: Barbara Gallina (MAELARDALENS HOEGSKOLA)
Contact information: barbara.gallina@mdh.se

Document reference: AMASS_D4.8 WP4_MDH_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information that is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

Contributors:

Names

Organisation

Barbara Gallina (Task Leader), Zulgarnain Haider,
Shankar lyer, Irfan Sljivo

Maelardalens Hoegskola (MDH)

Marc Sango

ALL4TEC (A4T)

Stefano Puri

Intecs (INT)

Alejandra Ruiz

Tecnalia Research & Innovation (TEC)

T.Gruber, K.Christl, S.Chlup, Ch.Schmittner

Austrian Institute of Technology (AIT)

Morayo Adedjouma, Thibaud Antignac, Bernard

Botella, Huascar Espinoza

Commissariat a I’énergie atomique et aux
Energies Alternatives (CEA)

Robert Bramberger, Helmut Martin, Bernhard Winkler

Virtual Vehicle Research Center (VIF)

Stefano Tonetta, Alberto Debiasi

Fondazione Bruno Kessler (FBK)

Reviewers:?

Names

Organisation

Fredrik Warg (Peer Reviewer, D4.7)

SP Technical Research Institute of Sweden (SPS)

Garazi Juez Uriagereka (Peer Reviewer, D4.7 and
DA4.8)

Tecnalia Research & Innovation (TEC)

Siddhartha Verma (Peer Reviewer, D4.8)

Austrian Institute of Technology (AIT)

Cristina Martinez (Quality Manager, D4.7 and D4.8)

Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (TC Review, D4.7 and D4.8)

Universidad Carlos Ill de Madrid (UC3)

Stefano Puri (TC Review, D4.7)

Intecs (INT)

1 The list includes the contributors to D4.7, which is evolved in D4.8

2 The list includes the reviewers of D4.7, which is evolved in D4.8

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

TABLE OF CONTENTS

EX@CULIVE SUMMAIY...iiiiiiiiiieiiiiiiiiiiiiineeiiiiitiiessseesiiessttrsssssesssissssressssssssssssssrsssssssssssssssesssssssssssssssssnnsssssssssns 9
L. INEFOAUCHION (F) erreeiiiirecrrcrrrrrrirsrresrssssssssssssssssssssssssss s s ssss s s s s ssssssssssssssssssssssssnssssnsssnnsnnssssssssssnans 11
2. Multi-concern ASSUIraNCe OVEIVIEWccccccceereiiiiiisisssnnsnniiiisiissssssssessississssssssssssnissssssssssssesssssssssssssssssssses 14
D T - Tl ¢ o] U1 Vo TSR 14
2.1.1. Contract Based Multi-concern Assurance ()cccocvveeeeeeeiiiiiiiieee e errree e 14

2.1.2. Dependability Assurance Case Modelling.........ccccoeeeiiiiiiii 16

2.1.3. Process-related Dependability Co-assessment.......ccccccviiiiiiii, 17

2.1.4. System Dependability CO-ANAIYSIS ..ouueiiiiiiiieeiiiiiieee ettt e e e s esirreeeeeeeees 19

P AV [[o H OO OO PP PO OO OO U PP PPUPPPPPPPPPPPP 20
2.3, TOOI SUPPOIt OVEIVIEW ..o 20
2,300, CHESS . ettt ettt ettt e e e e e e bbbttt et e e e e e bbee e e e e e e e e e hbbraaeeeee e e abrraaaeaeeens 21

2.3.2. OpenCert—Assurance Case Editor........cccceeeiiiii 21

P e T o (VLY 1 ol IO PSPPSRI 21

2.3.4. EPF Composer and BVR TOO!.....cccooiiiiiiiiiiic e 23

2,305, WERACT ittt ettt e e e e ettt et e e s e s s bbbt e et e e e e s s e e bbb taaeeees s e aabbbeaaeeeeesaannbtaaaaeeeeenn 24

2.3.6. Safety Architect and Cyber Architect ... 30

2.3.7. Papyrus for Safety and Security ENgineering........ccccceeeiiiiiiii 31

3. Methodological GUILE.......ccivvvvmrrriiiiiiiiiinnnnrriiiiiisinnserrtssssssssssnseessssssssssssssnessssssssssssssssesssssssssssnnnnsssens 33
3.1. Contract-Based Multiconcern ASSUranCe (¥) ... 33
3.1.1. Contract-based Trade-off Analysis in Parameterized Architecturescccc. 35

3.2. Dependability Assurance Case Modelling (*) ...ccooeviiiiiiiiii 35
3.3. Process-related Dependability Co-assessment via EPF-C and BVR Toolccccooiiiiii, 41
3.3.1. EPF Composer WOrkflowccoooeeiiiiiiii 42

3.3.2. BVRWOIKFIOW .o 54

3.4. Standard-related Dependability Co-assessment via OpenCert Workflow (*)cccl. 56
3.5. System Dependability Co-ANnalysis (*)ccoiiiiiiiiiii 57
3.5.1. System Dependability Co-Analysis via Papyrus SSE............cccciii 57

3.5.2. System Dependability Co-Analysis via Safety Architect..............cccc 61

3.5.3. System Dependability Co-Analysis via ConcertoFLAcccoeeeiiiii 63

3.6, Privacy ANalysiS ...cccciiiiiiei e 73
3.6.1. Relevant Privacy CONCEINS......cccoeeeee e, 73

3.6.2. Privacy Assurance Case Methodology ... 74

3.6.3. Verification of Privacy-Related Requirements..........ccccceeeiiiiiiii 75

4. Cases STUIES.....cceeieiiiiiiiiiiicieieieeeereceseeesseeeeeeseeseeeteaeeeeeeeeeeeeeeeeeennens 80
4.1. Case Study CS11 - Attitude and Orbit Control SYStem (*)uuviiiiiiiiiiiiiiiiieeeiieiiieeieeerreereeereeerreeaeeee. 80
4.1.1. Description of the Use Case SCeNANiO........cccoiiiiiiiiiiii 80

4.1.2. Demonstration of the Methodology ... 81

4.2. Case Study CS3 - Cooperative Adaptive Cruise CONtrol (CACC)uuvevereeeeeeeeeeereeeeeerererrererssrrereeennee. 85
4.2.1. Description of the Use Case SCeNANiO........cccceiiiiiiiiiiieeeeeee 85

4.2.2. Demonstration of the methodology..........cccoooiiiii 85

4.3. Process-related Dependability Co-Assessment: An AUtOMOLIVE CaSE........uvvvvverierreververeereeererernennnnns 86
4.3.1. Commonalities and Variabilities between SAE J3061 and I1SO 26262ccceeeeeeeeeeee.... 87

4.3.2. WOrK ProduUCES......ccoeiiiiiecceeeee 88

4.3.3, ROIES e 88

L B S TV T =1 o Yol TSN 88

L TR TR 1= T U 89

4.3.6. WOrk Break DOWN StIUCKUIEcceieeeeiiicee e eeeeeeice e e e e e e e e ttee e e e e e e e e et e e e e e e eeesannaeeeeeeesennnnan 91

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

4.3.7. DOMAIN ENGINEEIING ...eeiiiiiiiee ettt s e e e ettt e e e e e e eeeeasaa e e e eeeenesnnnas 91

4.3.8. Variability Model Creation (VSPec EdItOr)cceiiceviiiiiiee ettt eeenraee e 93

4.3.9. Configuration Resolution (Resolution Editor)cccuveeereeeiiicciiiiiee e 103
4.3.10.Model Realization (Realization EdItOr)ceeeeeiiiccciiiiiiee et e e 104
4.,3.11.Case StUAY CONCIUSIONcuvuuieie ettt e e e ettt e e e e e e e eebb b eaeeeeeeesesssaaeeeeeseesssnnns 109

4.4, CS1: Industrial and Automation Control Systems (IACS) (*) .eeeeeeeiieeiiiieiiee e 110
4.4.1. Description of the Use Case SCENAIIO.......cccvvviiiiiiiiieeeeeeeitiiee e eeeeeeetreie e e e e e e eeeaaaaeeeeeeeaessanns 110

4.4.2. Demonstration of the Methodology ... 110

B CONCIUSTIONS .. e s s s s s s s s s s se s e s s s s s s s sasassnnns 116
Abbreviations and Definitions........ccccciiiiiiiiiiiiiiiii e e e e e e e e s e e eaaees 117
REFEIGNCES .eeeeeeeeiissrssss e s s e e e e s s e s e sssssssssssssssssssssnnnns 120
Appendix A. Changes With respect t0 DA.7 (¥) ...eeeeiiiiiiiiiriireiiiiiiiinsnnneeeerssecsssssnnseessssssssssssnnsesssssssssssnnnes 124

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Figure 1.

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.

List of Figures

Assurance Case Specification and Multi-concern Assurance in relation to other AMASS

Prototype P2 building BIOCKSuuviiiiiiiiiiiiiiiiiieieiitittetviseeee e ee e eeeeeeseeeeeeeeeeseseeerenenes 12
Multiconcern assurance case Structure PropPoSal............eeeeeeueeererrerrererrrrrrerrrrrereere————. 15
Process frameWOrk OVEIVIEWuiuiiiiiiiiiiiiiiiiietiieieeeteeseeeseeeeeeeeeeesseeseseeeearesesreereararrrarrrrrrnes 18
Security-oriented FMVEA elements complementing FMEA...............cccc, 22
User Interface of the FMVEA model editor.uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieieeeeeseeeeeeeeeeenenennn. 23
WEFACT USer aUthOriSatioN.......ouuuiiiiiiiiie ettt et e e e e s et e e e e e e e s s saaes 25
WEFACT project selection dialog boXcooeveiiiiiiiiiii 25
WERACT USEI INTEITACE. .. titiiiiieiiititeee ettt e e e s s ettt e e e e e s e ssabbeeeeeeeeessnaanes 26
Requirement data input in WEFACTvviiiiiiiiiiiiiieiieeieieeeeeeessseessessseessssssessssesreererrererrres 27
Tool definition BOX iN WEFACT ...ttt ettt e e e sttt e e e e e e s s sabrreeeeeeessaanns 28
Typical use of WEFACT iN AIMASS ..., 29
Example of SA FT exported in Arbre Analyste [28]uvveiiiiiiiiiiiiiiiieieeiiiiieereeseeeeereeerne. 30
e TaaT o1 [l o) il O N A ISP PPPPPPRt 31
Papyrus SSE supports safety and security analyses during early phases of systems engineering
.. 32
MUILI=CONCEIN CONEIACES ..uieiiiiiiiiee e ettt e e ettt e e e e s st et et e e e s s s saabtreeeeeessssasbbaaaeeeeesns 33
The argument pattern for contract-based requirements assurance............cccccceeeveeeeeeennnnnnn. 34

Contract-based Trade-off Analysis takes in input the parameterized architecture and a set of
configurations. The process is decomposed in 2 sub-processes; the execution of contact-
based checks for each instantiated architecture, and the visualization of the compared results

OF the CRECKS. ..eeeiiii e e s st e e e e e e e s s s s sabbreeeeeeeessnnnns 35
Workflow for Dependability Assurance Case modelling............ccccoeeeiii, 36
Screenshot of the Assurance Case editor defining the assurance case structure.................. 37
Six Step Process for developing goal structures [5] ... 38
Screenshot of the Assurance Case editor editingaclaim.................... 39
Graphical notations used to show the interplay between concerns........................l 40
Workflow for System Dependability Co-Assessment..........ccceeeeeeiiiiiiiii, 41
Organization of Method Content ... 42
Method Content WOTrKFIOWccoiiiiiiiiiiiiiiiec et rarre e e e e e s 43
V=T gToTo I o TN T = 1o PP PPPPPPRt 44
CoNtENT PACKAZE ...ccce oo 44
LA o T4 2 o o [¥ ot i PP PPUPRR 45
(A o T4 2 o o [¥ ot AU P P PPPRRR 45
LCUT Lo 11 1T =PRSS PPPRRR 46
Role and Work Product RelationShipcueeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiseeessesseeesssessssssssssessrereneee. 46
(0T LI T I T PP PPPRRR 47
TASK S EPS e 48
Task Relationships with Roles, Work Products and Guidance................ccccoeeiiiii, 48
Cybersecurity Capability Pattern ... 49
Multi Concern Capability PAtterNueiiiiiiiiiiiiiiiiiieieiieeeeieeeeeeeeeeeessresessrsesssrrsrssrsrrarrrrrerr—.. 49
Pattern ENgineering LIfECYCIE [56]uuuiiiiiriiiiiiiiiiiiiiieeeieeeeeeeeeeeeesersrssresssrrseaeerssrssrssrerrrrrerrrae. 50
Iterative Design Process Factoring Safety and Cybersecurity Requirements............c.c.cevvvvveens 51
Software Unit Design and Implementation Delivery Process..........ccccccoeeiiiiiii, 52
Process Diagram - Software Unit Design and Implementation Delivery Process............c....... 52
Detailed Activity Diagram — Software Unit Implementation...........ccceevvvvvivieviereeriiiieeeieenennnns 53

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.

Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.

Figure 67.
Figure 68.
Figure 69.
Figure 70.

Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.

Fragment of Published Method CONteNteuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeererrrerrrane 54
BVR Feature Model using VSPEC EQITOruuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeereerereerereererarernnnne 55
BVR Resolution Model with Valid ReSOIULION.........cuviiiiiiiiiiiiiiiiiieeiiiiieiierieeveeeeeeeeeeeeeeeeeeerennne 55
BVR Resolution Model with Invalid ReSOIULIONcuvviiiiiiiiiiiiiiiiiiiiiiivieveiieeeeeereeeeeeeeeeeeeeennen 55
Sub-activities related to the Preparation of Cross-Standard REUSEcceevvvvviicieeeeeeeeennnnn, 57
Annotation of the system model to conduct safety and/or security analyses........................ 58
Lifecycle supported by Papyrus4Safety for model-based safety analysis............uvvvvvviviiennnnnns 59
Main phases supported by PapyruSASECUNILYuuuuuuuuureririereeeererrrererrrrrrerrerrereerer—.. 59
Interoperability between AMASS platform (CHESS and OpenCert) with Safety/Cyber Architect
{00 To] [P P PP PP OPPPPPPPPPPTRRN 62
Workflow regarding system dependability co-analysis via Safety Architect.......................... 63
System Dependability Co-Analysis via ConcertoFLA.............cceeiiiiiii, 64
Component, Interfaces and other entities definition.................cccc 65
Assigning input/output ports t0 @ COMPONENTcccuviiiiiiiiiee ettt creee e eetre e e e sireee e 65
COMPOSITE COMPONENT ceiitiiiieeii ittt ettt s e e e et teabb s e e e e e eeetaasassseeeeeennssaassssesesnssnnnn 66
Decorating the components with their failure behaviour ..., 67
State Machine Diagram illustrating the ErrorModel Stereotyped Security Attack Model....... 68
Security Attack Model showing Failure Stereotype State Transition 68
Sensor Component with ErrorModelBehavior Stereotype ... 69
Specifying the injected faults at the input ports of composite component........................... 70
Creating FailurePropagationAnalysis component and assigning resource platform............... 70
Back-propagated failure on the output port of composite systemeevvvvvvviveiviiievinnnnnnn. 71
Generate FT via CoNCerto-FLA MENUiiiiiiiiiiiiiee et e e 71
Automatically generated multi-concern faulttree............ccccco 72
Example of data protection asSUranCe CASE........uuuveirrririreerrreerereeererrrerrrrrrerrrrrereeree———.. 75
Architectural view of the data flow diagram and its attributes (white values correspond to
Sn5.1.b.1 and grey values correspond to Sn5.1.b.2 from Figure 65)............ccceeeiiii. 76
Class diagram showing the components of the ACS systemcccoeeiiiii, 81
ACS COMPOSItE COMPONENT...ccitiiiiiiiiei ittt e et eter s e e eea s e eear s s eeaaaseaeeannsesannnnsens 82
SignalConditioner Component Security Attack Modelcc 82
Automatically generated fault tree from failure propagation paths with highlighted
SignalConditioner Componenttreeccoeeeeeeiiiiiii e 84
SignalConditioner Component fault tree illustrating multi-concern causes.......................... 85
Assuring “rear collision” hazard in platooning/CACC capable vehicle..........ccoeeevvvveeeiiiiinnnn, 86
RequiremMents from 1SO 26262eeueieiieiiiiiiiieieieeeeeeerereeeereeeeeeeesrereerrrerrr.—...——————————. 87
Requirements from SAE J3061ocvviiiiiiiiiiiiieeeieeeeeeeeteereeeseeessesressarreresereerrrrrrrrrrerrarrr... 87
Common and Variation Points identificationccccccoveiiiiiiiieii e 88
FEAtUIe Tre@ — TOP LEVEN .coeviiiiiiiiieieeeeee ettt ee e e e eeeeeessaessssssssssssssessssssssssssssrnnes 93
ConcernChoice, Roles and Activities Expanded..............cccoooiii 94
WOTIKPIrOUCES SUDTIEEviiiiiii ittt e e s e s e e e e e e e e e s sarrereeeaeeeeenannes 94
Guidance Subtree (1 0f 2) .o 95
Guidance SUbtree (2 0f 2) oo 95
CommonalityPoint and VariabilityPoint Subtreescccc 95
DESIZNCOM SUDTIEE....eiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeteeeeeeeaessesesssrnnnnns 96
DeSiZNREVIEWCOM SUDTIEEoeiiiiiiiiiiiiiiiiiieeeeeeeteeeeeeeeeeeeeeeeeeeeesaeesessessssessssssssssssssssssssssssseanes 96
IMPleMENtatioNCOM SUDTIEEuiiiiiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeereeeeeeeeesseeeeessseessesesssssssssrssassrsrnnes 97
ImplementationReVIEWCOM SUDLIEE.........ueei i e 97
DesignVar and DesignSafety SUDTIEESuuuiiiiiiiiiiiiiiiiiieeiieeeteeeeeeeevveeeeeveeaeeeessessessasssaserarane 98

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.

DesignVar and DesignCybersecurity SUDTIEES.........uuviviviiiiiiiiiiiiiiieiiirereereeereeereeeeeeeeerereeerrnnn 98
DesignVar and DesignMUultiCONCErN SUDLIEES.uuvviiviiiiiiiiieeiieereeerereeeerreereeerereeeerrerrrrre 99
DesignReviewVar and DesignReviewSafety SUDLIrees.uuuvvviiiiiiiiiiiiiiiieiiiiiiiieereeeereeereeeeenn 99
ReviewVar and DesignReviewCybersecurity SUDTIees........uuuuivviiiiiieviiiiiieiiiiiiiiieiiereeneenennnnn 100
DesignReviewVar and DesignReviewMultiConcern SUBtreesoovvvvveeeeeeeeereeiiiiiieeeeeenens 100
ImplementationVar and ImplementationSafety SUDtreesuvvvviiviiviviiiiiiiiiiiiiiiiiiiiiiaens 101
ImplementationVar and ImplementationCybersecurity SUDLreesuuvvvvvevvvvvevevveeennnnnns 101
ImplementationVar and ImplementationMultiConcern SUbLreesuuvvvvvevvvveeveeeeeennennns 102
ImplementationReviewVar and ImplementationReviewSafety Subtrees..........ccccvvvvvvvennnns 102
ImplementationReviewVar and ImplementationReviewCybersecurity Subtrees................. 103
ImplementationReviewVar and ImplementationReviewMultiConcern Subtrees................. 103
Example - Valid Resolution with ConcernChoice ‘MultiConcern’........cccoevevviveeeeeeennnncnnnneen. 103
Example - Valid Resolution Showing Cardinality with ConcernChoice ‘MultiConcern’ 104
Creation of Fragment Substitutionc.oeoe 104
Creation of Placement/Replacement.........coocuviieiiiiiieeeiiieeeeereee et e e eeree e e estreeeeeiraee e 105
Linking VSpec to Fragment SUDSEItULIONcuvviiiiiiiiiiiiiiiiiiiicceeiieveeeevevveeee e ereeeeeeeees 105
Placement Unit Design ReVIEW SAfetyuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiviisseeseeseeseseseesssseeseereeeranene 106
Replacement Unit Design Review CYberseCUrity.........uuuuiiriiiiiereiiriiiiiiiiiieereeeeeerereereereeenn. 106
Detailed Activity Diagram Cybersecurity (1 0f 3)....cccoviiiiiiiiiiiiieeeee e, 107
Detailed Activity Diagram Cybersecurity (2 0f 3)...ccccoviiiiiiiiiiicieeeee e, 107
Detailed Activity Diagram Cybersecurity (3 0f 3)...ccccoiiiiiiiiiiiiiieeee e, 108
Detailed Activity Diagram Multi Concern (1 of 3)uuviiiiiiiiiiiiiiiiiiiiieiriieeeeeeeeereereereereeeeae. 108
Detailed Activity Diagram Multi Concern (2 0f 3)uuviiiiiiiiiiiiiiiiiiiieiiriieeeeeeeeeeeereereererereee. 109
Detailed Activity Diagram Multi Concern (3 0f 3)uuiiiiiiiiiiiiiiiiiiiiiiiiireieeeeeeeeeeeereereeeeeerane. 109
High-level Archiecture of SchneiderElectric Saitel RTUevviiviiiiiiiiiiiiiieiiiiiiieireeneneennnnn 110
SchneiderElectric Saitel RTU High-level Architecture model in CHESS 111
Import from CHESS tool to Safety Architect toOl...........viviviiiiiiiiiiiiiiiiiiiieeeeveeaeees 111
Safety Architect WBS model from CHESS WBS model...........cooooiiiiii, 112
Cyber Architect project initialised with EBIOS knowledge basesccccc. 112
An interface between Safety Architect and Cyber Architect...................c, 113
Safety & Security viewpoint in Safety Architectcccc 114
Safety & Security viewpoint selection in Safety ArchitectcL 114
Propagation Tree (fault tree extended with malicious events) in Safety Architect 115
Import Safety Architect propagation tree in CHESS t0O0lcvvvviiiiiiiiiiiiiiiiiiiiiieevvvvvviiaeenns 115
Evidence resource 10cation in OPENCEIT.........uuuviiiiiiiiiiiiiiieeierieieeereerrerrrrrrrerrrer————————————————. 115

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b)

D4.8V1.0
List of Tables
Table 1. Task/Work Product/Roles/Guidance Relationships.........cccovveeeeeiiiiiiiiieeeeieee e e 89
Table 2. Work Break DOWN STrUCLUIE....ccoeeeeee e, 91
Table 3. Feature Tree — Variability MOEluuuiiiiiiiiiiiiiiiiiiieiiiiiieieiieieeeeeeeee e eeeeeeereeeeererereeereraee 91
List of Codes
Code 1. Template for input purpose limitation........ccccoii 77
Code 2. Template for output purpose limitationccooeii 77
Code 3. Consolidated template for main function of Rate credit application..........................l 77
Code 4. Purpose-limited main function of Rate credit applicationevvvvviiviviiiiiiiiiiiiiiiiiiiiiieinnnn, 79
Code 5. Flow-oriented ACSL specification of read input int abstract function.............c........... 79
Code 6. Flow-oriented ACSL specification of insert abstract functionccccvvviviviviviiiiiiiiiiniinnn. 79
Code 7. Definition of credit rate fUNnCtion ... 79
List of Algorithms
Algorithm 1. Purpose limitation ACSL specification generation.................ccccc 78
List of Equations
Equation 1. Definition of the < purPOSEs OrdErING........uuuviiiiiiiiiiiiiiiiiieiieiieeriererrrrrrererrrrr——————————————————————.. 76

H2020-JTI-ECSEL-2015 # 692474

Page 8 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Executive Summary

This document (D4.8 Methodological guide for multi-concern assurance (b)) is the final deliverable
associated with the AMASS Task 4.4 Methodological Guide for Multi-Concern Assurance, which provides
information about how to use the AMASS Multiconcern Assurance approach. This is the final version and it
is based on the functionality supported by the third prototype (P2) of the AMASS platform.

This deliverable is conceived as an update3 of the previous version (D4.7 Methodological guide for multi-
concern assurance (a)), which was delivered as a confidential document.

This document focuses on the techniques developed in WP4. The guide targets a diversified audience,
mainly composed of process engineers, assurance engineers and development engineers.

To try to make the document self-contained, first, background information regarding the AMASS multi-
concern concepts is given. Second, the AMASS multiconcern vision is recalled. Third, the potential of the
tool-supported approach is illustrated via a series of workflow-diagrams. Fourth, the fundamental
functionality of the tools supporting the execution of the workflows is recalled. Finally, use case-oriented
scenario instantiations are used to further refine such guidelines.

To have a more general overview regarding the AMASS approach including the methods and techniques
provided by other WPs, the reader is referred to D2.5 [12] as well as D3.8 [7] and D6.8 [8], which
respectively provide guidance for the AMASS Architecture-driven approach and for the AMASS cross- and
intra-domain reuse approach. D2.5 also includes a user manual, which contains detailed descriptions of
how to use the specific functions.

3 The sections modified with respect to D4.7 have been marked with (*), then the details about the differences and
modifications are provided in Appendix A: Document changes with respect to D4.7 (*)

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

1. Introduction (*)

Embedded systems have significantly increased in technical complexity towards open, interconnected
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and
automation of labour-intensive activities such as the assurance of their dependability. The AMASS project
builds on the results of two large-scale projects, namely OPENCOSS [26] and SafeCer [25]. These projects
dealt with the assurance and certification of software-intensive critical systems using incremental and
model-based approaches. Both projects focused on compositional argumentation, however, neither dealt
with multiple concerns. Moreover, while the SafeCer approach was more detailed with respect to system
modelling, OPENCOSS was more detailed with structuring of the assurance case. Since the two approaches
are complementary, in AMASS, it has been decided to combine them and further refine them.

More specifically, SafeCer developed a generic process model given as the commonality within a
configurable process line. Methodological guidelines for the EPF Composer-based Safety-oriented Process
Line Engineering (SoPLE) [55] were also developed. The AMASS project consolidates and extends SoPLE to
enable capturing the multi-faceted nature of assurance and thus contributing to the multi-concern
assurance approach. The AMASS project also combines it with the OPENCOSS solutions for managing multi-
concern compliance.

OPENCOSS elaborated solutions for assurance case structuring (i.e., vocabulary and structured expressions
used in the assertions included the argumentation, as well as the composition of the arguments when they
were provided by different suppliers), but the connection with system modelling was not in focus.
Furthermore, the assurance case did not consider multiple concerns and how to account for their interplay.
Hence, in AMASS, the compositional approach for assurance case structuring, properly connected with
system modelling, and extended for multi concern assurance, has been targeted.

SafeCer also developed a generic component model and contract-based verification techniques for
compositional development and certification of CPS. These have been integrated in the CHESS tool support
[27]. The AMASS project consolidates and extends such support with a wider range of mono-concern
focused analysis techniques for the system architecture and combines it with the OPENCOSS solutions for
building an assurance case. The resulting Architecture-Driven Assurance approach (designed in D3.3 [6]) is
in D4.3 [3], further extended for: multi-concerns (in particular, the interplay between safety and security is
in focus); and reuse of multi-concern architectural patterns. Moreover, the approach exploits tool
interoperability mechanisms (designed in D5.3 [9]) to interact with external tools for multi-concern
modelling and analysis support.

Figure 1 provides a general overview of the AMASS Scientific Technical Objectives (STOs) and how they are
implemented in the AMASS project by specific Work Packages (WPs). This deliverable defines the guide to
be followed to apply the Multi-concern assurance approach developed in WP4. The methodological guide
describes how to use the AMASS tools with help of examples and detailed process steps. The workflow is
presented with the aid of activity diagrams or sequences of to-be-followed steps. The steps are meant to
give an example of usage of the tool trying to cover all relevant features.

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

Sy M S
- AMASS Reference Tool Architecture

1

1 :

I éé
Certification Safety/S&curity

Liaison Assessment

Component Supplier

Architecture-Driven Assurance (STO1) Multi-Concern Assurance (STO2)

L

Component Module Assurance
Release Case Development

Product Engineering

AMAC‘: Dia+f~rm Rasjc Building Blocks

WP5 WP6
System Com, punent Assurance Case Ewdence
' Specification

Common Assurance &
Certification Metamodel
(CACM)

Compliance

Mar

Design Validation &
Verification

Development Quality
Management

Figure 1. Assurance Case Specification and Multi-concern Assurance in relation to other AMASS Prototype P2
building blocks

This deliverable, first, provides an overview of the key concepts, such as contract-based multi-concern
assurance, dependability assurance modelling, and system dependability co-assessment and analysis. Then,
it explains what Multiconcern Assurance means, the role of the key concepts in the approach, and how the
AMASS platform supports it. The core of this deliverable describes the workflows to enact Multiconcern
Assurance, detailing the activities to be conducted and how to use the tool support. The workflows are
presented by means of activity diagrams or sequences of steps to follow. To get a detailed explanation
about the different options, the user may refer to the user manual, included in D2.5 [12]. Finally, the guide
uses simple case studies to concretely describe the approach.

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

2. Multi-concern Assurance Overview

This chapter provides an overview of the multi-concern assurance approach. To do that, essential
information is recalled: first, background information belonging to the solution space, then the vision, and,
finally, the main functionalities of the individual tools composing the AMASS platform and playing an active
role within WP4,

2.1. Background

The purpose of this section is to recall fundamental concepts in order to make the document self-contained
and enable the understanding of the guide. The presentation of the concepts builds on top of D4.3 [3].

2.1.1. Contract Based Multi-concern Assurance (*)

The spine of an assurance case is represented by the top-level requirements and goals that should be met
by the system, and the evidence supporting the confidence that those requirements are met. Typically,
those top-level requirements are decomposed based on the system architecture so that assurance of the
decomposed requirements supports top-level requirements to fulfil dependability properties at system
level. Confidence in the requirements decomposition needs to be ensured to use the decomposed
requirements also for the assurance of the top-level requirements. Assumption-guarantee contracts can
assist in increasing confidence in both requirements and their decomposition.

This decomposition of requirements to ensure the system level assurance is also reflected in the system
assurance case. In D4.3 [3], a proposal for the multiconcern assurance case structure was made. The
system is assured for multiple concerns such that a set of system goals is developed for all the different
concerns. The system goals are supported by the system requirements developed for all the different
concerns. The concern-specific system goals are supported by the requirements specific to different
concerns (safety, security, performance). Interplay of the concerns on all the levels where cross concern
trade-off occurs (goals, requirement and components) is handled in the trade-off argument module as
shown in Figure 2.

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 124

@ AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

Interplay of concerns

Concern-specific aspects

Multi-concern aspects

[1

System
System Multi-concern
Assurance case

[1]

CompNConcernZ
" Component N Concern Z
Assurance case

|
Z=number of concerns |

D

ConcernXGoals X=number of concerns ' SysGoals
System Concern X Goals ¢ System Goals
_I allocation allocation
Trade-off
Trade-off arguments
between concerns on
different levels I I
ConcernYReqs Y=number of concerns SysReqs
System Concern Y < . System Requirements
Requirements

—

CompN

Component N
Assurance case

Figure 2. Multiconcern assurance case structure proposal

Considering allocation of requirements over the system architecture, contracts on the architecture
elements are defined to correspond to the requirements allocated to those elements. An assumption-
guarantee contract can be used to formalise a requirement such that the contract guarantees formalise the
requirement by describing the behaviour of the element that implements the requirement, while the
contract assumptions capture the conditions under which that behaviour is exhibited. Provided that the
assumptions hold in a particular system, then the guarantee also holds, hence the corresponding
requirement is met by the element in the given system. Requirement decomposition is captured by the
contract refinement specification. Just as a requirement may be decomposed to a set of (sub)-
requirements, the contract of an element can be refined by a set of contracts of the sub-elements.

The contract refinement analysis can be used to increase confidence in the requirements decomposition as
well as to assure that a particular contract/requirement holds in the given system. To assure that a
requirement is satisfied with sufficient confidence, it is necessary to argue about:

1. Isthe contract or a set of contracts correctly formalising the requirement?

2. Can the inputs in the refinement analysis (i.e., can the contracts themselves be trusted? and more
precisely can the corresponding element be trusted to behave according to the guarantees given
the assumptions) be trusted? and

3. Canthe outputs from the refinement analysis (i.e., can we the tool itself be trusted) be trusted?

Assuring these aspects allows the outputs from the contract refinement analysis to be used to support both
requirements decomposition and requirement satisfaction. The first point may be addressed for example
by inspection of the requirement and the corresponding contract guarantees, while testing or simulation
can be used to support the second aspect. The third aspect may be addressed by verification of the tool

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

and methodology used for contract checking. The last aspect is related to the tool qualification activities
and the level of confidence put on it.

Considering that each requirement may be related to one or more different concerns such as safety and
security, assurance of different contracts supports assurance of those concerns related to that contract.
Furthermore, as the contracts connect additional information to the requirement in terms of assumptions,
the contract-based assurance supports identification of interactions of those formalisable requirements
across concerns. Dependency, conflicting as well as supporting relationships between elements and their
concern-specific requirements can be highlighted through contract-based assurance.

2.1.1.1. Contract-based Trade-off Analysis in Parameterized Architectures

Parametrized architectures, as defined and developed in WP3, provide the means to analyse the system
architecture in different configurations. Each configuration may enable/disable some components, ports,
connections, and contracts. Different configurations can be analysed and compared with respect to
different aspects: contract refinement, satisfaction of formal properties, fault tolerance, minimal cut sets,
reliability measures. Such an approach was for example followed in the analysis of different configuration
of the next generation of air traffic control design [75].

Comparing the different configurations allows the designer to perform trade-off analysis and design space
exploration. Architectural choices are supported by the mentioned analysis results. In particular, the choice
whether adding or removing a function (represented by a block or by a contract), enabling or disabling a
redundancy, or other similar changes is supported by checking which functional and non-functional
properties hold in the different configurations. This trade-off analysis is enhanced by the information about
the concern addressed by the different properties and contracts: the analysis provides a direct way to
evaluate the impact of the trading-off architectural elements on the multiconcern represented by
properties and contracts.

2.1.2. Dependability Assurance Case Modelling

As it was recalled in D4.1 [2], originally, when the necessity of demonstrating safety management emerged
[58], the concept of safety case was introduced. Decade after decade, this concept has evolved to include
other properties such as security, performance, conformance, trust, etc. Nowadays, the concept of
Assurance Case is used to refer to a case that covers any critical property to be assured.

An Assurance Case is a set of auditable claims, arguments, and evidences created to support the claim that
a defined system/service will satisfy some particular requirements [57]. Assurance cases use a structured
set of arguments and a corresponding body of evidence to justify that a system satisfies specific claims with
respect to its properties (i.e. safety, security, reliability, availability, etc.).

With Dependability Assurance Case modelling, advantages of two main concepts are taken. On the one
hand the compositional argumentation and, on the other hand, the power of argumentation applied on
dependability.

Compositional argumentation means to deal with the challenge of complexity and length of the assurance
cases. By adopting a modular, compositional, approach to the assurance case construction it may be
possible to:
e Justifiably limit the extent of the assurance case modification and revalidation required following
anticipated system changes.

e Support (and justify) extensions and modifications to a ‘baseline’ assurance case.
e Establish a family of assurance case variants to justify the dependability of a system in different
configurations.

This approach establishes a modular and compositional construction for assurance cases that has a
correspondence with modular structure of the underlying architecture. As with system architecture, the
assurance engineer should establish interfaces between the modular elements of the assurance (safety,

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

security, conformance...) justification such that the assurance case elements may be adequately composed,
removed and replaced. Similarly, it will be necessary to establish the assurance argument infrastructure
required in order to support modular reasoning.

In order to provide assurance of the system to carry out its intended function in its intended context, the
relationships between the dependability aspects of the system (safety, security availability...), the decisions
made during the development of the system to accommodate them, and the effects of these decisions and
any other concerns which they impact (in this case, maintainability, performance, and potentially security)
have to be recorded.

Assurance cases are not a fixed document but rather a living document, as Denney, Pai and Habli proposed
in [73], “Dynamic Safety Cases” should be targeted. Artefacts should be checked, validated and updated
based on actual feedback data. With this conception of dynamic assurance case, in AMASS, the need for an
explicit notation that shows that a claim has an impact (to reassure, to dismiss or no impact) in another
claim has been identified. More specifically, the following relationships between dependability properties
in the assurance case have been identified:

e Dependency relationship. The claim A of one attribute depends on the fulfiiment of claim B of
another attribute. For example, a fail-safe claim of attribute safety depends on the claim that the
safety instrumentation system is not tampered of attribute security.

e Conflicting relationship. The assurance measure of attribute A is in conflict with the assurance
measure of attribute B. For example, a strong password or blocking a terminal after several failed
login attempts for security conflicts with the emergency shutdown for safety. Resolution of such a
conflict need to be noted in the Assurance Case.

® Supporting relationship. The assurance measure of attribute A is also applicable to assurance of
attribute B, such that one assurance measure can be used to replace two separate ones if the
attributes are considered and addressed individually. For example, encryption can be used for
both: for confidentiality in terms of security and to check data integrity regarding safety. This
means two goals can be addressed by one argumentation.

Another challenge that security experts need to face is the temporary effectivity of the assurance decisions.
As security threats evolve in time, as attacks improve, the security mechanisms put in place need to be re-
assured after some time. Assurance cases need to be checked periodically to ensure that evidence used to
support the safety and security properties is still valid [60] and if not, provide an impact analysis and modify
the system to ensure that the vulnerabilities are mitigated and/or avoided. Assurance cases should not be
seen as a static tool but rather as a dynamic and living mechanism that supports safety and security
responsible during the impact analysis task.

2.1.3. Process-related Dependability Co-assessment

To achieve a fully functional automated car, car manufacturers are constantly increasing the complexity of
the functions. Developers of these vehicles have to deal with functional safety on the one hand and
cybersecurity on the other hand. In that context, cybersecurity gets more and more important because
automated driving needs information transfer from outside of the vehicle, e.g. between vehicle and
environment (keyword “V2X — communication”).

This subsubsection presents the concept of co-engineering and how it could be implemented via Security-
informed Safety-oriented Process Line Engineering (SiSoPLE) [55], supported by the integration of EPF
Composer (shortened EPF-C) [18] and BVR Tool [24]. Co-engineering supports the combination of cross
concern activities to a joint process. This method is used during process development (see Figure 3) and
supports Process-related Dependability Co-assessment. Different domains like automotive and avionics
have different requirements, which lead to different processes and workflows. From another perspective,
processes often deal with similar concerns like functional safety, cybersecurity and other quality-related
concerns. This point of view makes clear that many methods are useable in different realisations in various

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

domains. Product developers follow well-defined domain specific processes and workflows, which should
cover a wide spectrum of concerns.

The interaction between functional safety and cybersecurity methodologies has to be defined
systematically. A “Safety-Security-Co-Engineering” approach has to be offered. The activities concerning
this approach belong to the block “Process development” in the “Process framework overview” in Figure 3.
The approach compares relevant standards, for example 1SO 26262 for functional safety in the automotive
domain and SAE J3061 for cybersecurity in vehicle systems and identifies commonalities and variabilities of
those standards.

Note: The successor to SAE J3061 is under joint development between I1SO and SAE, which is called
ISO/SAE 21434 - Road Vehicles - Cybersecurity Engineering.

After identification of relevant standards, the framework leads via process development to process
management. Additional compliance management and argumentation management is considered. The
following subsection regards only co-engineering which is part of process development.

o

Process i

framework Identify relevant
regulations and

standards

!

<
Process
development)

Process
management

v

[S
~
Assurance
[No] { i
argumentation
J

management

Compliance
management

Process is compliant
with regulations
[Yes] and standards

o)

Figure 3. Process framework overview

Standards allow flexible but thoroughly justified interpretations and customisations, which can be modelled
as variabilities. Differences between project specific processes, which arise through instantiation of
identical base processes may be interpreted as variabilities. Variable activities can be managed with the
methodology shown in Section 3.3.2 - BVR Workflow. To deal with commonalities based on a co-
engineering approach, we must define two types of commonality. The first definition is related to the
Safety-oriented Process Line (SoPL) [30], which deals with single concern — cross domain processes. In this
case, common activities are identified in different domains (e.g. functional safety in the automotive and
industrial domain).

For cross concern topics, we have to extend the primary definition of single concern commonality. The
intention is to “maximize” co-engineering activities and deal with variability in a way that makes elaborated
processes reusable. Activities in cross concern applications, which must be executed in any case, are called
safety security co-engineering activities instead of single concern “commonality”. The main difference is

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

that co-engineering activities do not necessarily contain common activities, but they lead to a common
goal. We must make sure that co-engineering guarantees interaction between different concerns, in our
example safety and security related activities. This interaction guarantees functional safety at the
demanded level, and it makes sure that cyber-security issues are considered (in our example based on ISO
26262 and SAE J3061). SAE J3061 risk levels quantify the risk of successful cyberattacks. Risk levels are
derived based on “attack potential”, “attack probability”, “severity” and “controllability”. In our case it is a
criterion that indicates the risk that functional safety can possibly be levered out by an attacker in certain
circumstances. The task is to combine two different concerns, which apparently may be considered
independently, but they are not. In our framework, activities concerning functional safety and
cybersecurity are considered in joint activities. In the concept phase, ISO 26262 demands that the activity
Hazard Analysis and Risk Assessment (HARA) must be performed. A process, which beyond safety also
considers security, has also to perform Threat Analysis and Risk Assessment (TARA). That process must
consider the potential dependence between HARA and TARA and has to perform these two activities in
parallel but intertwined.

Safety engineer and security engineer are different roles performed by different persons and depending on
the role the safety or security activities will be executed. However, in this approach both roles need to be
synchronized and exchanging information between teams. One of the activities that should be executed in
combination is analysis approaches like System-theoretic Process Analysis for Security (STPA-Sec) [31] for
concept phase and Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) [32] for system level are able
to identify interdependence between functional safety and cybersecurity. Identification of hazards and
potential causes is an indispensable presupposition for a safe and secure system. We must identify hazards
and threats from both areas because insufficient controls can lead to unsafe control actions, independent
whether the cause is related to a hardware fault (classic safety-oriented view) or to a security issue. In
some cases, we will identify cybersecurity risks, which influence only non-safety areas (e.g. privacy) but
they are out of scope from our safety perspective. Section 2.1.4 provides additional information concerning
co-analysis methods.

The interest is to define measures, which are appropriate to mitigate any identified risks. The co-
engineering approach must cover hazards, which arise due to the combination of safety and security risks.
As a consequence, we need to perform a safety and security co-analysis, which should guarantee that we
identify any additional potential hazards, which would stay undiscovered if only one discipline is examined
in an isolated way. To make sure that measures from competitive disciplines do not influence each other in
a non-admissible way, we have to consider a trade-off in the risk reduction measures. In other words,
developers have to decide how much impact is allowed for each single safety and security measure. A
metric has to be developed as an aid to find out the balance and as an argument why a specific safety-
security constellation has been chosen. Finally, all arguments have to be collected in the assurance case,
which covers the integrated and harmonized safety and security case. In an assessment, which deals with
safety and security, evidence is needed to argue why the trade-off between safety and security conforms
with standards from both domains.

The tool EPF-C is used to model the safety and security co-engineering process and the tool WEFACT is used
to execute the process workflow and gather all the required evidences for the argumentation. An example
which shows how the two tools are used can be found in D4.3 [3].

2.1.4. System Dependability Co-Analysis

Co-analysis covers a wide range of methods and techniques to identify safety hazards and security threats,
which are often the activities in the early stage of a product/system development lifecycle, e.g. in the
requirements engineering as well as the design phase. These analyses are also regarded as approaches to
risk assessment, because the goal of the analyses is often to identify safety and security risks.

In the context of the AMASS project, more precisely in the context of D4.3 [3], the following methods were
identified as an initial reference for co-analysis:

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

o The SAHARA method, which combines the automotive hazard analysis and risk assessment (HARA)
with the security domain STRIDE approach to quantify impacts of security threats and safety
hazards on system concepts at initial concept phase.

e The FMVEA Method, which was developed in the context of the ARROWHEAD project [59] and
extends the established Failure Mode and Effect Analysis with security related threat modes.

These two methods are expected to be further developed during the third iteration of the AMASS
prototype.

Besides these methods, additional two methods will strengthen the AMASS Co-Analysis approach:

e The joint analysis performed via fault trees and attack trees conducted via Safety Architect [14], as
well as the security analysis performed via the EBIOS (Expression des Besoins et Identification des
Objectifs de Sécurité - Expression of Needs and lIdentification of Security Objectives) method
conducted via Cyber Architect [15] . The results of these analyses are expected to be exchanged
with the AMASS platform.

e Failure Logic Analysis via ConcertoFLA [34], which is a result of the EU ARTEMIS CONCERTO project
[88] and was extensively recalled in D4.5 [4] as well as in D4.6 [11].

2.2. Vision

The core vision of the AMASS Multiconcern assurance consists of the exploitation of:

(1) Synergies between safety and security (among other dependability properties), as it was discussed
in [55]. Such synergies offer clear opportunities for co-assessment and co-analysis. In AMASS, co-
assessment is enabled via the integration of an open source process engineering tool and a
variability management tool, plus explicitly indicate equivalences between activities, artefacts and
requirements in the standards. Co-analysis is enabled via a combination of open-source and non-
open-source analysis techniques, which are expected to offer different advantages and trade-off
capabilities and evidence.

(2) Contract-based approaches for compositional assurance developed in OPENCOSS and SafeCer.
These approaches, which were extended in D4.3 [3] and partially implemented in D4.6 [11], include
a multi-concern perspective enabling: the decomposition of the requirements (related to different
concerns) onto the architecture components; the semi-automatic derivation of analysis results
from the architecture; the definition of a safety/security/multi-concern concept with mitigation
mechanisms on top of the architecture.

2.3. Tool Support Overview

The tool support is based on a collection of Eclipse plugins that provide the different functionalities
necessary to perform the Multiconcern Assurance Approach. In particular, it includes: EPF Composer
plugins to model the processes representing e.g., safety and or security plans; Papyrus plugins to model
SysML diagrams; CHESS plugins to design and perform different model-based analyses, and OpenCert
plugins to create and link assurance argument fragments. These plugins are part of the AMASS platform,
which provides the user a single user interface hiding the complexity of the underlying tool architecture.
The AMASS platform interacts with external backend tools to provide analysis results (via Safety Architect,
Papyrus for Safety and Security Engineering, and FMVEA) or to execute the process plans (WEFACT).

Except for FMVEA and WEFACT, the following subsections recall only essential information regarding the
main functionalities implemented within the different tools. A more extensive description of the tools was
given in D4.3 [3]. Concerning FMVEA and WEFACT, instead, since a new version of these tools is in the
process to be released, a more detailed information is provided to enable the reader to have a more
concrete idea of the potential of the coming support.

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

2.3.1. CHESS

CHESS Eclipse Polarsys project [36][27] provides support for system and software modelling, analysis and
implementation. The CHESS modelling language (CHESSML)4 is implemented as a profile of UML, SysML
and MARTE modelling languages. CHESSML supports component, contract-based design and the modelling
of timing and dependability concerns. Analysis support is made available by using the information provided
within the model and by providing seamless integration with tools for dependability analysis, like
ConcertoFLA for failure propagation (see 2.3.1.1) and multi-concern fault tree analysis (see 3.5.3),
XxSAP/OCRA for fault tree analysis, contract-based analysis, like OCRA, and timing analysis, like MAST>.
Regarding software, the specific CHESS methodology [36] for software modelling, analysis and
implementation is supported, by offering a model driven approach with code generation facility (currently
Ada is supported as target language).

2.3.1.1. ConcertoFLA

The AMASS platform, via inclusion of CHESS toolset, also includes the plugin which implements
ConcertoFLA, a technique for qualitative dependability analysis. More specifically, this plugin retrieves the
dependability-related information (behaviour of the components in the presence of faults) and exploits it
to calculate the behaviour at system level. The analysis results are then back-propagated and annotated on
the original model.

2.3.2. OpenCert —Assurance Case Editor

This feature manages argumentation information in a modular fashion. Assurance cases are a structured
form of an argument that specifies convincing justification that a system is adequately dependable for a
given application in a given environment. Assurance cases are modelled as connections between claims and
their evidence.

During the safety argumentation phase the assurance case editor is used to define an argumentation model
using the GSN graphical notation [5]. Argumentation deals with (a) direct technical arguments of safety,
required behaviour from components, (b) compliance arguments about how prevailing standard has been
sufficiently addressed, and (c) backing confidence arguments about adequacy of arguments and evidence
presented (e.g. sufficiency of Hazard and Risk Assessment).

It also includes mechanisms to support assurance patterns management which offer the possibility to take
advantage of reusing best practices. The argumentation editor is able to re-use predefined patterns just by
“drag and drop” the pattern into the working area. Similarly, previously created argument modules can be
included in the actual diagram just by “drag and drop”.

2.3.3. FMVEA (*)

A new browser-based FMVEA tool has been developed recently (spring/summer 2018) and is available in
the third iteration of the AMASS platform (P2).

FMVEA extends the well-introduced FMEA by security aspects and can be used in those phases of the
lifecycle where a semi-quantitative FMEA is applicable. This applies first to the concept phase where the
traditional safety-oriented HARA (Hazard Analysis and Risk Assessment) can be enhanced by the
assessment of security risks (TARA — Threat Analysis and Risk Assessment) when FMVEA is used. Further,
FMVEA is beneficial in later development phases when an architectural or a design choice has been taken,
or a concrete implementation is in place, and the resulting system is to be analysed in more detail with
respect to safety and security risks. The goal can be to verify that the designed or implemented safety
functions and security controls satisfy the previously stated safety and security requirements, or to detect

4 https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
5 https://mast.unican.es/

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 124

https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://mast.unican.es/

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

additional risks resulting from the concrete design or implementation that have not yet been identified in
the early HARA/TARA phase.

FMVEA — Failure Modes, Vulnerabilities and Effects Analysis is a method developed since 2014 for
supporting a combined safety and security analysis. The method tries to cope with the problem that the
risk of safety threats can be calculated as a quantitative value based on the stochastic failure probability,
but there is no comparable numeric value that can be given for security hazards because many existing
vulnerabilities are yet unknown and there is no analytic method available to determine the attack
probabilities — criminality is not really predictable. FMVEA therefore adds a traditional semi-quantitative
security assessment approach, namely Microsoft's STRIDE classification scheme, to the classical safety-
oriented method FMEA (Failure Modes and Effects Analysis). STRIDE considers the following security threat
mechanisms (whose initials form the acronym STRIDE):

e Spoofing of user identity

e Tampering

¢ Repudiation

e Information disclosure (privacy breach or data leak)
e Denial of service (D.0.S)

e Elevation of privilege

Figure 4 shows the FMEA process (white) extended by the security-related aspects (green).

Function 3 Threat modes

>
>

System 1 Threat modes

Components 2

Components

Functions

Function 3 Failure mode 6

. = Likelihood
| Failure

modes —

Causes

Failure / Threat
mode

Effects

Most
> serious
effect

X Probability = Risk

Figure 4. Security-oriented FMVEA elements complementing FMEA

For each Threat Mode, experts assess System Susceptibility and Threat Properties by estimating semi
guantitative values for related attributes:
e System Susceptibility is the sum of:
o Reachability (1 = no network, 2 = private network, 3 = public network)
o Unusualness (1 = restricted, 2 = commercially available, 3 = standard)
e Threat Properties is the sum of:
o Motivation (1 = opportunity target, 2 = mildly interested, 3 = main target)
o Capabilities (1 = low, 2 = medium, 3 = high)

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 124

https://en.wikipedia.org/wiki/Spoofing_attack
https://en.wikipedia.org/wiki/Tampering_(crime)
https://en.wikipedia.org/wiki/Non-repudiation
https://en.wikipedia.org/wiki/Data_privacy
https://en.wikipedia.org/wiki/Data_leak
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Privilege_escalation

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

e Attack Likelihood is the sum of System Susceptibility and Threat Properties; this yields values
between 4 and 12 and is a semi-quantitative indicator for the attack likelihood.

The FMVEA tool realizes a partly automated implementation of the FMVEA method [70]. Basically, FMVEA
takes the FMEA approach and complements it with security by analysing, in addition, threats and
vulnerabilities of the item under consideration.

The FMVEA tool interfaces with the AMASS platform on the one hand with the SysML model provided e.g.
with Papyrus, and on the other hand with the created safety and security requirements via ReqlF format,
which can be imported in the AMASS platform. More details about the integration and the interfacing
platform can be found in D4.6 [11].

Figure 5 shows the FMVEA model editor user interface.

FMVEA Editor Rules Analysis

Create Environment Create Node Create Port Create Connection

Node: node6

wne = upamesene: |)
Type == physical m]
criticalData == true mj

Add Property

TN Y

Figure 5. User Interface of the FMVEA model editor.

It is possible to edit the model within the FMVEA tool or, alternatively, to reuse a model from the AMASS
platform created e.g. with Papyrus, and enhance it with the respective dependability properties in the
FMVEA tool. After the model instances of the system including these properties are ready, they are
analysed with respect to safety and security and saved again in this scheme.

Efficient security analysis can be obtained using a pre-populated threats database, which allows semi-
automatic security analysis. Similarly, a semi-automatic safety analysis is supported when a predefined
failure database is used. Irrespective of whether automatic or manual analyses have been chosen, FMVEA
allows extending the model according to the resulting combined set of safety and security requirements
and storing it — via the SysML interface — in the AMASS platform instance.

2.3.4. EPF Composer and BVR Tool

The Eclipse Process Framework (EPF) Composer [23] is an integrated development environment which is
built on top of the Eclipse platform and works as a stand-alone application. The EPF Composer provides a
process-management platform based on SPEM [19] for authoring, maintaining and sharing development
process frameworks between the various stake-holders of the software development organization. The
outcomes of processes, which are represented in the EPF Composer as work products, provide evidence
supporting process and product argumentation. This provides a means for co-engineering of safety and
cybersecurity analysis, development and argumentation.

As it was recalled in D6.3 [10], BVR (Base Variability Resolution) [61] is a language built on top of CVL
(Common Variability Language) [62] to enable variability modelling in the context of the engineering of

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

families of safety-critical systems. BVR is a result of the VARIES project [64]. The specification of the BVR
meta-model is given in VARIES D4.2 [63].

BVR enables orthogonal variability management for any model (called Base model) instance of a Meta-
Object Facility (MOF)-compliant metamodel. BVR supports the modelling of: feature diagrams, resolution,
realization and derivation of specific family members, as well as their analysis. Variability engineers create
three kinds of models:

e VSpec models are an evolution of the Feature-Oriented Domain Analysis (FODA) [65]. More
specifically, VSpec extends FODA by including additional concepts such as variables, references and
multiplicities. Constraints by using the Basic Constraint Language (BCL) can also be added to specify
cross-cutting constraints that constrain inclusion/exclusion within a subtree based on choices on
other subtrees. The grammar of BCL is given in Appendix of D6.3 [10].

e Resolution models, which specify the desired inclusion/exclusion choices for the specific
configuration/resolution. Note that to confirm whether the resolution corresponds to the VSpec
model, a validation process might be executed. The Software Product Line Covering Array (SPLCA)
tool is integrated with the BVR bundle for checking constraints and structural consistency of the
resolution [66].

Realization models, which specify the placements® and replacements within the fragment substitutions. A
Fragment substitution is an operation that, if executed, substitutes a model fragment (placement fragment)
for another (replacement fragment).

The process model developed using the EPF Composer serves as the Base Model to the BVR Tool, which is
used to model variability and derive specific processes based on feature constraints and cardinality.

2.3.5. WEFACT

The goal of the workflow engine WEFACT is to support the entire engineering lifecycle of safety and or
security relevant systems based on pre-defined processes. To achieve this goal every project in WEFACT
contains Requirements, Processes and Workflow Tools.

WEFACT is an (independent) Eclipse RCP application, which operates on a PostgreSQL database. As WEFACT
is an external tool, this database is independent of the AMASS platform database.

WEFACT provides the following main features:

e selecting a project or creating a new one

e defining users and roles

e importing requirements (currently from a DOORS database, for the future, also ReqlF import is
planned) or defining them in WEFACT

e defining activities to be performed by the workflow engine

e assigning activities to requirements and to tools (including parameters as well as input and output
directories), thus supporting traceability

e executing these activities (by invoking the tools)

e setting the fulfilment status of the requirements to PASS or FAIL, depending on the result of the
activities.

These basic features are complemented by the following functionalities:
e Definition of user accounts and user authorization.
e Importing UMA process models created in EPF-C. The imported activities form then the basis for
the V&V activities in WEFACT.
e Assigning tools. A list of tools is maintained in WEFACT and individually assigned to V&V activities.

6 A placement fragment is a set of elements forming a conceptual hole in a base model, which may be replaced by a
replacement fragment [67].

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 124

(&) AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0

o Traceability.

WEFACT is an Eclipse application, not an Eclipse plugin; thus, no Eclipse installation is required but WEFACT
is started as an independent executable. In order to start working with WEFACT, the user first has to
register with his credentials (see Figure 6).

-

Username:

Password:

Create new user

I Login I l

Cancel]

Figure 6. WEFACT user authorisation
and to select an existing project or create a new one (see Figure 7).

==

Select a project:

AQUAS
AMASS

3061

New Project...

[0K h‘] [Cancel I

Figure 7. WEFACT project selection dialog box

Then the project is displayed in the main user interface of WEFACT, as shown in Figure 8.

H2020-JTI-ECSEL-2015 # 692474

Page 25 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

o1 Wetact = | ()]
File Project Import Doors Requirements.. EPF
Requirement Explorer &1 | Tool Explorer Requirement Details £ Tool Details = 0 ||process Details
€ req1 .
K Medicon ﬂ K | 57| [Furin Manvally] 1 Edit off >
yolo A
Name:
reql Description:
mniboug jhkjlki
Description:
guew
Status
Not Fulfilled status:
Ready
Deadiine:
1 Deadline:
Responsible: Responsible:
Linked Processes: Linked Requirements:
Process Explorer
% yolo NewL
Workflow Tool:
Input Files Output Files

Add Input | Remave Input Add Output | | Remaove Input

Previous Processes Following Processes

Manage previous processes Manage following processes

Figure 8. WEFACT user interface

The default WEFACT GUI is divided into three main parts. The usual process flow inside the application is
from the left-hand side to the right-hand side. On the left-hand side, there are 3 different explorers. This
area displays the project specific requirements, processes and tools and their structure. The details of the
selected requirement can be viewed and edited in the part on the right side of the explorers called
“Requirement Details”.

Details on how the user interface is operated can be found in the WEFACT user manual [37]. In the
following sections, terms are explained and guidance is given how WEFACT shall be applied, in particular in
the context of AMASS assurance projects.

Requirements

As mentioned above, WEFACT is a requirements-based workflow engine. The tool allows to create and
delete requirements but also to import them from external sources (currently DOORS databases).
Moreover, they can be locked against unintended modification by ticking the respective checkbox. Figure 9
shows the input-box for the requirements in WEFACT.

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Requirement Details &2 | Tool Details = a

ﬁ \g/ Edit off

Name:

4.1.4.2 Define Scope and Boundaries

Description:

The boundaries and interfaces of the development target, and assumptions related to interaction with other elements shall be
defined.

Status:
Not Fulfilled

Deadline:

03.11.2017

Responsible:

Admin Administrator

Linked Processes:

1_preliminary_functional_design

Add Link | | Remove Link

Figure 9. Requirement data input in WEFACT

Requirements are defined as the entities needed to achieve the objectives of the project. This includes
process and product requirements. Requirements can be structured in different levels, where a top-level
Requirement can be seen as the sum of its sublevel Requirements. Once all sublevel Requirements are
fulfilled, the top-level Requirement enters the state of completion. A Requirement can hold a connection to
predefined processes (V&V activities). If all processes are executed successfully, the Requirement’s status
changes to “fulfilled”.

Requirements have a responsible user assigned and can come from different sources. In a typical assurance
workflow, process requirements are modelled in EPF-C and imported in WEFACT. Product requirements, in
turn, are often created using tools, sometimes they are simple Excel files. WEFACT allows also the import of
DOORS requirements, and for a future version also ReqlF import is planned.

Processes/Activities

WEFACT allows to assign processes (activities) to a requirement which shall show its validity. In the user
interface, the Section “Linked Processes” shows requirements that need to be fulfilled and that are linked
to this process. By selecting “Add Link...”, a process can be assigned to a requirement. By clicking “Remove
Link...” certain links can be removed.

Such an activity usually includes a call to a tool (“Workflow tool”), and a due deadline can be defined for
processing it. For the selected tool, input artefacts (“Input Files”) and output artefacts (“Output Files”) shall
be defined. A button allows then to start the process, which yields as a result whether PASS or FAIL, and
successful activities (PASS) lead to changing the status of the requirement to “fulfilled”.

If required, subsequent calls of tools in a defined and success-dependent sequence can be forced by
defining activities per tool and linking them in the desired sequence by defining “Previous Processes” and
“Following Processes”. In this case, the process can only be executed when all predecessor processes have
been executed successfully. This can, for instance, be used to start an automatic test case generation tool
before running the test created cases.

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

Apart from tool-based requirement verification, WEFACT allows also user decisions as basis for setting a
process result — without running the activity. To enable this, a “Fulfil Manually” button has to be ticked.

Similar as requirements, also processes can be secured against unintended modification by ticking a button,
and also processes have a status.
Tools

Figure 10 shows the dialog box for defining workflow tools.

Requirement Details | Tool Details = B8

\g/ Edit off

Name:
Threat Modelling Tool

Description:

Microsoft Threat Modelling Tool

Tool Path:
CA\Program Files (x86)\Microsoft Threat Modeling Tool 2016\TMT7.exe

Tool Type:

Manually Executed External Too A

Figure 10. Tool definition box in WEFACT

As mentioned earlier, WEFACT supports assigning a tool to a process. This is done by writing the URL of the
executable or script file into the text field “Tool path”. WEFACT supports different types of tools w.r.t. the
call mechanism, namely manual/automatic and internal or external. Manual tools are those that cannot be
started automatically, e.g. an EMC test bench for a HW component.

Traceability

Through inherent traceability, WEFACT tracks the status of requirements continuously. Based on the
consistent and, if necessary, staged structure of requirements and the execution status of the associated
processes, WEFACT is able to determine which processes still need to be run or to be re-run after a
modification.

A more detailed description about using the WEFACT user interface is contained in the Handbook for
WEFACT [37].
How WEFACT Supports Multiconcern Assurance

WEFACT itself is a workflow tool and not an assurance tool. It provides capabilities to define the detailed
assurance process activities (including respective assurance tools to be started) and to run them.

The process model can be defined within the WEFACT user interface or imported from EPF-C reading its
UMA output. Figure 11 presents the typical way how WEFACT is intended to be used in the AMASS context.

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

EPF-C create
process model

)
©
£
L WEFACT requirements can be
g _ staged
S create/modify H B AMASS
process model define input
. D & tput T
import - " (Artefacts | T
NC] d:eito’rles under assurance s:ri\ee "AMASS)
R AR — E, [Jand results Postgre
1 define arreny svn SQL DB
P dependencies — >~
add tools &9 between
to activities activities %) integrate
WEED:(ZT\ Execute only the not yet }/{nﬁ% Evidences: ewdentl:les
Postgre | | successfully completed o/ Assurance manually
SQL DB activities [in defined sequence if results &
- D [[) needed] PASS/FAIL
ok? oz [ok? [0k
1) where necessary

Figure 11. Typical use of WEFACT in AMASS

As mentioned, the process model can be modified in WEFACT, and the activities defined in the process
model are implemented by assigning (and providing) a tool to perform the activity, including the input and
output artefacts in the respective directories. If necessary, dependencies between activities can be defined
(i.e. their sequence: e.g. an activity can be performed only after another activity has been completed
successfully).

WEFACT maintains consistent links between requirements, process activities and all affected artefacts,
allowing full traceability. Moreover, WEFACT stores the status of the requirements, which is set to
FULFILLED when the associated activities are performed successfully (PASS). On the other hand, changes in
system artefacts or requirements are recorded by WEFACT and the status of the respective (associated)
requirements is reset. By this mechanism, WEFACT controls, after changes, which activities need to be re-
executed in order to restore the assurance status of the system.

After running an activity, the results (output files) are stored in the SVN directory associated with the
activity, and the requirement is set according to the result (PASS or FAIL). A “PASS” result represents an
evidence for the respective sub-goal in the GSN argumentation of the AMASS assurance case editor.
Currently (October 2018), the transfer of the evidence into the argument has to be done manually, i.e. by
using the assurance case editor.

In WEFACT, activities can be combined in order to construct multi-concern functionalities. This doesn’t
require a specific multiconcern WEFACT tool feature but can be implemented by using the standard
WEFACT functionalities for assigning tools, which treat (e.g. analyse or test) different quality attributes.

As an example, an activity can be defined calling a security analysis tool; AIT has tried this out with the
Microsoft Threat Analysis tool. Similarly, another activity calling a FMEA or a HAZOP tool can be defined in
WEFACT to implement the safety analysis part. Also in WEFACT, the (multiconcern) requirement
demanding a security-aware HARA can be subdivided into a sub-requirement demanding a security-related

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

analysis and another one for the traditional safety-related hazard analysis. By linking the two
aforementioned activities (in WEFACT) to these two sub-requirements, we have realized a combined safety
and security analysis. The multiconcern process could be extended by inserting a subsequent interaction
point activity, which depends on the successful execution of the two above mentioned (parallel) analyses.
This activity can be designed such that contradictions between safety or security-oriented mitigation
measures and requirements related to the other quality attribute lead to a FAIL result for the entire
composed process, and the (combined) safety AND security analysis requirement is not FUFILLED until a re-
iteration of the analyses end up with a non-conflicting set of mitigation measures.

2.3.6. Safety Architect and Cyber Architect

Safety Architect (SA) [14] is initially dedicated to perform classical FTA by generating FT from system model
and failure condition analysis of model components. Thanks to the MERGE project [16] the classical FT can
be enriched with malicious events which can be caused by an attacker. An example of SA FT extended with
a malicious event is shown in Figure 12.

Top_Feared_Event

[C2_In)(E)

{C2}->[C2_Failure]

{System Under Analysis}
c2

{System Umggr Analysis} (€2, In]

A=0.00e+00
T=1

[C1_In](E)

IC1}-=[C1_failure] (C1_In)(K)

{System Under Analysis})
{System Under Analysis} ~C1 {System U_r?g?r Analysis}
C1

[C1_in) [C1_n]

[]
A=1.00e-03 A=1.00e-03 ® N
T=1 T=1 y=None

Figure 12. Example of SA FT exported in Arbre Analyste [28]

As illustrated in Figure 12, the SA FT is composed by:
e atopevent(e.g., “Top_Feared_Event”),

e intermediate events (e.g., “[C2_In](E)” that represents an erroneous stage of the input of system
component 2),

e gates (e.g., AND, OR and others not represented in this example),

e basic events, which can be:
- safety viewpoint basic events (e.g., “[C1_In](E)” that represents an erroneous state of the input
of system component 1)
- security viewpoint basic event (e.g., “[C1_In](M)” that represents a malicious event caused by
an attacker by exploiting the vulnerability of the input of system component 1).

Cyber Architect (CA) [15] is a security analysis tool based on the EBIOS method (Expression des Besoins et
Identification des Objectifs de Sécurité - Expression of Needs and ldentification of Security Objectives) [17]
used to assess and treat risks. The tool implements the five modules of EBIOS method (Module 1 - Study of
the context, Module 2 - Study of the feared events, Module 3 - Study of threat scenarios, Module 4 - Study
of the risks, Module 5 - Study of the control). Here, we focus on Module 2, whose objective is to
systematically identify generic scenarios and feared events that need to be avoided within the study's

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 124

U‘é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

boundaries. From this systematic analysis, Attack Tree (AT) can be automatically generated in the tool. An
example of CA AT is shown in Figure 13.

@ [Attack goal] Remote no-modification of command fails

!

Qﬁ' [Operation] Attacker runs the remote
exploitation attack

£ [Threat] Modification of item £ [Threat] Modification of channel
%f [Vunerabi\ity] Data can 5?,]' [Assertion] .f.mydata i’ﬁ' [Vulnerabilit] Communicated 5%, [Assertion] Requires a permanent
be manipulated may be input flows may be altered supply of electricity to work

Figure 13. Example of CA AT

The CA AT is composed by:
e acyber-attack goal (e.g., “Remote no-modification of command fails”),

e an operation event which is an intermediate event or action that can be performed by a system
operator (involuntarily) or an attacker (deliberately, e.g. “Attacker runs the remote exploitation
attack”),

e gates (e.g., AND, OR),
e threats (e.g., “modification of item”),
e vulnerabilities (e.g., “data can be manipulated”),

e an assertion, which is a statement that represents a condition to be validated in order to consider
true a certain branch of the AT (e.g., “any data may be input”).

Difference between SA FT and CA AT. SA FT is a logical structure expressing the relationships and
dependencies between a high-level top-event and lower level events, while CA AT is a graph that describes
the steps of an attack process. A mapping can be done with some elements of SA FT and CA AT. The main
difference between the SA FT and CA AT is the “operation event” that can be really performed by an
attacker. While in a SA FT (e.g., Figure 12) we only know the probabilities of occurrence of the basic events,
in a CA AT the probability of the “operation events”, which are intermediate events in the tree, can be also
taken into account.

2.3.7. Papyrus for Safety and Security Engineering

Papyrus for Safety and Security Engineering (Papyrus SSE) is a framework developed by the CEA to support
systems engineering from early phases of the development cycle. Figure 14 shows a two-dimensional
workflow. The horizontal axis shows that Papyrus SSE is customized according to the standards from where
the fundamental concepts, requirements, and analysis methods are extracted and implemented. The
vertical axis shows that Papyrus SSE provides an environment to support several phases of systems design
ranging from requirements capturing up to the analysis (validation, verification, tests) of safety and security
aspects.

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 124

@ AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

Security
IEC 61508
1SO27001/ generic standard on
1ISO27005 functional safety
generic standard
" menosdogy. 'SOMDIS
13482
ISO 15408 safety standard
evaluation criteria for (I [EEEE]
IT security standard GIREELS
IEC 62443 15026262
Security standard Road vehicles —
fg[iitnoi?;tigi‘ 2 Functional safety
control systems
ARP
EUROCAE 4754/4761

Aeropspace
Recommed
Practice

ED-202/ED-203
airworthiness
security process &
methods standard

Requirement Eng.
Risk analysis. Preliminary Hazard
(EBIOS) Analysis Concept & Acceptance &
Requirements Maintenance
Attack Tree » System Hazard -
Analysis Analysis /
FMEA
ili Design & Integration &
Detectabili skt
Analysis v i Optimization Test
Property
Verification
\ Papyrus SSE /

targets early
phases of system
Life-cycle

Implementation

Figure 14. Papyrus SSE supports safety and security analyses during early phases of systems engineering

Regarding safety concerns, Papyrus SSE supports typical safety-oriented analyses like Hazard Analysis and
Risk Assessment (HARA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA) as well as the
formal verification of properties refined from high level requirements. The referred analyses are supported
via dedicated profiles which are deployed according to the application-domain and respective standards:

e ISO/IEC 61508, for functional safety of electrical, electronic, and electronically programmable

devices [38]

e IS0 26262, for functional safety of road vehicles [39]
e |SO/DIS 13482, for safety of personal care robots [40]
e ARP 4754 [41] and 4761 [42], for safety of aerospace artefacts and airplanes

Regarding security concerns, Papyrus SSE deploys several profiles to support security-oriented analyses.
More specifically, the tool has been customized to support the security risk analysis of information
technology, cyber-physical and industrial systems. It supports techniques and methods that cover several
phases: modelling and analysis of feared events (including requirements), threats scenarios, vulnerabilities,
and countermeasures, Attack Trees, and risks calculation. In addition, a dedicated module allows to
formally validate the effectiveness of security countermeasures based upon security test cases. The
referred analyses are supported in compliance with the following standards:

e |SO 27001/27005, for the security risk management of information technology systems [43]

e SO 15408, the evaluation criteria for information technology security [44]

e |EC 62443, targeting the security of industrial automation and control systems [45]

e EUROCAE ED-202 [46] and ED-203 [47], for the airworthiness security process and methods,

respectively.

H2020-JTI-ECSEL-2015 # 692474

Page 32 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3. Methodological Guide

This chapter constitutes the core of the document. It provides guidance for each functionality of the AMASS
platform contributing to the AMASS Multiconcern Assurance approach. This guidance is given as a series of
workflows illustrating the main activities to be executed by users to apply the approach. In some cases,
workflows are graphically represented as UML activity diagrams, in some other cases they are informally
given in a textual format.

3.1. Contract-Based Multiconcern Assurance (*)

The system design comprises the specification of contracts for component, as documented in D3.8 [7] and
performed by a combination of development engineer and assurance engineer. This activity is supported by
the AMASS platform by means of the CHESS modelling language (CHESSML). In particular component
contracts can be modelled as formalisation of requirements by the assurance engineer. Moreover,
refinement of contracts can also be modelled along the hierarchical architecture of the system.

Concerning the specification of the contract, it must include the specification of the concern(s) addressed;
this has to be done according to the concern(s) addressed by the requirements which are formalised by the
contract itself, depending of the typology of the property, the safety or security engineer will be the
responsible if doing it. The AMASS platform supports the specification and analysis of contracts where
assumptions and guarantees are expressed in Linear-time Temporal Logic (LTL), where LTL can be used to
express multi-concern contracts, like safety and security.

Figure 15 shows an example about a CHESS FormalProperty KeepSafeDistance_Req formalizing a safety
requirement; the FormalProperty is represented with its name, its specification (in OCRA in this case) and
with its addressed concern (safety). The FormalProperty represents the guarantee of the KeepSafeDistance
contract. We can image that according to same safety analysis, the requirement formalized by
KeepSafeDistance_Req is then refined with requirement related to the performance; the formalization of
the latter is represented in Figure 15 by the BrakeTime_Req FormalProperty. Then BrakeTime_Req is
modelled as the guarantee of the BrakeTime contracts. The refinement of the KeepSafeDistance contract
into the BrakeTime contract can also be modelled in CHESS (not shown in Figure 15).

«FormalProperty=
{concern=safety }
{7} KeepSafeDistance_Req
{{OCRA) always (distance>=safe)}

«constraints
«ConstraintBlock, Contract. [oo oo _ _ =
KeepSafeDistance

{Guarantee=KeepSafeDistance_Req }

«FormalPropertys-
«constraints {concern=performance }
«ConstraintBlock, Contract: [= {7} BrakeTime_Req
BrakeTime {{OCRA) always [(change(brake_req)) - =
{Guarantee=BrakeTime_Req } (time_until{ change({Brake_Line)) <=10)}}

Figure 15. Multi-concern contracts

Contracts can then be used for co-analysis, by using the analysis provided by WP3, like the contract
refinement analysis, and to enable architecture-driven assurance, so as a way to link the system design to
the assurance case.

Figure 16 presents the argument-pattern that is instantiated based on the component contracts, its
relations to requirements, the specified refinement as well as evidence supporting confidence in the
contracts. The claims “contractKAssume” and “contractKRefine" connect the contract K with other related

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

contracts. The “contractKAssume” connects the contract with other related contracts in its environment.
For example, those contracts in the environment that guarantee properties assumed by the contract K.
Similarly, the “contractkKRefine” connects the contract with the dependent sub-contracts specified by the
refinement. In this way, the “contractKAssume” presents the relevant “external” contracts from the
environment of a particular component, while “contractKRefine” presents its relevant “internal” contracts,
i.e., relevant contracts of its sub-components. Since instantiations of this pattern for different requirements
may belong to argument modules for different concerns, the established connections between different
contract-specific claims (for which away goals are used) display the interaction points between different
concerns. The concern information is embedded in the resulting argument-fragment in the id of its
contract-specific claims. When generating a multi-concern argument that a component meets all of its
requirements, we can then distinguish between the parts of the argument that belong to different
concerns. Similarly, we can generate concern-specific arguments, which would include only those parts
associated with a particular concern. That means that the pattern instantiation assuring a safety
requirement would include its related both safety and contracts associated with other concerns such as
security or performance. Further assurance of those contracts would again not be limited to a single
concern but all relevant contracts.

reqConf

{requirement} is satisfied
with sufficient confidence

/ \

contConf

toolTrust reqFor malization
contracts The set of {component}
. . . contracts implying
T:etsol L!SEtd th\r’Vcol'.;:ra(t ;requllren‘;ehntir:s correctly —= 4 — {requirement} are satisfied with
checking is trustworthy ormalized by the sufficient confidence
guarantees of the related The list of relevant
{component] contracts {component} contracts:
[contracts}
stratContConf
Argument over
confidencein each
{component} contract
K = number of contracts
contKConf
[contractK} is satisfied with
sufficient confidence
contrKRef
contKRefine contKAssume contKCompl
The list of contracts refining W\ .
{contractK} : {contractKrefinedBy} {contractK} {contract} assumptions are {corjlt.ractl(} =
refinement is satisfied with sufficient sufficiently complete
correct confidence

Figure 16. The argument pattern for contract-based requirements assurance

For example, by considering the refinement of the contracts, it is possible in the associated argumentation
to add information about their dependencies, for instance a contract about safety could be refined by a
contract related to performance (e.g. as in Figure 15) or security. Moreover, the argumentation should
state about contracts compatibility, e.g. by using the contract-based analysis provided by WP3 and so the
produced evidences.

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3.1.1. Contract-based Trade-off Analysis in Parameterized Architectures

As shown in Figure 17, the contract-based trade-off analysis requires as input the target parameterized
architecture and the set of configurations used to instantiate the parameterized architecture. The
methodological guide to parameterize an architecture and to instantiate it is described in the D3.8 [7].

Architecture £} Contract-based Lo Trade-off
o) o)

Parameterized +
Instances ‘ Analyses results ‘ Analyses results

. Configurations =
Architecture

Comparison

Report

=
...g...g
E

Figure 17. Contract-based Trade-off Analysis takes in input the parameterized architecture and a set of configurations.
The process is decomposed in 2 sub-processes; the execution of contact-based checks for each instantiated
architecture, and the visualization of the compared results of the checks.

The steps the user must follow are itemized below:

The user selects the root component of the parameterized architecture.

From the CHESS popup menu, the user executes the contract-based trade-off analysis command.
A popup appears showing the options related to the command.

The user selects, among the available configurations, the ones he/she wants to analyse.

vk N

The user selects the contract-based checks, he/she wants to perform (at the release date of this
document the check contract refinement is the only check supported).

The user confirms the inputs.

A dedicated view shows the output of the contract-based trade off analysis in a tabular
representation. Columns are the checks, rows are the contracts of each configuration grouped by
concern type (safety, security and performance). Each cell shows the result of one check for one
configuration.

3.2. Dependability Assurance Case Modelling (*)

The system dependability Assurance Case Modelling workflow is depicted in Figure 18. This workflow
describes the work that should be conducted by using the Assurance Case editor provided by OpenCert.

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 124

@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

Define your assurance case structure

l

Allocate system goals to concerns and
argument modules

For each argument module

A 4

Derivate the system requirements

h 4

F 3

Edit the assurance case
l For each concern
Argue about concern solutions

}

Analyse the concerns interplay

v
Interferences present
Show the interplay P l

No Interferences Solve concern interferences —

h 4
Check the argument modules
integration

v

Validate the assurance case

Figure 18. Workflow for Dependability Assurance Case modelling

The system should be assured for dependability properties such that a set of system goals is developed for
all the different properties or concerns (safety, security, performance, availability, etc.). The concern-
specific goals are the basis for the concern-specific assurance informed of other properties, e.g., security-
informed safety assurance. The system goals are supported by the system requirements, which should take
into account the needs for all dependability properties (safety, security, performance, availability, etc.). For
example, a system goal may be supported by just safety requirements, just by security requirements or
both safety and security requirements. The system requirements are allocated into different components
and consequently the system assurance case should take into account the assurance case associated to the
different components. Each component assurance case might include supporting evidences for one or
more dependability properties. For example, a safety-related argument module of one component may be
supported by the security-related argument module of that or some other component. The argument
modules are used to encapsulate arguments. Interplay of the concerns on all the levels, where cross
concern trade off occurs (goals, requirements, components), is handled in the trade-off module.

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 124

U“A : AMASS D4.8V1.0

Methodological guide for multiconcern assurance (b)

Define your Assurance Case architecture

In this first step, the Assurance Manager should create the assurance case diagram taking advantage of the
assurance case editor provided in OpenCert. To do that, the user could take advantage of the modular
argumentation approaches mentioned in D4.3 [3]. In OPENCOSS, it was mentioned that we can encapsulate
arguments associated with one component in a module, or in a set of modules. The strategy here is to
encapsulate argumentation into modules for organizational purposes. In the GSN Community Standard [5],
it also includes a modular extension for GSN which we support by the OpenCert tool, specifically the
assurance case editor.

When defining the assurance case structure, the Assurance Manager is also defining the system level goals
to be fulfilled.

& runtis - OpenCert - edo; $3-CACC) ATION/CS3_Assurance_Case_Structure.arq_diagram - Eclipse Platform ==
File Edit Diagram Navigate Search Project Run Argumentation OSLC-KM Process Lines VW CHESS Window Help
N LG @2 @D F s~ % & visegoell o *[BI|AvBr sy v |HivhrL] ~| 100% - Quick Access | & | i [@)
L Reposi.. 1 @ +C53_Assurance_Case_Structure.arg_diagram
I ~ i Palette
testing - CPSGoals Laall -0
C53-CACC
GSN
ASSURANCE_PROJE Cooperative driving safety/secure core
EVIDENCE goals Strategy
ARGUMENTATION § _ Goal
& CACC-degModes ~— Assumption
& CACC-degModes = . s . T~ Solution
& €53 Assurance C VehicleGoals b] Contert
& 53 Assurance_C Syvter oosts specicntion vav
& CACCarg_diagra ystem goals sp) Justification
& CACCarg Vehicle to vehi... Relationships
& CACC Reqarg_d “ ~* AssertedChallenge
4 CACC Reqarg ; » - | E AssertedContext
& RearColl-Hazara ™
" SysReq Sysint ** AssertedCounterEvidence
—* AssertedEvidence
B Templat. System Requirements allocation System Integration —* pssertednference
& Choice
/ \\N GSN modular extensions
- 'Y Module
« 1 Away Goal
Cace CompAssC

CACC Assuran... Driving Function var:N

Assurance Case

| Away Context

" Away Solution

> Agreement

T Properties
& Argumentation
Base - Properties I
Appearance 14 CPSGaals
Name:

Description: Cooperative driving safety/secure goals

Content:

Figure 19. Screenshot of the Assurance Case editor defining the assurance case structure

The way the Assurance Manager structure the assurance case might differ from one to another. The
assurance manager could decompose it in a similar way that the system high level architecture, so there
will be argument modules per component of the system. Or the Assurance Manager could choose to
decompose the assurance case into the different concerns the system should take into account in the
design such as safety, security, reliability, compliance, etc.

It is highly recommendable to include an argument module for the arguments integration. Its content will
be discussed in further steps.

Allocate system goals to concerns

The design of a system should achieve certain goals. Allocate the predefined system level goals to the
different argument modules and tag the goals to the different concerns. These goals are usually extracted
after some preliminary analysis such as HARA (Hazard Analysis and Risk Assessment) or TARA (Threat
Analysis and Risk Assessment) are performed. Each of the system level goals is transformed into a claim in
the assurance case. The Assurance engineer should identify which goals are defined in relation to one
concern or a subset of concerns. The Safety and Security engineer will agree on which goals are responsible
for the safety of the system and which ones with the security.

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

Derive system requirements

For each of the system goals of each of the concerns, the Assurance engineer should derivate the definition
system level requirements in order to fulfil those requirements. This step is highly related with previous
Section 3.1. Requirements may be formalised as contract properties and then link them to sub-claims by
using the argument pattern depicted in Figure 16.

Edit assurance case

The Assurance engineer should edit the assurance case in order to provide arguments that support the
created claims. In Figure 20 the six steps method is explained as shown in. This method is used to define
the different claims and evidences to support the assurance case.

Step 5 - Elaborate
strategy
N

/

Step1 !___,-----""""’_--étep 3 / Step 6

c Identify e
g(l)jlinttclnfge strategy to I[Ij?}earjsti::fy
Y\ supported & support _ Solution

Define basis
on which
strategy

stated

Define
basis on which
goals stated

Figure 20. Six Step Process for developing goal structures [5]

The assurance case editor provided in OpenCert supports the user in this step. The GSN elements are found
on the left hand of the screen in Figure 21. To support the user on the edition, a library of argument

patterns can be used. The user can check the available patterns and reusable argument modules on the
Templates view.

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 124

\@ AMASS

> ~OpenCert - S3-CACC, N/RearColl-Hazarg_diagram - Eclipse Platform —]
file Edit Diagram Navigate Search Project Run Argumentation OSLC-KM Processlines WV CHESS Window Help
s DD WO P il v - T vlo ~ v hv sy v|Bivolvisy - . ck Access | & | it @
& Repository Explorer & *RearColl-Haz.arg_diagram
CSFCACC mominalBehavion Palette

ASSURANCE_PROJECT Unreasonable risk of rear O en

i) Unreasonable risk of rear CoMston haardls abes. GSN core

Yk N collision hazard is absent Strategy

& CACC-degModes.arg_diagram under nominal conditions =

& CACC-degModes.arg Sopl

surance_Case Structure.arg_diagram v Assumption
nce_Case Structure.arg stratMalfunction Solution
@ CACCarg_diagram e

& CACCarg [stratNominal
& CACC_Reqarg_diagram /
& CACC Reqarg

Argument over all
identified plausible failu...

Justification

Relationships

Argument by allocation of

requirements over architectural “* AssertedChallenge

& RearColl-Hazarg_diagram clean

& RearColl-Hazarg elements using contracts AssertedContext

PROCESSES > / [i
ROCESSES & / / faiiCombl & =+ AssertedCounterEvidence
—* AssertedEvidence
8 Templates View v s
- e G2 odciTencs Assertedinference
failure, distance & Choice
2 sensor failure and

CACC maintains adequate distance to local control failu... AssertedCont GSN modular extensions
predecessor vehicle for sudden braking Module

manoeuvre not to result in distance |... %
Away Goal

l Away Context
N «

Away Solution

Fmd.arg_diagram

mlarg_diagram { CACC-man
m2.arg_diagram

egoVeh-man .
dearadationCascade remoteAccuracy e Agreement
modulel.arg_diagram q 7

module2.arg_diagram

& Propertie
moduleAlarg_diagram Properties

© Goal

Base ~ Properties

s Y CACC-sys

Name:
ntModules/defaultarg_diagran
WP ion/ArgumentModules/modulex.arg_diagra Description: CACC maintains adequate distance to predecessor vehicle for sudden braking manoeuvre not to result in distance less than 2m

R L Public: false

Figure 21. Screenshot of the Assurance Case editor editing a claim

Argue about concerns solutions

When editing the assurance case, it is important to argue about the proposed solutions to achieve the
previous identified goals. In safety, the Safety engineer should think in the “safety” concept and once the
safety concept is designed, it should be translated into safety requirements. Then, the safety requirements
should be decomposed into technical requirements in order to progressively and in a traceable manner
reach sub-goal by sub-goal the supportive evidence. Similarly, the Security engineer should identify the
security assets and security zones. Then after a vulnerability analysis the security engineer should identify
the vulnerable assets, which need security protection, and derivate the security solutions. Those proposed
solutions should be decomposed into technical security requirements and include them in the assurance
case in form of assertions.

Analyse the interplay

When editing the assurance case for each of the concerns, the user (safety or security engineer) typically
does not take into account the effect of the decisions in other concerns. In this stage both, the safety and
security teams should exchange information and together should analyse the interplay between concerns.
Different tools mentioned in Section 3.5, such as FMVEA, can be used to ensure the right analysis is done
and the interplay is shown.

Explicitly show the interplay

The interplay or trade-off between the different concerns can be explicitly shown using the “dependency
relationship” explained in D4.3 [3]. The Safety and Security engineers should collaborate at this step.

Dependency relationship: The claim A of one attribute depends on the fulfiiment of claim B of another
attribute. It uses “in the context of” notation with a closed white arrow, as shown in Figure 22 (a).

Conflicting relationship: The assurance measure of attribute A is in conflict with the assurance measure of
attribute B. The graphical notation proposed is a red arrow with a slash in the middle as shown in Figure 22
(b). The target of the arrow is a Claim D which is conflicting and will become false if the source of the arrow,
Claim C, becomes true. In a final assurance case, the one produced at delivering the system, this kind of

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

relationships should already be solved. They are useful to exchange the rationale behind the technical
decisions.

Supporting relationship: To ensure attribute A, different assurance measure can be used, so if necessary,
just one assurance measure can be used to replace other measures if they are considered and addressed
individually. The graphical notation used is already present in argument patterns: the choice symbol which
is used to represent choices between lines of argumentation used to support a particular claim. For
example, Claim E is supported either if one of the claims, Claim F or Claim G is true. It is highly
recommended to denote the nature of the choice made for example in Figure 22 (c) where it says “1 out of
2”, so one of the claims must be true to support the top claim.

Claim A Claim B Claim C Claim D
The communication | in the context of | The communication The position sensor / The attack surface has
system between the > system is design to data uses 2003 / >) been reduced; the
vehicles should be prevent DoS attacks architecture to ensure |n_put frqm the sensors
available correctness of the data is a unique channel.
Evidence Evidence
A B
(a)Dependency relationship (b)Conflicting relationship
Claim E

The position of the predecessor
vehicle shall be accurate.

1 out of 2
ClaimF Claim G
Position of the predecessor Position of predecessor
vehicle is calculated using vehicle is calculated in
diverse software with 0.001 hardware and in software with
deviation less than 0.002 deviation

(c)Supporting relationship
Figure 22. Graphical notations used to show the interplay between concerns

A clear view of the impacts reduces the time needed for maintenance and evolution of systems while
further guaranteeing safety and security.

Solve the interferences

If a conflicting relationship is identified in the previous step, the arguments involved are not valid. The
solutions should be analysed and the assurance case updated once the Safety and Security engineers agree
on a solution. Add a justification to the new solution so as when reviewing the assurance case, the rationale
behind the deprecated solutions are also listed.

Check argument modules integration

As mentioned in the step “Define your assurance case architecture”, when the arguments modules are
edited, user should also take into account the integration. The OPENCOSS project did work on this point
[74]. Before the system integrator can integrate the architecture components, the system assurance case

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

must first be developed by integrating the argumentation modules belonging to each component
comprising the system.

Validate assurance case

In this step the assurance case responsible should ensure that all evidences are traced within the evidence
manager. The evidences exist and they provide the expected results to support the goals. At this phase, is
advisable that external experts or auditors review the assurance case.

3.3. Process-related Dependability Co-assessment via EPF-C and BVR
Tool

In this section, the guide regarding process-related dependability co-assessment is given. More specifically,
its workflow is depicted in Figure 23. This workflow describes the work that should be conducted by a
process engineer with multi-concern expertise or by a team of process engineers with single-concern
expertise for using the integration of EPF Composer and Base Variability Resolution (BVR) Tool in order to
perform process-related co-assessment. This workflow is constituted of two inter-related sub-workflows,
which can be executed in parallel to some extent.

Eclipse Process Framework (EPF) ! Base Variability Resolution (BVR)
Composer Tool
4 N\
Define Method Create Variability
Content (A) Model (E)
A
! I
s ™\
Define Capability Resolve
Patterns (B) Configuration (F)
v
4 ~
Define Delivery
Processes (C)

Base Model

Publish Method
Configuration (D)

®) o

Figure 23. Workflow for System Dependability Co-Assessment

[Realize Model (G)]

The EPF Composer workflow segment is used to develop and maintain the (software) development process
incorporating the dependability requirements through reusable method content which can be methodically
combined and organized into process arrangements for a specific project. This allows for exploitation of
synergies between safety and security assurance assets by way of reuse. The BVR workflow segment is
used to build the multi-concern (software) process line through steps of feature modelling, resolution,
mapping of the base model (which has been created through the EPF Composer workflow) and realization
of specific models.

A detailed description of the two workflows follows. These are further elucidated using the relevant parts
of ISO 26262 [21] and SAE J3061 [22] standards addressing safety and cybersecurity requirements
respectively in the case study in Chapter 4.3. The description provided does not include step by step

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

instructions as these are well-covered in the relevant user manuals [19], [20]. The description builds on top
of findings, which were presented in [29].

The reason for having chosen normative documents within the automotive domain is twofold: 1) for
continuity with D6.3, where cross-concern reuse in the automotive domain was in focus; 2) for internal
documents availability and expertise.

3.3.1. EPF Composer Workflow

In this subsection, the steps contained in the left-hand side workflow depicted in Figure 23 are explained.

3.3.1.1. Define Method Content (or Process-related Assurance Assets)

This subsubsection explains the step Define Method Content, which corresponds to the Block (A) of the
workflow depicted in Figure 23.

As extensively explained in [68] and [69] and also presented in the AMASS User Manual, Method Content
consists of Roles, Tasks, Work Products and Guidance. Roles describe who performs the work, Tasks
describe how work is performed, Work Products are either what are produced or consumed (Deliverable,
Outcome, Artefact) and finally Guidance describes information relevant to the Method Content and is used
in the execution of the Tasks. Method Content is defined using the ‘Authoring Perspective’, which is
organised in a method plug-in.

Figure 24 depicts the organisation of Method Content and the relationships of its components in the case
of ISO 26262 - Software unit implementation verification. More specifically, the task ‘Software unit
implementation verification concerning safety’ is performed by the ‘Software Tester’ in a primary role and
‘Safety Engineer’ and ‘Software Designer’ as additional performers. Also, the task has ‘Software Unit
Implementation’ as a mandatory input and ‘Software Unit Design Specification’ as optional input.

Eclipse Process Framework Compeser - C:\Users\shankar\Desktop\SISOPL - x
File Edit Search Configuration Window Help
i Sz e Jieowis- 5 B Browsing [A1 ”
=i Library 53 £ | & & 7 = 8|[implementation_review_concermning_safety =8
+ = sisopl_plugin o ES B
~ =i Method Content
~ [, Content Packages ~
~ i, software_unit_design_and implementation
5 Roles
52 Tasks [Software unit implementation verification concerning safety
(28 Work Products
(#® Guidance ¥ Expand All Sections |2 Collapse All Sections
[Standard Categories
(2 Custom Categories
(s Processes To verify software unit implementation concerning safety
(i Configurations ¥ Back to top
Roles Primary Performer Addttional Performers:
BT Configuration 52 =] o Software Tester « Safety Engineer
= 9 ki + Software Designer
Inputs Mandatory. Optional

o Software Unit Implementation + Software Unit Design Specification

¥ Back to top

IS0 26262 Section 8.4.5 - Implementation is verified by applying methods according to the ASIL and the recommendation levels

i Back te top

IS0 26262 Sertinn 4 2 - When ASIL_and recnmmendatinn lsvels are nnt annlied a ratinnale must he nroavided

Description | Steps | Roles | Work Products | Guidance | Categories | Preview

[Z: Problems | 5 Properties &% “._T5 Navigator B =~ =0

Figure 24. Organization of Method Content

The definition of the Method Content is in itself a composite step that can be depicted as a sequence of
sub-steps. Figure 25 depicts such sequence. The details of the various sub-steps follow (see steps from
Subsubsubsection 3.3.1.1.1 to Subsubsubsection 3.3.1.1.6).

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

The steps ‘Create Method Plug-in’ and ‘Create Content Package’ are essentially the first two steps which
need to be performed while the remainder steps can also be performed in any other order. The suggested
sequence is to minimize switching between various steps thereby offering an efficient work practice.

® o

Create M ethod

Plug-in (A-1) Create Task (A-6)

Create Content

Package (A-2) Create Role (A-5)

Create Work Create Guidance
Product (A-3) (A-4)

Figure 25. Method Content Workflow

3.3.1.1.1. Create Method Plug-in

This corresponds to the Block (A-1) of the workflow depicted in Figure 25. A Method Plug-in contains the
Method Content package which is being created. As mentioned earlier, we use the ISO 26262 and SAE
J3061 standards in our process model. The created plug-in can be reused in other plug-ins which are
created in the future to reuse the content of this plug-in. The Method Plug-in screenshot is depicted in
Figure 26. Besides the plug-in description, related change history is maintained providing necessary audit
trails.

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 124

AMASS

Methodological guide for multiconcern assurance (b)

[B Eclipse Process Framewerk Composer - CUsers\shankar\DesktophSISOPL - X
File Edit Search Configuration Window Help
(il Select a configuration v @ % F - E B2 Browsing | mi A
= Library 52 £ | & & 7 = O|[% sisopl_plugin 2 =8
%= sisoplplugin Method Plug-in- sisopl_plugin 2
(& Configurations
~ General Information
Provide general information about this method plug-in.
Name: sisopl_plugin
Presentation name: | Sisopl Plugin
Brief description: 150 26262 and SAE J3061 (Software Design and Implementation Phase)
[Supporting plug-in
~ Version Information
Provide version infermation about this method plug-in.
Version:
Change date: Thursday, October 12, 2017
= Change description:
&7 Configuration i3 ¥ =08
Authors:
v
Description
[Problems | = Properties 52 B~ =0

Property Value

Ci\Users\shankar\Desktop\SISOPL sisopl_plugin\plugin.xmi

Figure 26. Method Plug-in
3.3.1.1.2. Create Content Package

This corresponds to the Block (A-2) of the workflow depicted in Figure 25. We next create the Content

Package. The content package contains the underlying work products, roles, tasks and guidance. The
Content Package screenshot is depicted in Figure 27.

[B Eclipse Process Framewerk Composer - CUsers\shankan\ DeskiophSISOPL
File Edit Search Cenfiguration Window Help

- X
i Select a configuration v i@ P B[22 Browsing |z AL
=), Library 72 % | &£ & ¥ = 8|[%sisoplplugin =4 software_unit_design_and_implementation 53 =8
. . . - ~
+ S'SDS;SL“%‘”C et Content Package: software_unit_design_and_implementation
= od Conten
| Content Packages ~ General Information
E, software_unit_design_and_implementation Provide general infarmation about this content package.
5 Rol
rL,i’ TD ES Name: software_unit_design_and_implementation
asks
‘E,) ot Products Presentation name: Software Unit Design And Implementation
i, i escription: ctivities and requirements for the phase Software Unit Design and Implementation
3 Guidance Brief descrip A dreq far the phase Software Unit Design and Impl
[Stendard Categories
(= Custom Categories [supporting package
(& Processes
(i Configurations ~ Dependencies
is section displays dependencies of this content package to other content packages.
Th displays depend f th packag h packag
2= Configuration %2 ¥ =0
v
Description
[Z1 Problems | E Properties &% EpEct~ "0

Property Value

Ci\Users\shankar\Desktop\SISOPLsisopl_plugin\pluginxmi

Figure 27. Content Package

3.3.1.1.3. Create Work Product

This corresponds to the Block (A-3) of the workflow depicted in Figure 25. Three types of Work Products
may be created, namely Artefact, Outcome and Deliverable. An Artefact is a tangible Work Product while

H2020-JTI-ECSEL-2015 # 692474

Page 44 of 124

) AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0

an Outcome is an intangible Work Product such as a result or a state. A Deliverable is a collection of Work
Products which define typical content to be delivered. Screenshots of two Work Products are depicted in
Figure 28 (Software Unit Design Specification) and Figure 29 (Software Unit Implementation). In this
example, Software Unit Design Specification is an input work product to several tasks while Software Unit
Implementation is an output work product of the design tasks.

(B Eclipse Process Framework Composer - Ci\Users\shankar\DesktophSISOPL

- X
File Edit Search Configuration Window Help

Wi Select a configuration v @D & E [E7] Browsing =i AL
= Library 52 Z | 42 & ¥ = O|[%= sisopl_plugin = software_unit_design_and_implementation [5] software_unit_design_specification % [5] software_unit_implementaticn =0
A= sisopl_plugin * || work Product [Artifact): software_unit_design_specification
=) Method Content
=l Content Packages + General Information
=i, software_unit_design_and_implementation Provide general information about this artifact.
5 Rol
'['é’ T:S:z Name: software_unit_design_specification
(28 Work Products Presentation name: | Software Unit Design Specification
) software_cybersecurity_requirements Brief description: Product’s intended capabilities and applications
[5) software_safety_requirements
[5] software_unit_design_specification .
[Z] software_unit_implementation = Slots Information
(@ Guidance Select the slots that this artifact fulfills.
[Standard Categories [C1s Work Product Slot
(= Customn Categories Slots:
Add...
(& Processes
- . Y
= - ——= Remove
&7 Configuration 3 of 8 &
Description| Guidance | Categories| States| Preview
[Problems 52 .= Properties = =08
Qitems
Description Resource Path Location Type
Figure 28. Work Product 1
(B Eclipse Process Framework Composer - C:\Users\shankar\DesktophSISOPL - X
File Edit Search Configuration Window Help
(i Select a configuration v @@ PR d E [E7] Browsing | =, AL
= Library 52 Z | 42 & ¥ = O|[%= sisopl_plugin = software_unit_design_and_implementation [E] software_unit_design_specification [5] software_unit_implementation 2 =0
- o - ~
= sisopl_plugin * || work Product (Artifact): software_unit_implementation
=) Method Content
=l Content Packages + General Information
=i, software_unit_design_and_implementation Provide general information about this artifact.
5 Rol
i Name: software_unit_implementation
5 Tasks
(2 Work Products Presentation name: | Software Unit Implementation _
) software_cybersecurity_requirements Brief description: Implementation of software unit
[Z) software_safety_requirements
[software_unit_design_specification :
2] software_unit_implementation 7 Slots Information
(% Guidance Select the slots that this artifact fulfills.
[Standard Categories [J1s Work Product Slot
CE Custom Categories Slots:
Add...
(& Processes
Pl v
= Se=g Remove
2] configuration &2 of "
Description| Guidance | Categories| States| Preview
[Z Problems 2 = Properties 7 =08
Ditems
Description Resource Path Location Type

Figure 29. Work Product 2

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3.3.1.1.4. Create Guidance

This corresponds to the Block (A-4) of the workflow depicted in Figure 25. Guidance provides
supplementary information for performing the task. Several guidelines are defined and Figure 30 depicts a
screenshot of ‘Modelling Guidelines’.

(B Eclipse Process Framework Composer - Ci\Users\shankar\DesktophSISOPL - ®
File Edit Sesrch Configuration Window Help
] 7 Select a configuration v @F & i [€7] Browsing | = AL ™
= Library 53 £ | & & ¥ = 8| £ modelling_guidelines &3 =8
[. . . - - - -~
58 Work Products * || Guidance (Guideline): modelling_guidelines
(@ Guidance
o design_activity_analysis ~ General Information
o design_sssessment_refinement Provide general information about this guideline.
d tati
] design notations Name: modelling_guidelines
2 design_principles
] implementation_activities_analysis_cybersecurity Presentation name: | Modelling Guidelines
£ implementation_assessment_refinement_cybersecu Type: Guideline | Change Type...
di implementation veriiication_methods Brief description: Modelling Guidelines
] implementation_verification_methods_safety
2] modelling_guidelines
o rationale_design_notations « Detail Information
dl retionale_design_principles Provide detailed information about this guideline.
o rationale_ implementation_verification_methods o X
4 rationale_verificataion_methods i Main description:
4] source_code_guidelines
2 verification_methods © v
3 - > Description| Guidance| Preview
2 Configuration 3 § ¥ = 0| Problems| = Properties 52 B @~ "0
Property Value

Figure 30. Guideline

3.3.1.1.5. Create Role

This corresponds to the Block (A-5) of the workflow depicted in Figure 25. Roles define responsibilities for
Work Products which are produced, the work to be done by the role and the results to be produced. Figure
31 depicts a screenshot showing the relationship between the created role and tasks.

(B Eclipse Process Framework Composer - C:\Usersishankar\ Desktop\SISOPL - x
File Edit Search Configuration Window Help
7 Select a configuration v @ E & E B Browsing | =i Ac
= Library 52 Z | & & ¥ = 0|5 programmer &3 =8
4 sisopl_plugin) o ESE
=) Method Content
(=, Content Packages ~
=), software_unit_design_and_implementation
5 Roles
£ programmer 5
& safety_engineer
& security_enginesr [Expand All Sections [5] Collapse All Secticns
& software_designer
& software_tester
@ Tasks performs
(8 Work Products [[[
(@ Guidance Programmer Implementatian Implementatian Unit
(2 Standard Categories Lot T Sate
(= Custom Categories
(g Processes
&2, Capability Patterns Primary Performs « Implementation Conceming Cybersecurity
“igr Cybersecurity v « Implementation Concerning Safety
= « Unit Implementation
&7 Configuration 3 G ¥ =0
Process Usage e Cybersecurity > Implementation And Implementation Review > Unit Implementation And Review - Variability
> Unit Implementation - Variability > Programmer
e MultiConcern > Implementation And Implementation Review > Unit Implementation And Review - Variability
> Unit Implementation - Variability > Programmer
e Software Unit Design And Implementation Safety > Implementation And Implementation Review > Unit
Implementation And Review - Variability > Unit Implementation - Variability > Programmer
e Software Unit Design And Implementation Safety > Implementation And Implementation Review > Unit
Implementation And Review - Commanality > Unit Implementation - Commonality > Programmer
Description | Work Products | Guidance | Categories | Preview
[Problems | =1 Properties 52 Elkaf~ =0
Property Value

Figure 31. Role and Work Product Relationship

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3.3.1.1.6. Create Task

This corresponds to the Block (A-6) of the workflow depicted in Figure 25. A Task defines the steps needed
to perform the purpose of the task and are related to the Roles defined (who performs the task), Work
Products which are either produced or consumed, and any Guidance which may be defined. Tasks may be
assigned to one or more roles. For example, in the co-analysis and design of safety and cybersecurity
requirements, a task may be assigned to both a ‘Safety Engineer’ and a ‘Security Engineer’ who work
together. Several Work Products may be specified. Input Work Products may be either mandatory or
optional in nature. Tasks are composed of steps which may or may not be performed in a certain order and
a step may also be omitted for a particular instance of the task. Figure 32 depicts the screenshot of creation
of a Task (Design Concerning Safety), Figure 33 depicts the various steps which makeup the Task and Figure
34 depicts the relationships between the Task with the Roles, Work Products and Guidance.

The task consists of the following three steps:

e Design software units by using notation that depends on ASIL and the recommendation level.
e Describe functional behaviour and internal design in the specification of the software units.

e Apply design principles for software unit design depending on the ASIL and the recommendation
levels.

The Task/Role relationship for ‘Design Concerning Safety’ shows that the task is performed primarily by the
Safety Engineer and additionally by the Software Designer. The Task/Work Product relationship shows that
the task has ‘Software Unit Design Specification’ and ‘Software Safety Requirements’ as mandatory inputs
and ‘Software Unit Implementation’ as output. The Task/Guidance relationship shows that the task uses
Design Notations, Rationale Design Notations, Design Principles and Rationale Design Principles as
guidance.

Eclipse Process Framework Composer - C:\Users\shankar\Desktop\SISOPL - X
File Edit Search Configuration Window Help

S~ Select a configuration v i@ P EY [3] Browsing | g Au ”
=) Library 32 £ | &£ & ¥ = B[sisoplplugin | B4 software_unit_design_and_implementation | design_concerning_safety £3 =8

5 Roles ~
5 Tasks

Task: design_concerning_safety 2

> design_conceming_cybersecurity » General Information
[design_concemning_safety

~ Detail Information
Provide detailed information about this task.

> design_review_conceming_cybersecurity
[design_review_concerning_safety

= implementation_concerning_cybersecurity TE Purpose: To develop software unit design specification with compliance to safety-related requirements
> implementation_concerning safety

> implementation_review_concerning_cybersecurity .

5 mplementation B Main description:

review_concerning_safety

> unit_design
[unit_design_review
[unit_implementation
> unit_implementation_review .
R TTR .
< > BE Key . ISQ 26262 Section 8 4 2 - Software units are designed by using a notation that depends on the ASIL and the ~
== considerations: recommendation level. ISO 26262 Section 8.4.3 - The specification of the software units shall describe functional v
&7 Configuration 2 o 8 E— : DRSS = ESHRREE D : e B
T Alternatives:
~
Description | Steps| Roles| Work Products| Guidance | Categories | Preview
{2 Problems | = Properties 5 %5 Navigator Elx5~Y -0
Property Value

Figure 32. Create a Task

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 124

() AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0
Eclipse Process Framework Compeser - C:\Users\shankar\Desktop\SISOPL - X
File Edit Search Configuration Window Help
i Select a configuration v @% &~ Ei [E7) Browsing | =i AL
= Library 52 £ | & & 7 ° O]|(%- sisopl_plugin B, software_unit_design_and_implementaticn [design_concerning_safety &% =
L& Roles ~ ||| Task: design_concerning_safety 2
5 Tasks
g :Es\gn_(uncem!ng_cyflaerse(unty e
esign_concerning sa
gn- 9_safety Specify the steps to perform this task.
= design_review_concerning_cybersecurity
[design_review_conceming_safety Steps:
£ implementation_concering_cybersecurity < Design software units by using a notation that depends on the ASIL and the recommendation level Add,
[implementation_concerning safety) 4 Describe functional behaviour and internal design in the specification of the software units
£ implementation_review_concerning_cybersecurity < Apply design principles for software unit design depending on the ASIL and the recommendation levels Delete
[implementation_review_concerning_safety
> unit_design Up
> unit_design_review Do
[unit_implementation
[unit_implementation_review . Order
< >
] Configuration 52 & 7 =0|| Name
Design software units by using a notation that depends on the ASIL and the recommendation level
~ - . =
Description | Steps | Roles| Work Products| Guidance | Categories | Preview
p p 9
|21 Problems | = Properties &7 % Navigator Elx=~ 0
Property Value
Figure 33. Task Steps
Eclipse Process Framework Compeser - C:\Users\shankar\Desktop\SISOPL - x
File Edit Search Configuration Window Help
il T vieaw i~ B [Browsing [Au
= Library 53 % | &2 & ¥ = B[design_concerming_safety 53 =8
< sisopl_plugin ~ co BE R
=) Method Content
5 Content Packages H Expand All Sections [=] Collapse All Sections
) software_unit_design_and_implementation
5 Roles
5 Tasks
I design_concering_cybersecurity Roles Prmary Fertorrer dtonal Frfommers
= s e = e s Safety Engineer » Software Designer
= design_review_cencerning_cybersecurity — Manan ontona
npul Mandatory ptiona
[design_review_conceming_safety « Software Safety Requirements « None
> implementation_concerning_cybersecurity * Software Unit Design Specification
> implementation_concerning_safety
[implementation_review_concerning_cybersecurity Outputs « Software Unit Implementation
> implementation_review_concerning_safety
[unit_design Process Usage o Software Unit Design And Implementation > Design > Unit Design - Variability = Design Concerning Safety
> unit_design_review
> unit_implementation “ Back te top
> unit_implementation_review v
i
2= Configuration 52 G T =0
i
Guidelines Design Notations

Design Principles
Rationale Design Notations
Rationale Design Principles

4 Back to top

Description | Steps | Roles | Work Products

Guidance | Categories | Preview

[2 Problems | = Properties 52

Figure 34. Task Relationships with Roles, Work Products and Guidance

3.3.1.2. Define Capability Patterns

% =< =8

This corresponds to the Block (B) of the workflow depicted in Figure 25. Capability Patterns reflect best
practices which can be further integrated into Delivery Processes. Capability Patterns thus provide a means
of rapidly defining Delivery Processes by use of these building blocks as well as capturing the defined best
practices. Capability Patterns are similar in structure and definition to Delivery Processes. Capability
Patterns for ‘Cybersecurity’ and ‘Multi Concern’ Software Design and Implementation practices are

depicted in Figure 35 and Figure 36 respectively.

H2020-JTI-ECSEL-2015 # 692474

Page 48 of 124

A) AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

(B Eclipse Process Framework Composer - Ci\Users\shankar\ Desktop\SISOPL - X
File Edit Search Configuration Window Help
il sisoplconfig v @% &~ B B Browsing |, A
= Library 32 £ | & & ¥ T 0|5 Cybersecurity £3 =0
4= sisopl_plugin Presentation Name Index Predecessors Model Info Type Planned Repeat.. Multipl.. Ongd
B Method Content v & Cybersecurity 0 Capability P... O O C
lm Content Packages ~ [Design And Design Review 1 Phase O O C
=i software_unit_design_and_implementation ~ £ Unit Design And Review - Variability 2 Iteration O C
L Standard Categories ~ 3 Unit Design - Variability 3 Activity O O C
LS Custom Categories [Design Concerning Cybersecurity 4 TaskDescri. [O O C
lg» Processes ~ [Unit Design Review - Variability 5 3 Activity O O C
b Capability Patterns [Design Review Concerning Cybersecurity 6 TaskDescri. [O O C
Cybersecurity v [Implementation And Implementation Review 71 Phase O O C
" MultiConcern ~ & Unit Implementation And Review - Variability 2 tteration O C
ol Delivery Processes ~ 7 Unit Implementation - Variability 9 Activity O O C
% Software Unit Design And Implementation Safety [Implementation Concerning Cybersecurity 10 TaskDescrio. [O O C
1 Configurations ~ (3 unit Implementation Review - Variability nos Activity O O C
[Implementation Review Concerning Cyberse 12 TaskDescri.. [O O C
&7 Configuration 52 $ ¥ =0
sisoplconfig
[Z Disciplines
128 Domains
(4§ Work Product Kinds
(& Role Sets
(=, Tools
(& Processes
[Custom Categories < 2
(7 Guidance Description | Work Breakdown Structure| Team Allecation| Work Product Usage| Consolidated View
[£ Problems | 1 Properties 2 ¢~ =0
Figure 35. Cybersecurity Capability Pattern
(& Eclipse Process Framework Composer - C:\Users\shankar\ Desktop\SISOPL - X
File Edit Search Configuration Window Help
] 57 sisoplconfig vi@F & [[Browsing | =i Au ™
=) Library 5% % | &£ £ 7 ° 0|6 oybersecurity | MultiConcern £2 =8
== sisopl_plugin Presentation Name Index Predecessors Model Info Type Planned Repeat.. Multipl..
=k Method Content + S MultiConcern 0 Capability P... (] O
[z, Content Packages ~ £ Design And Design Review 1 Phase | O
=\, software_unit_design_and_implementation + € Unit Design And Review - Variability 2 lteraticn O
(= Standard Categories ~ [Unit Design - Variability 3 Activity]]
(£ Custom Categories [& Design Concerning Safety 4 Task Descri... O O]
lgh Processes [& Design Concerning Cybersecurity 5 4 Task Descri.. O O O
kg, Capability Patterns ~ B3 Unit Design Review - Variability 6 3 Activity (]]
Cybersecurity [& Design Review Conceming Safety 7 Task Descri... O O O
_ KaliSirSageny [+ Design Review Concerning Cybersecurity 8 7 Task Descri.. [O)
ol Delivery Processes ~ [Implementation And Implementation Review 9 1 Phase O |
& Software Unit Design And Implementation Safety ~ €3 Unit Implementation And Review - Variability 0] Iteration =]
! Cenfigurations ~ 2 Unit Implementation - Variability 1 Activity O O
[Implementation Concerning Safety 12 Tosk Descri.. [[m] O
[g Implementation Concerning Cybersecurity 1312 Tosk Descri.. [[m] =]
~ &7 Unit Implementation Review - Variability 17 n Activity O O
[Implementation Review Concerning Safety 15 Tosk Descri.. [[m] =]
L Implementation Review Concerning Cybersecurit 16 15 Tosk Descri.. [[m] =]
8] Configuration 52 ¥ =0
sisoplconfig
[E Disciplines
128 Domains
(4§ Work Product Kinds
(& Role Sets
([, Tools
(& Processes
(@ Custom Categories < 4
(7 Guidance Description | Work Breakdown Structure | Team Allecation| Werk Product Usage| Consolidated View
[£1 Problems | 1 Properties &2 ¢~ =0

Figure 36. Multi Concern Capability Pattern

3.3.1.3. Define Delivery Processes

This corresponds to the Block (C) of the workflow depicted in Figure 25. Processes are defined to show how
work is performed as part of a development cycle and also help in defining project milestones and how
they can be achieved. Processes may be either ordered sequentially or be semi-ordered as iterations of
work as appropriate to the development process employed. Further, the tasks can be modelled iteratively
while defining processes to factor the impact of a task on the behaviour of a previous task and vice versa.
These iterations can be carried on until you reach a design where such impact is absent or acceptable.

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

To illustrate the definition of a delivery process in the context of process-related dependability co-
assessment, previous work is reused. In particular, the work presented in [56] is reused. In this work, a co-
analysis and co-engineering approach to linking safety and security architectural patterns, called ‘Pattern
Engineering Lifecycle’ (depicted in Figure 37), is described, within the context of I1SO 26262 (automotive
domain specific safety standard) and SAE J3061 (cybersecurity process framework).

In [56], no process-related pattern (no capability pattern) is detailed. Authors only explain how the abstract
process given in Figure 37 could be instantiated via some more detailed process steps which include the
exploitation of architectural patterns.

Here, instead, the focus is on process-related patterns and on how the abstract process given in Figure 37
could be interpreted and modelled in a more refined way in EPF Composer. A possible interpretation would
be that each engineering block is modelled into a process-based pattern (capability pattern in EPF
Composer).

Since, however, in what follows the goal is to illustrate a re-configuration of a safety-related process model,
the safety-related engineering block is simply modelled as an instantiation of a safety-related capability
pattern.

) > Safe and

'—<</ﬁ[

Safety | i Security AN
Pattern , /,) Pattern = > Sgcure
Engineering | Engineering Safety and Security Archltsﬁtg.[e,

Co-Engineering Loop —
Figure 37. Pattern Engineering Lifecycle [56]

The Security Pattern Engineering block shown in Figure 37 corresponds to the Capability Pattern for
Cybersecurity depicted in Figure 35. In the example illustrated in Figure 39, we instantiate the Delivery
Process for Safety (note that also for the Safety Pattern Engineering block, a Capability Pattern could have
been used).

In Figure 36, the Capability pattern encompassing both Safety Pattern Engineering and Security Pattern
Engineering is depicted. An interpretation of the ‘Pattern Engineering Lifecycle’ is depicted in Figure 38.
Figure 38 depicts the iterations to factor the impact of safety and cybersecurity requirements on design.
Similar iterations may be performed for implementation also.

The blocks Design Concerning Safety and Review Concerning Safety (in Figure 38) correspond to the block
Safety Pattern Engineering (in Figure 37) while the blocks Design Concerning Cybersecurity and Review
Concerning Cybersecurity (in Figure 38) correspond to the block Security Pattern Engineering (in Figure 37).
Also, the blocks Safety Pattern Engineering and Security Pattern Engineering (in Figure 37) correspond to
the Multi Concern Capability Pattern depicted in Figure 36. The Safety and Security Co-Engineering Loop (in
Figure 37) is represented by the decisions boxes in Figure 38 and realized by the iterations defined in Figure
36 (Unit Design And Review — Variability and Unit Implementation And Review — Variability).

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 124

@ AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

L

i
. . | | Design | |
[Unit Design Concerning Safety

Design

Concerning
Cybersecurity

Unit Design
Review

Design Ok?

Mo

Review
Concerning Safety

Design Ok?

Review
Concerning

MNo

Cybersecurity

Impact Cybersecurity?| Yes

Design Ok?

Mo

Impact Safety?| Yes

Yes

Figure 38. Iterative Design Process Factoring Safety and Cybersecurity Requirements

Processes may be expressed as work breakdown structures or workflows. Figure 39 depicts a fragment of
the safety design process (Software Unit Design and Implementation) as a work breakdown structure
organized into phases, iterations, activities and tasks as well as their precedence relations. Also, role and
work product associations to activities are specified in the work breakdown structure. Further, the roles,
work products and task steps can be modified (addition, suppression, resequencing) to match the frame of
reference of the process being defined. The ‘Software Unit Design and Implementation’ (SUDI) process can
be defined as a Capability Pattern which may be further reused to define either a safety-based design
process, a cybersecurity based design process or a combined design process. The SUDI process (Safety) is
composed of two phases, namely, ‘Design and Design Review’ and ‘Implementation and Implementation
Review’ for commonality and two similar phases for variability. Each phase is broken down into iterations
and the activities and the tasks to be repeated in the iterations.

H2020-JTI-ECSEL-2015 # 692474

Page 51 of 124

) AMASS

Methodological guide for multiconcern assurance (b) D4.8V1.0
(& Eclipse Process Framework Composer - C:\Users\shankar\Desktop|SISOPL - X
File Edit Sesrch Configuration Window Help

mifd sisopleonfig @y 4 & 7 oeE [[E Browsing »
= Library 53 £ | 4 & ¥ = O£ Software Unit Design And Implementation Safety &2 =g
= sisopl_plugin Presentation Name Index Predecessors Model Infa Type Planned Repeat.. Multipl.. Ongait

=i Method Content ~ B3 Software Unit Design And Implementation Safety 0 Delivery Pro... O O O

= Content Packsges ~ & Design And Design Review (One) 1 Phase [m] =] =]

|, software_unit_design_and_implementation v & Unit Desgin And Review - Commonality 2 lteration m} m}

L= Standard Categories ~ [Unit Design - Commonality 3 Activity O =] =]

L& Custom Categories [Unit Design 4 Task Descri.. [O m] |

lgh Processes ~ [Unit Design Review - Commonality 5 3 Activity O O O

ot Capability Patterns (g Unit Design Review 6 Tosk Descrin. [[m] =] =]
Cybersecurity ~ & Implementaticn And Implementation Review (One) 7 1 Phase O O O

“& MultiCancern v 3 Unit Implementation And Review - Commanality 8 Iteration O O

iy Delivery Processes ~ 2 Unit Implementation - Commonality 9 Activity O] |

4 Software Unit Design And Implementation Safety IS Unit Implementation 10 Tack Descri.. O O O O
Configurations ~ [Unit Implementation Review - Commonality 11 9 Activity [m] 0 0

L Unit Implementation Review 12 Tosk Descri.. [[m] =] =]

~ £ Design And Design Review (Two) B7 Phase [m] =] =]

~ 45 Unit Design And Review - Variability 14 Iteration O O

~ % Unit Design - Variability 15 Activity O O O

(& Design Concerning Safety 16 Tosk Descri.. [[m] =] =]

onfiguration = $~v=0 ~ & Unit Design Review - Variability 1715 Activity : O O O

:) [Design Review Concerning Safety 18 Tosk Descri.. [[m] 0 0
sisoplconfig v {& Implementation And Implementation Review (Two) 18 13 Phase O O O
[[Z] Disciplines ~ £ Unit Implementation And Review - Variability 20 Iteration 1 1

(5 Domains ~ 2 Unit Implementation - Variability 21 Activity O O O

(% Work Product Kinds Lgs Implementation Concerning Safety 2 Tesk Deseri.. [[m] =] =]

[Role Sets ~ 3 Unit Implementation Review - Variability 3 2 Activity [m] =] =]

[Tools L Implementation Review Concerning Safety 24 Tosk Descri.. [[m] =] =]

(4 Processes

£ Phase : Implementation And Implementation Review

(= Custom Categories < >
(@ Guidance Description Work Breakdown Structure | Team Allocation Work Product Usage | Consolidated View
[Problems | = Properties 52 =~ =0

Figure 39. Software Unit Design and Implementation Delivery Process

Figure 40 depicts the Process Diagram of the delivery process while Figure 41 depicts the Detailed Activity
Diagram. The Process Diagram is at the phase level while the Detailed Activity Diagram is at an activity
level. The Detailed Activity Diagram shows the tasks which make up the activity, the associated roles and

work products.

(& Eclipse Process Framework Composer - C:\Users\shankar\ Desktop\SISOPL - X
File Edit Diagram Search Configuration Window Help
H-EH@ sisoplcanfig vi@ag i B 5 Browsing
Tahoma 3 A~ B~y g o v Biro@rieov| 2| o N 00% ~ =i, Authoring
= Library 52 £ | & & ¥ = B|[£ software Unit Design And Implementation Safety 5 *Delivery Process: Software Unit Design And Implementation Safety, Software Unit Design An 52 =g
< sisopl_plugin [2=) o Palette [
=) Method Content 5 .
%8, Content Packages Design And Design Review (One) ; -
= Flows ©

= software_unit_design_and_implementation
(% Standard Categories
(& Custom Categories

fal Delivery Processes
5 Software Unit Design And Implementation Safety
(& Configurations

(2=
=

DesignAnd Design Review {Tw o)

/" Control Flow

(= Nodes ©
[Processes ey _
[5, Capability Patterns = = Activity Partition
Cybersecurity implementation And Implementation Review (One) @ Start Node
“& MultiConcern @ End Node

[I3 Fork Node
30 Join Node
% Decision Node

3 Merge Node
3 Activity
3 Iteration
e =0
Configuration &% o [N £ Phse
sisoplconfig =
And Review (Tw o) £l Milestone
[E] Disciplines =
o Task Descriptor
128 Domains e i
128 Work Product Kinds
5 Role Sets
(% Tools

(3 Processes
[z Custom Categories
(% Guidance

Figure 40. Process Diagram - Software Unit Design and Implementation Delivery Process

{21 Problems| E Properties &2

<> Geometric Shapes

® o0

H2020-JTI-ECSEL-2015 # 692474

Page 52 of 124

\@ AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0
Eclipse Process Framework Composer - C:\Users\shankar\Desktop\SISOPL - %

File Edit Diagram Search Configurstion Window Help

- B & sisoplconfig ~ @ % ¥ v
Tahoma 9 [Av v v || HirBrie || o N5 ~|[00% v
= Library 2 & | &5 & 7 = 5[software Unit Design And Implementation Safety 75 ~Activity Detail:g, Software Unit Design And Implementatien Safety &
<= sisopl_plugin N
Method Content &
= Saftware
(=, Content Packages e
=i, software_unit_design_and_implementation Design
(= Standard Categories Specification
(2 Custom Categories
(& Processes
) o
{3, Capability Patterns o =3
G Cybersecurity Software Designer Unit Design
“& MultiConcern l
42, Delivery Processes
5 Software Unit Design And Implementation Safety B
(5 Configurations Software
Implementation

2= Configuration 52 ¥ =0

sisoplconfig

&l Disciplines
I Domains

[Work Product Kinds
L5 Role Sets

(4, Tools

(G Processes

[Custom Categories
(@ Guidance

[Problems | = Properties 52

[8] Browsing

=i, Authoring
=8
~ | 45 Palette I
heaam-
© Geometric Sh... <
< Oval
3 Cylinder
+ 5 Rectangle Types
+ % Polygon
Line
v
® <=8

Figure 41. Detailed Activity Diagram — Software Unit Implementation

3.3.1.4. Publish Method Configuration

This corresponds to the Block (D) of the workflow depicted in Figure 25. Publishing Method Configuration
enables sharing of method content, guidance and processes with members of the Project Team. Publishing
is a two-stage activity consisting of defining a Method Configuration made up of a selection of method
content and processes from one or more plugins followed by publishing it as a website. The contents of the
published website, allow navigation between the various elements contained, by way of hyperlinks. A

fragment of the Published Method Content is depicted in Figure 42.

H2020-JTI-ECSEL-2015 # 692474

Page 53 of 124

AMASS

Methodological guide for multiconcern assurance (b) D4.8V1.0
[indexhtm x O JoEmii 0 — x
<« C | @ filey//C:fUsers/shankar/EPF/Publish/index.htm w| O 0

am Wheream I | Bj Tree Sets |

SISOPL Custom Category

D Software Unit Design Specification

a Software Unit Implementation

5 Software Designer

5 Safety Engineer

5 Software Tester

£ Programmer

> Unit Design

> Design Conceming Safety

> Design Conceming Cybersecurity

> Unit Design Review

[Design Review Concerning Safety

> Design Review Concerning Cybersecurity
> Unit Implementation

> Implementation Concerning Safety

> Implementation Concerning Cybersecurity
> Unit Implementation Review

> Implementation Review Concerning Safety
= Review C Cy!

£ Design Activity Analysis

[IS0 26262 Section 8.4.1 Comply with safety-related requirements if applicable

Expand All Sections __ [Collapse All Sections

2
=

Roles Primary Performer Additional Performers:

= Safety Engineer = Software Designer
Inputs Mandatory Optional
s Software Safety Requirements = Mone

s Software Unit Design Specification

Qutputs = Software Unit Implementation

4 Back to top

=
=

Design software units by using a notation that depends on the ASIL and the recommendation level

< Desian Assessment Refinement

1 Design Notations

,;j Design Principles

,g Implementation Activities Analysis Cybersecurity
ssment Ry Cybersecurity

,}j Implementation Verification Methods

nﬁ] Implementation Verification Methods Safety

£ Modelling Guidelines

Describe functional behaviour and internal design in the specification of the software units

Apply design principles for software unit design depending on the ASIL and the recommendation levels

Figure 42. Fragment of Published Method Content

3.3.2. BVR Workflow

In this subsection, the BVR Workflow is explained. This workflow exploits the process model modelled by
applying the EPF Composer-related workflow (left-hand side sub-workflow in Figure 25).

3.3.2.1. Create Variability Model

This corresponds to the Block (E) of the workflow depicted in Figure 25. The Variability Model is created
using the VSpec editor of the BVR tool thus enabling modelling the features of the software development
process in the form of a feature diagram.

The VSpec editor also provides means to specify multiplicity (concepts such as exclusive-or, one of, etc.)
and constraints. Constraints represent cross-feature dependencies. A feature may require the presence or
absence of another feature.

The Software Unit Design and Implementation variability models for Safety, Cybersecurity and Multi
Concern are created using the VSpec editor and are derived essentially from the base model (with the
exception of constraints) described in Subsection 3.3.1. A fragment of the feature diagram using the BVR
VSpec editor is depicted in Figure 43. Note that the ‘+’ symbol indicates that the VSpec Model displays a
feature, which has been minimised.

As it can be seen in Figure 43, the feature ConcernChoice takes one of three values, namely Safety,
Cybersecurity and MultiConcern, which are depicted as an exclusive-or feature. The constraint is specified
in the parallelogram and is composed of features connected by operators ‘and’, ‘not’, ‘implies’ and
parentheses. Optional features, as determined by the specified constraints, are connected with dotted lines
while mandatory features are connected with solid lines. The Variability Model use case is described in
Subsection 4.3.8.

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

ISuFtwa\ eUnitDesignAndImplementation : BVRModel I

Activities

"Commonality Point" "Commonality Poirt" "Commonality Poirt" "Commonality Point"

gan !

(+) UnitDesign [UnitDesignRawew] [(+) UnitImplementation] [{+) UnitImplementationReview]

_________________ == L~
~
DesignReviewSafety DesignReviewCybersecurity DesignReviewMultiConcern Safety Cybersecurity MultiConcern
"ariabilty Point - IS0 26262" "ariabilty Point - SAE J3061" "ariabilty Point" IS0 26262" "SAE J3081"
Cyhersecurity implies NultiConcern implies
Safety implies (({DesignRevievSafety
{ {(DesignReviewlybersecurity { {(besignRevievMultiloncern
and (not DesignReviewlybhersecurity)) . .
)) and (not DesignReviewSafety)) and (noc DesignReviewSafecy))
and ({not DesignReviewMulciConcern)) .)) .)
and {noc DesignReviewvNultiConcern)) and (not DesignReviewCybersecuricy))

Figure 43.BVR Feature Model using VSpec Editor

3.3.2.2. Resolve Configuration

This corresponds to the Block (F) of the workflow depicted in Figure 25. The resolution results in the
generation of the Resolution model from the Variability model which was created using the VSpec editor.
This is performed using the Resolution editor. The Variability Constraints represent valid resolutions of the
model. The resolution model also looks very similar to the variability model created earlier and resembles a
tree structure. The Resolution editor allows for validation of the resolved model allowing the ability to
resolve the model correctly based on the specified constraints and cardinality. Figure 44 and Figure 45
depict cases of valid resolution and invalid resolution respectively.

Activities = true

[(+) UnitDesign = true] [UnitDesignRe\riew =true] [(+) UnitImplementation = true] [(+) UnitImplementationReview = true] [Concernchcice =true]

— |

[DesignReviewSafety = false] [DesignReviewCybersecurity = False] [DesignReviewMultiConcern = true] [Safety = false] [Cybersecurity = False] [MultiConcern = true]

Message *

Valid: true []

Figure 44. BVR Resolution Model with Valid Resolution

Activities = brue

[(+) UnitDesign = true] [UnitDasignReview =true] [(+) UnitImplementation = true] [(+) UnitImplementationReview = true] [ConcernChoice = true]

_—— |

[DesignReviewSafety = true] [DesignReviewCybersecurity = False] [DesignReviewMultiConcern = false] [Safety = brue] [Cybel security = true] [MultiConcern = false]

Message X

Valid: false [Solution invalid: 0, Reason: (DesignReviewSafety@28, -DesignReviewMultiConcern@30, Cybersecurity@41, 1]

Figure 45. BVR Resolution Model with Invalid Resolution

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

In Figure 45, we can see that both ‘Safety’ and ‘Cybersecurity’ choices are True in an exclusive-or
relationship, thereby resulting in an invalid resolution of the model. Resolution of all variabilities correctly is
a prerequisite for proceeding to the product realization steps, namely ‘Define Mappings’ and ‘Generate
Process Model’.

3.3.2.3. Realise Model

This corresponds to the Block (G) of the workflow depicted in Figure 25. The Realisation Model is created
by using the Realization Editor. During the editing of the Realization Model, the Resolution Model and the
Base Model are used. In particular, the Resolution Model indicates which features should be part of the
Realization Model. The Realization Model is obtained by modifying the Base Model through a series of
transformations, which apply fragment substitutions (consisting of Placements and Replacements). Once
the Realisation Model is created, it can be exported back to the Base Model Editor (i. e., EPF Composer).

For instance, Software Unit Design and Implementation Safety Delivery Process, depicted in Figure 39, can
be used as Base Model to create a new process model representing a multi-concern process. A complete
illustration regarding the creation of a realisation model is given in Chapter 4.

3.4. Standard-related Dependability Co-assessment via OpenCert
Workflow (*)

This section is connected with the previous one, but here the focus is on the standard-related dependability
co-assessment.

Standardization for safety and security is still separate. In AMASS we have tried to show this separation
using OpenCert, where the different standards are modelled as different reference frameworks, however
we support the specification of equivalences between the standards. An expert in both standards, or
different experts, each with expertise in a single standard, working together, must map concepts (activities,
artefacts, and requirements) from source and target standards by using OpenCert Equivalence Maps. As a
result of this activity, a model of Equivalence Maps between source and target Reference Frameworks will
be generated. More specifically, its workflow is depicted in Figure 46. This workflow describes the work
that should be conducted by using OpenCert. The complete process is described in deliverable D6.8 [8] as
“Cross-Standard reuse”.

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 124

@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

Preparation of Cross-
Standard Reuse

¥

| l ‘

{ Conceptual Modeling] { Conceptual Modeling] [Conceptual Mapping between]

of Source Standard of Target Standard Source and Target Standards

Modeling of Standard Modeling of Standard
using Ref. Framework using Ref. Framework

X

Map Knowledge from Different
Ref. Frameworks

|

o

Figure 46. Sub-activities related to the Preparation of Cross-Standard Reuse

3.5. System Dependability Co-Analysis (*)

In this section, the workflows for guiding users interested in performing system dependability co-analysis
are given. More specifically, three different techniques can be used.

3.5.1. System Dependability Co-Analysis via Papyrus SSE

To address multi-concern assurance, Papyrus SSE strongly relies upon the principle of elements reuse. In
particular, the reuse of modelling artefacts is a core technique of the approach. As it is seen in Figure 47, a
model of the target system is first designed by the user. To do so, several standardised languages are
supported like UML, SysML, BPMN and RobotML [49]. Languages specific to an engineering domain can be
specified and implemented in Papyrus SSE, if they are based on the Core supported languages, as for
example CHESSML.

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 124

<A y AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

DESIGN MODEL

s | =
SECURITY MODEL VIEW

T el AR SE o
o= cmsew fuweose [papyrus SSE [— I s

LATHL 1Al CIOUS TISKS

Figure 47. Annotation of the system model to conduct safety and/or security analyses

Once a first version of the system model is complete, the user can select to conduct safety and/or security
analyses. To do so, the user should apply the dedicated profile(s) which, among others, allow to annotate
the system model by adding the elements required by the analysis: the annotations introduce functional
and non-functional attributes to be addressed and/or evaluated. The annotations finally extend and
produce safety and security-oriented models. The annotated models and the analyses outcomes can always
be traced from their sources, including the requirements they fulfil. Such traceability plays a key role for
identifying commonalities between analyses (and respective modelling elements), which is necessary to
support a joint safety-security analysis. In the following subsections, we illustrate the main tasks to be
executed by users in order to apply the approach.

3.5.1.1. Papyrus for Safety

Papyrus for Safety (Papyrus4Safety) denotes the platform used to analyse safety aspects. In Figure 48, we
illustrate the lifecycle that is supported by the tool to conduct safety-oriented analyses (HARA, FMEA, FTA,
etc.). Each analysis demands the application of a profile to be applied on the system model. The profile
stereotypes can be managed either manually or automatically. In the first case, the user creates basic
elements, apply the needed stereotype and fill its attributes. In the second case, dedicated functions are
available via pop-up menus which can be executed targeting all elements in the model.

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 124

() AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0

Propagation of ASIL failures, etc
and display critical components

=

System
Mode|ing ‘ Safety profile

' - [S ——— \ application
S NN—==

Propagate :
Safety Modeling
Res’t\JAILsdteol the & Annotation
Faun Treeg
Tables

mm
A FME(C)A tables

A A a I =<
AltaRica formal Fault Ses 08 80 20,
model Tree e e | |
; Result A ; '
: nalysis -
: Generation y : :

= |

Analysis_ |E ,

Figure 48. Lifecycle supported by Papyrus4Safety for model-based safety analysis

via Profile

HARA tables

3.5.1.2. Papyrus for Security

Papyrus for Security (Papyrus4Security) denotes the platform used to analyse security aspects. In Figure 49,
we illustrate the main phases supported by the framework. The phases correspond to the workflow a user
can follow in order to cover a full cycle of the risks assessment and the system securing processes: 1)
definition of the perimeter of the analysis and security metrics (criteria and scales) parameterisation; 2)
primary assets, and security goals definition; 3) supporting assets analysis, vulnerabilities identification and
security countermeasures definition; 4) threats scenarios, propagation analysis and impact evaluation; 5)
attacks trees definition and likelihood evaluation: and 6) security risk assessment and reduction. The details
about the different analyses are already explained in D3.8 [7] and will not be repeated here.

6. Security Risks
Assessment

1. Context analysis, evaluation scales, and
security criteria

- 2. Primary assets
e requirements and security

am |

o i BIENS Crgp e goals o
- - MESURES O s
5. Attack Trees and DE SECURITE B s
likelihood evaluation s A"
RISQUES Kt

qui créent
VULNERABILITES

3. Supporting assets, vulnerabilities, and
security countermeasures

Figure 49. Main phases supported by Papyrus4Security

3.5.1.3. Exploiting Papyrus SSE mono-concern results for multi-concern perspective

Papyrus for Safety and Security Engineering (Papyrus SSE) targets three major milestones:
e Support for safety standalone engineering

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

e Support for security standalone engineering
e Support for safety-security co-engineering

For now, the safety and security standalone functionalities of Papyrus SSE are the most developed and
mature. The safety-security co-engineering has emerged in recent years as a viable and promising approach
that aims to identify and exploit commonalities and dependencies between analyses from early phases of
design. As part of this multi-concern perspective, the CEA team is currently developing Papyrus extensions
to integrate multi-concern aspects. To do so, several standards are being taken as reference. Among them,
we can mention the following:

e EUROCAE ED-202 [46] and ED-203 [47], for the airworthiness security process and methods,
respectively.

e DO-356 [48], airworthiness considerations and methods.

Of course, these standards are oriented to the aeronautics domain, however, they provide important
insights on the processes and methods for safety-security co-engineering for any critical domain. On one
side, the aeronautics domain is clearly safety critical. On the other side, the increasing connectivity of
airplane on-board systems (civil and military) is motivating the involved sectors to initiate discussions on
the potential impact of security threats. Indeed, as in other systems (e.g., Industrial Control Systems), the
todays aeronautics systems were mostly designed without security in mind and their increasing
connectivity imposes several risks that need to be evaluated. In this context, the road map of Papyrus SSE
extensions already considers the next aspects for multi-concern assurance:

e Commonalities: the commonalities between safety and security analyses need to be thoroughly
considered. On one side, the syntactical similarity of fundamental notions is one of the major
stakes. It has been identified as necessary to regroup the concepts that are syntactically similar;
however, in the end, it is not sufficient. Indeed, a major challenge emerge when considering the
semantical differences of syntactically similar concepts. For instance, the notion of feared events
exists in both safety and security analyses. However, the nature, techniques and conceptual
elements involved in feared events elicitation may considerably differ for safety and security
analyses and for specific study cases. It is becoming clear that a one-to-one security-safety
concepts mapping is not any more a target but a possible reference to construct.

e Particularities: as a consequence of the drawbacks already identified for settling a full and
consistent match between safety and security aspects, concepts and methods, the identification of
safety and security particularities and their co-existence arise, i.e., multi-concern co-engineering.
Regarding Papyrus for SSE, the meta-models and profiles already implemented to support
standalone security and safety analyses are the basis to construct and specify not only
commonalities but also their particularities. Thus, for instance, the notions of security criteria (also
named security attributes) namely confidentiality, authenticity, privacy, etc. (which do not have a
safety-oriented counterpart) will be part of the security approach particularities. On the other side,
the notions of accidental failure, failure rate, failure propagation, etc., will be part of the safety
approach particularities.

e Evaluation metrics: safety and security methods already introduce metrics to evaluate risks.
However, the nature of safety and security events is not necessarily the same. Even if statistical and
probabilistic methods can be applied to evaluate both safety and security events occurrence, the
first ones mostly obey to the physical nature of the components and their exposition to operational
conditions whereas the second ones mostly obey to the motivations, gains and rationales of human
beings. Regarding Papyrus for SSE, a perimeter is settled to separate common from specific
aspects. By doing so, it is ensured that the evaluation metrics, which can be independently used for
standalone safety or security risks evaluation, truly converge over common spaces.

e Safety-security techniques integration: the identification of commonalities and particularities, and
the — well — defined evaluation metrics are the basis upon which the safety and security-oriented
techniques can be integrated. In particular, the integration of Fault Trees and Attack Trees

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

techniques is a promissory but challenging task targeted in the Papyrus SSE roadmap. Indeed, even
if there exist several approaches that show the feasibility of such integration, several issues still
need to be addressed, e.g., language, formalization, semantics, etc. Even so, several aspects are
currently inspected, implemented and evaluated. In particular, a consistent hybrid Fault-Attack-
Defence Tree can be constructed upon the notion of safety-oriented attack and non-safety-
oriented attack. To accomplish a consistent integration, several issues still need to be solved:

o Abstraction levels heterogeneity: the safety and security parts of a hybrid tree may need to
be imported from models developed as standalone entities. The different levels of
abstraction used for modelling need to be considered and harmonized. This becomes
evident when targeting the integration of knowledge bases, e.g., attacks, vulnerabilities,
attack scenarios, etc.

o Safety and security events complexity: as previously mentioned, the nature of safety and
security events is not necessarily the same. For instance, the propagation of a failure is
determined by a cause-effect rule that is often written as a Boolean formula. However, the
propagation of an attack is often based upon the notion of attack action or step. Whereas
the propagation of a failure obeys the cause-effect rule involving binary inputs and outputs,
the propagation of an attack action is far more complex since it may involve other elements
like vulnerabilities, countermeasures, attacker resources, skills and motivations, window of
opportunity, etc. The sound evaluation of propagations complexity needs to be thoroughly
considered.

o Safety-security border: as long as the Papyrus SSE extensions are developed and tested on use
cases, it becomes clear that a logical border between safety and security spaces may soon appear.
Indeed, for some cases, the security analysis may be limited to cover only safety-oriented impacts.
In those cases, the targets of an attack are inferred (by considering the safety impacts) and a
border between attack vectors and failures propagations can be settled. For other cases, a safety
analysis may be extended or completed by a security one. When this happens, first the potential
attacks are elicited and then cross-related to the safety analysis; in addition, a logical border
between attacks and safety analysis can also be identified and settled. The cases in which neither
priority nor sequencing exist between safety and security analyses are rare. That is why, the
identification of a logical border between safety and security spaces can be foreseen. If present,
such a border can be exploited when addressing the particularities of safety and security analyses.

3.5.2. System Dependability Co-Analysis via Safety Architect

The methodological guide proposed for using Safety Architect [14] and Cyber Architect [15] (presented
briefly in Section 2.3.6) is based on separation of concerns and co-engineering approaches. The main
motivation for separation of concerns is that every engineer (be it an architect, a security or a safety
engineer) can focus on his/her concern solely because certain domains, such as safety and security
domains, are quite different in terms of practices and concepts used. The main motivation for co-
engineering is that today no single modelling language and tool can cover all the system engineering
activities (specification, analysis, design, verification and validation) and multi-concerns (e.g., Safety and
Safety co-analysis and co-validation).

The methodology is based on the seamless interoperability between AMASS platform (CHESS tool and
OpenCert) and ALLATEC's tools as presented in Figure 50.

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

S ~ s

Safety

Viewpoint

Model

Sys_tem Mapping ! Security
Engineer Developer Engineer Engineer
1
]
I .
System Design 1 Security
1
]

Mapping Table

Import from CHESS
toSA

e

Return analyis results|
n CHESS or OpenCert|
as evidence

FMEA/FMVEA
Fault Tree/
Attack Tree

- » =
s,

Safety&Security Analysis

Figure 50. Interoperability between AMASS platform (CHESS and OpenCert) with Safety/Cyber Architect tools

A possible usage scenario is composed by the following steps:

Step 1: System architecture model in CHESS tool.

Step 2: Export/Import system architecture model from CHESS to Safety Architect for safety
analysis.

Step 3: Cyber-security analysis in Cyber Architect.
Step 4: Import of security analysis artefacts from Cyber Architect in Safety Architect for co-analysis.
Step 5: Safety & Security co-analysis in Safety Architect.

Step 6: Generation of Safety & Security propagation trees for manual trade-offs between safety
and security engineers.

Step 7: Visualisation of propagation trees in the AMASS Platform (CHESS) to facilitate the co-
engineering between Safety & Security Engineer and System Architect in order to facilitate the re-
design of system architecture if needed.

Step 8: Use of Safety & Security propagation trees as Safety & Security evidences in AMASS
platform (OpenCert).

A workflow including the previously listed steps is given in Figure 51.

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

!

\
[System Architecture Model (SAM) in CHESS J

|

SAM + Safety & Security Viewpoint in SA

.|

E:ailure Conditions Analysis] E\nalicious Events Analysis]

l

[FT&AT Co-Analysis]

Sufficent Safety & Secyrity Elements in FT &AT?

Mo - Add Safety and Security Mechanisms

Yes - Safety & Security Validation

Figure 51. Workflow regarding system dependability co-analysis via Safety Architect

3.5.3. System Dependability Co-Analysis via ConcertoFLA

In this subsection, ConcertoFLA is proposed as a means for performing system dependability co-analysis.
More specifically, it is proposed that the Safety engineer models the safety-related threats (e.g., fault,
error, failure) and their propagation and that the Security engineer models the security-related threats
(e.g., attack, vulnerability and threat) and related propagation. Once this is done, it is proposed to apply
ConcertoFLA dependability co-analysis and automatically generate a multi-concern fault tree using the
results of this co-analysis. In addition to the generation of certifiable evidence for assurance purposes, the
analysis results also contribute in the evaluation of the trade-offs between the multi-concerns. In what
follows, the general workflow for addressing system dependability co-analysis via ConcertoFLA is given and
then applied on a simple example.

3.5.3.1. Workflow

This subsubsection describes the workflow for defining a system and performing dependability analysis for
assuring different non-functional properties of the system. The AMASS platform, via inclusion of CHESS
toolset, enables the support for system design, dependability modelling and analysis.

The activity diagram shown in Figure 52, illustrates the steps for system design and co-analysis via
ConcertoFLA. The initial step is to define the system by modelling its components and the interactions. The
next step is to model the failure behaviour for all components. After that, the failure behaviour of the
components is specialized to address the security concern for these components. Then, the ConcertoFLA
dependability co-analysis is performed on the system design to identify the system behaviour in the
presence of faults and security attacks. In the next step, the ConcertoFLA co-analysis results are
transformed to generate the multi-concern fault tree. Based on this, a decision is made for introducing the

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

robustness, safety and/or security measures by refactoring the system. This process is repeated iteratively,
until the sufficient level of these concerns (safety and security) is not met.

Approach Overview
System Definition

{ Failure Behavior Modeling }

for Security Concern

k

Performing ConcertoFLA Co-
analysis

l

[Generating Multi-concern FT]

U Tradeoff l """"""" ;

Tradeoff between
different attributes

1 [Is Dependable, Need
[No] Refactoring?|

[Specializing Failure Behavior]

[Yes]

Figure 52. System Dependability Co-Analysis via ConcertoFLA

In the following subsubsections, the above-mentioned steps are detailed.

3.5.3.2. System Definition

In this first step, expected to be performed by an engineer with architecture engineering expertise, the
system is modelled as a composite component. A composite component consists of different composing
components and their relationship. Each of the composing components is defined in isolation (independent
of composite component for reusability) and has input/output ports for interaction with the environment.
To demonstrate the methodology, a simple system is used. This simple system is represented as a
composite component named “CompositeDemoSystem”. The system represents a hypothetical controller
and is composed of two components i.e., “SensorComponent” and “ControllerComponent”. The former
acquires the raw data of a physical phenomenon of the environment on its input port, transforms it into
sensor measurement and provides the result on the output port. Whereas the latter takes this
measurement on its input port, performs computation and provides the processed data on its output port.
This interaction and the above-mentioned functionality of the components is realized through interfaces
and component implementations.

To model this simple system, the following steps should be followed:

1. Create a UML Class Diagram under the package “modelComponentView” in Model Explorer view.
The diagram allows to define components and other entities e.g., component implementation,
interfaces and relationships etc., using the Palette on the right. All components including the
composite component are defined in this class diagram. Figure 53 shows all three components i.e.,
CompositeDemoSystem, SensorComponet and ControllerComponent along with their interfaces
and component implementations.

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 124

@ AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0
77 *model.di = =08
_ # Palette b
«Interface» «lnterface» NCED
= ISensor = IControllel % Contracts -

] CompositeDemoSystel

«Component»

' Sens_Comp_Interf

3 Contr_ Comp_Interf

«Component»
<componentType»

«Component»

<JControllerComponent]

[-1SensorComponen

;
3 Sens_Complmpl_Comp
I

;
3 Contr_Complmpl_Comp
I

«componentimplementation»

«Component»

=ISensorComplmpl

«Component»

kcomponentimplementation>
“IControllerComplmpl

E Contract (Class)
= ContractProperty (Property)
I FormalProperty (Constraint)
a System (Componentimplementation)
a SRACemponent
& N’cﬁdes T a @
B Package
b= ComponentType (Component)

a Componentimplementation
(Component)

 FunctionalPartition (Component)
m, -
Edges ®
7 Generalization
Realization
7 Association
" Dependency
Link

Figure 53. Component, Interfaces and other entities definition

2. Create a UML Composite Structure Diagram for each of the defined components. This diagram
allows to define the input/output ports for the components by enabling “CHESS FunctView” in the
Palette. Additionally, other entities e.g., connectors and property etc. could be defined using same
view. Figure 54 shows the ControllerComponent being decorated with the input and output ports
i.e., sensorData and processedData respectively. Similarly, the SensorComponent is also decorated
with its input and output ports.

“? model.di &

«Component»
“ControllerComplmpl

«FlowPort»

[sensorData

«FlowPort»
] processedData

1

® DemoSystem ClassDiagram B Controller Compenent &

“ Palette
K& e

Contract

=8

i DelegationConstraint (Constraint)
% CHESS FunctView @
= Property
¢ Connector
“ Provided Port
{Required Port
% IN FlowPort (Port)
% QUT FlowPort (Port)
@ NfpConstraint (Constraint)

 CriticalityInterfaceSpecification
{Constraint)

i Link

Figure 54. Assigning input/output ports to a component

The composite component is also decorated with input/output ports using the editor provided by

UML Composite Structure Diagram of the composite component (see Figure 55). Additionally, the
composing components and their ports are dragged from the Model Explorer view and dropped in
the composite component. The components and ports are then connected using the connector
entity from the Palette to realize the system definition. The CompositeDemoSystem component

H2020-JTI-ECSEL-2015 # 692474

Page 65 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

shown inFigure 55, has one input and output port i.e., rawData and processedData and is
composed of “sensorcomponent” and “controllercomponent” which are defined in previous steps.

" model.di & =g
+¢ Palette b
«Component» E @ Q
“1CompositeDemoSystem % Contract @

% DelegationConstraint
(Constraint)

= 5
= sensorComplmpl = controllerComplmpl % CHESS FunctView
Connector1 = Property

Connector3 «FlowPort»
FlowPort] 7
L «flowPorts “rawData Sk ct0[)2 “Eg’n\'gg? B processedDataq processedData Connector
It o .
rawData 1Sensor %a Provided Port

(Required Port
“ IN FlowPort (Port)
“ OUT FlowPort (Port)

 NfpConstraint
(Constraint)

@ CriticalitylnterfaceSpecifi...
(Constraint)

“Link

DemoSystem_ClassDiagram B Controller Component B CompositeDemoSystem & | B Sensor Component
Figure 55. Composite Component

3.5.3.3. Failure Behaviour Modelling

Once, the system is modelled and its components are defined, the safety engineer is expected to model the
input-output failure behaviour for each individual component. To perform this modelling, the following
step should be followed:

1. Apply “FLABehavior” stereotype to each component and define the failure behaviour using FPTC
(Failure Propagation Transformation Calculus) rules (see Figure 56). More specifically, Figure 56
shows one FPTC rule of “SensorComponent”. This rule indicates that if “valueCoarse” (type of fault) is

received on the input port called “rawData”, the component propagates valueCoarse to the output
port called “SensorData”.

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

~? model.di =
+# Palette b
&

#¥ Contract £

«Components
«fLABehaviors
=] SensorComplmpl {7} DelegationConstraint
«<FLABehavior» (Constraint)
fptc=FLArrawData.valueCoarse->sensorData.valueCoarse; 2% CHESS FunctView N

= Property
~

[raabas” b <o o
< Required Port

© IN FlowPort (Port)

B OUT FlowPort (Port)

{#} NfpConstraint (Constraint)

7} CriticalitylnterfaceSpecifi...
(Constraint)

#, Link
B DemoSystem_ClassDiagram ymponent £z | Ba Analysis
[Properties 2 | 4 Model Vali A EDS = =0
=] SensorComplimpl Cancel
UML Language |
Comments os |
Profile
Style Source code location (M|
General
Rulers And Grid
Advanced
CHESS
Taris Fptc FLArrawDatavalueCoarse->sensorData.valueCoarse; &+

Figure 56. Decorating the components with their failure behaviour

3.5.3.4. Specialising Failure Behaviour for Security Concern

After defining the failure behaviour of each component, a specialisation of this failure behaviour is
performed by the security engineer, to address a particular concern e.g., security. This specialisation is
achieved via the following steps:

1.

Create a StateMachine Diagram under the component, for which the failure behaviour shall be
specialized for security concern. Figure 57 shows the state machine diagram created for specializing
the “SensorComponent”.

Apply “ErrorModel” stereotype to the state machine and define the states and erroneous
transitions, using the ErrorModel palette. Figure 57 shows a security attack model for the
“SensorComponent”. An attack causes a transition from initial state to the Statel. The kind of
attack, which depicts its nature, is specified under the “Attack” stereotype along with the threat it
would enable if successful. For example, in Figure 57 the “dataSpoofingAttack” is shown, which
causes the “unauthorizedModificationofService” threat. The attack exploits a vulnerability to cause
a transition to the State2. Similar to the attack, the kind of vulnerability is specified under the
“Vulnerability” stereotype. This erroneous transition causes a failure and have a failure mode. This
failure mode is specified under the “Failure” stereotype and can be seen in Figure 58. The failure
mode is specified as a combination of the port and type of failure i.e., “portname.typeoffailure”,
and is similar to the failure behaviour specification shown in Figure 56. The specialization of failure
behaviour corresponds to the initial input/output failure behaviour and is meant to enrich its
implementation. In this particular case, the failure behaviour of “SensorComponent” is specified as
the “valueCoarse” type of failure on “sensorData” port in the presence of “valueCoarse” failure on
the “rawData” port. In the context of security, the “dataSpoofingAttack” on the “rawData” port
enables the “unauthorizedModificationofService” threat on “sensorData” port due to a
“missingDatalntegritySchemes” vulnerability. Each failure of a component can be specialized with
corresponding security attack, vulnerability and threat or vice-versa.

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3. Next, “ErrorModelBehavior” stereotype is applied to the component of interest. Figure 59 shows
the “SensorComponent” and the “ErrorModelBehavior” stereotype. The “Security Attack Model”,
defined in previous step, specializes the failure behaviour of this component.

2 moceld

A | Palette

<ErroModel s y A
Security Attack Moded 2 Enror Mode!

* initial

Ininal State e = & Emor (State!
[+ErrorSiatesd _fErorstased 3 intermalPropagation
L 1 «Vuinerabiltys | State2 (Transitioa)

Attacks Suatel

A InternaiFautt (Transition

3 Failure (Trangiton)

& Emor (State!
«Follures

< >
% Welcome B Controlier Companent % StateMachine Sensoe Component = [Semsor Companent 2 Analysis B CompositeDemaSystem

[Properties .
+ <Transition>
ML Applied stereotypes v x
Commends v Il Attack (from CHESS=Oependability-ThreatsPropagation)
Profile & kindt AttackType [1) » dataSpoofingArtack
sevenity: String (1] « nutl

Y & liketihood: String 1] « mu
Appearance & vulinerabiity: Vilnerabisty [1) » null
Rulers And Grid @ theeat ThreatType [1] » unauthonzedModificabonOfService
Advanced & extemnalfaults String (1] » null v
CHESS
Ports.

Figure 57. State Machine Diagram illustrating the ErrorModel Stereotyped Security Attack Model

I modeld
A | O Palette
sEroeMocets oo lleW.
Secunty Attack Model | & Error Model
* tal
@ Erroe (State)
Intial State Erroe (State

& Erroe (State)

fErosuted _ fEnorsuates } bernafropagabon
<Attacks 7| swtel | vdneabiitys | State2 | Tramsition)
r 1 ¥ internaifautt (Transition)
< A Failure (Teansstion)
«Failures

< >
¥ Weicome | B Controlter Component g StateMactine Sensor Component | B Semsoe Component ™ Anatysis | [ComposteDemoSystem

D Propertes 1 J Mocel Valdation % References

 <Transition>
UML Appled stereotypes v %
Comments v (1l Failwre _ (from CHESS:Dependabiay:ThveatsPropagation
Profile 3 mode: String {1.*] = (sensorDatavaiveCoarse)
- ay: NFP_Real [0.1] » null
Shie e cw:qtz‘r.l;_rg;;uzc,u -‘:n.u
Appearance
Ruders And Grid
Advanced
CHESS
Ports

Figure 58. Security Attack Model showing Failure Stereotype State Transition

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

~# model.di

«Components
«FLABehavior, Componentimplementation, ErrorModelBehaviors
=]SensorComplmpl
«FLABehavior=
fptc=FLA:rawData.valueCoarse->sensorData.valueCoarse;

«ErrorModelBehavior=
errorModel =[Security Attack Model]

«FlowPorts «FlowPort»
[ﬁ rawData [‘] sensorData

I@ Welcome Controller Component %a StateMachine Sensor Component Sensor Component &
[Properties 2

%1 SensorComplmpl

UML Applied stereotypes: EEARETARE: AR

Comments Componentlmplementation (from CHESS:ComponentModel)
FLABehavior (from CHESS:Dependability:FailurePropagation)
~ ErrorMaodelBehavior (from CHESS:Dependability:DependableComponent)
=l errorModel: ErrorModel [*] = [Security Attack Model]

Profile

General

Style
Appearance
Rulers And Grid
Advanced
CHESS
ContractEditor+
Paorts

Figure 59. Sensor Component with ErrorModelBehavior Stereotype

3.5.3.5. Performing ConcertoFLA Co-analysis

To perform the ConcertoFLA co-analysis, following steps should be followed:

1.

After defining the failure behaviour of the components and specializing it for security concern, the
input port of the composite component is annotated with “FPTCSpecification”. The comment is
used to specify the type of faults injected to the system. Change the view to “Extrafunctionalview”
to enable FPTC drawer in the Palette. Attach FPTCSpecification comment to the input port of
composite component. The comment is used to specify the type of faults injected to system. Figure
60 illustrates the type of faults that can be injected in system. The “CompositeDemoSystem” is
injected with “valueCoarse” type of fault on its input port (rawData).

Create component with “FailurePropagationAnalysis” stereotype in a UML Class Diagram under the
package “modelDependabilityAnalysisView” in Model Explorer view. Build the instances of
composite component and assign to this newly created component as a resource platform (see
Figure 61).

Execute the ConcertoFLA co-analysis via “Concerto-FLA co-analysis” menu entry, to generate the
failure propagation paths. These paths are stored in a file using Failure Logic Analysis Meta Model
(FLAMM) representation. In addition to this, the failures are backpropagated and annotated to the
output port of the actual system. Figure 62 shows “CompositeDemoSystem” component with a
“valueCoarse” type of failure backpropagated and annotated at its output port (processedData).

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 124

AMASS

Methodological guide for multiconcern assurance (b) D4.8V1.0
72 *model.di -8
+¥ Palette 3
«Component» h
“]CompositeDemoSystem #FPTC N
= FPTCSpecification (Comment)
= FI4FASpecification (Comment)
= sensorComplmpl = controllerComplmpl Link
Connector1 5 «FlowPort» # Real Time ®
TR 5 (2[]<Hlowports | ProcessedData; processedData = CHRtSpecification
sensorData o
r’anata il 1 Link
"
_\ -
™ D failure O X
AN
«fPTCSpecifications]
Filter: valueCoarse
late
early
valueSubtle ps
omission
commission = L
5% DemoSystem_ClassDiagram B Controller Component CompositeDemoSystem_ noFailure o
[Properties % | 4 Model Validation variable i EICEEERE
= wildcard
UML Applied stereotypes: %
Comments v E FPTCSpecification (from CHESS:Dependability:FailurePro
Profile = failure: FailureType [0.*] =[] 0K Cancel
Style @ partWithPort: Property [1..1] = null
= failureMode: FailureMode [0..7] =[]
Appearance
Figure 60. Specifying the injected faults at the input ports of composite component
“? *model.di # - =
+* Palette 3
[
DependabilityAnalysis @
“stateBasedAnalysis (Component)
Do : .
<«Component> FgllurePropagatlonAnaIyS|s
«failurePropagationAnalysis» (Companent)
=1 DemoPropagataionAnalysis
~¥ platform O X
Filter: l:l E & CompositeDemoSystem_instSpec
~ B «CHESS» model
v B3 «ComponentView» modelCon
B3 «CHGaResourcePlatform» C i
(=]
B2 DemoSystem_ClassDiagram B Controller Component CompositeDem&; [
T Properties 2 | Model Validation 1 oK Cancel E°°
© DemoPropagataionAnalysis
UML stereotypes: LR platform &[N
Comments urePropagationAnalysis (from CHESS::Dependability::FailurePropagation)
Marte ontext: NFP_String [0.*] =[]
" vorkload: GaWorkloadBehavior [1..*] =]
Profile
slatform: GaResourcesPlatform [1.. |
Style
node: Mode [0.%] =[] v

= <

Figure 61. Creating FailurePropagationAnalysis component and assigning resource platform

H2020-JTI-ECSEL-2015 # 692474

Page 70 of 124

<A y AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

“? model.di =
«Component»
“ICompositeDemoSystem
= sensorComplmpl = controllerComplmpl
Connector1
Connector3 «FlowPort»
FlowPort» 2 1 d
L Ll nnector. «FlowPort» e e 2 processedData
“of lowPort> “towioee = sensorData B ‘l/
“rawData 1 1 e
\‘\‘ e
AN «FPTCSpecification»
«fPTCSpecification» failure=[valueCoarse]
«FPTCSpecification» FLA: processedData
failure=[valueCoarse]

Figure 62. Back-propagated failure on the output port of composite system

3.5.3.6. Generating Multi-Concern Fault Tree

A multi-concern fault tree is generated from the results (failure propagation paths) of Concerto-FLA
analysis using following steps:

1. Navigate to the “Generate FT via Concerto-FLA” menu as shown in Figure 63.

latform = X
CHESS | Window Help
Analysis > Dependability > Generate FT via Concerto-FLA g v | ‘ = e v
Code generation > Formal Verification > FTA with NuSMV3 (xSAP) Generate FTA Quick Access| :| B | By |7
Filters > Real-Time Analysis > Failure Logic Analysis (Concerto-FLA) =0
Basic Operations > Failure Logic Analysis (Concerto-FLA) from XML
Validation > State-Based 2 Palette >
Functional Verifications > C State-Based (With External Parameters) e NRQI -8
: «(G =
Safely Analysis & =]CompositeDemoSystem Contract
Safety Case > {7} Delegation.
Purge Analysis Context (Constraint)
Multicore support > & CHESS Fun...
lj ,lActivate Ex‘(raFur‘\ctionaIView nsorComplmpl = controllerComplmpl B Property
ctivate Ral Vie
<« Connector
tyView Connector1
tyView s «FlowPort» «FlowPort» .
rawDat: «Howpg%gnec fé?:gg&%a L processedData © provided Por
_::FiowPonﬂ sTensor a a1 1 17 €Required Port
“awData /
N o IN FlowPort
\\ ; / (Port)
/
«FPTCSpecification» S 8 0uT
«FPTCSpecification» /’ FlowPort
failure=[valueCoarse] (Port)
2} NfpConstrai
(Constraint)
{7} Criticalitylnt

(Constraint)
7 Link

Figure 63. Generate FT via Concerto-FLA menu

2. Upon the selection of this menu a file chooser shall appear. Select the failure propagation paths file
generated in previous steps. A corresponding fault tree is generated as shown in Figure 64. Since,
the fault tree is generated from the results of failure logic analysis, which supports qualitative
analysis, the generated fault tree is also of qualitative nature and does not have probabilities.

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 124

D4.8V1.0

@ AMASS

Methodological guide for multiconcern assurance (b)

valueCoarse failure of
processedData in
CompositeDemoSystem
(0.0)

_}

valueCoarse failure of
processedData in
controllerCompimpl
(0.0)

%

valueCoarse failure of
sensorData in
controllerCompimpl
(0.0)

——————— 1

lunauthorizedModificationOfServic
e at port sensorData in
sensorComplimpl component
(0.0)

A g

alueCoarse failure of rawData in

valueCoarse failure of
sensorData in sensorCompimpl

HataSpoofingAttack at pord nissingDatalntegritySchem

senscrCompimpl rawData in s vulnerability in
{0.0) sensorCompimpl sensorCompimpl
component component
Q.0 {0.0)
OR

valueCoarse failure of
rawData in
CompositeDemoSystem
(0.0)

O

Figure 64. Automatically generated multi-concern fault tree

3.5.3.7. Trading Off

Once the multi-concern fault tree is generated, trade-offs can be evaluated by the engineer (architect)
together with the safety and security engineer and if needed the system has to be re-designed.

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3.6. Privacy Analysis

Dependability of a system can also be considered with regard to how it handles personal data and
addresses privacy issues. In this section, we explore how privacy concerns can be tackled by following a
methodology and will give two examples. We will first make an overall tour of the relevant privacy
concerns. Then we will present the essence of an assurance case-based methodology focusing on privacy
concerns. Finally, we will illustrate how existing tools could be used and the requirements in terms of
interfacing with the rest of the AMASS framework.

3.6.1. Relevant Privacy Concerns

With the increasing amount of personal data processed at large-scale and the rising of artificial intelligence
approaches, privacy concerns driven by public’s growing expectations are recognised as gaining importance
in the industry. However, privacy is intrinsically vernacular and can designate many different concepts. We
will exemplify this by taking a tour of different sources such as regulations targeting privacy. We will then
select a couple of privacy concerns from these sources to detail them, show how they are linked, and put
the assurance case-based methodology in context.

3.6.1.1. Privacy Regulations

Privacy is differently addressed in the world and obligations incumbent to entities processing personal data
might be more or less stringent. For example, in US, federal data protection laws are traditionally sectorial
(Health Insurance Portability and Accountability Act (HIPAA) for the health sector and Gramm-Leach-Bliley
Act (GLB) for the finance sector for instance) while there are also state-level regulations (California Civil
Code §1798.82 for breach notifications for instance) in parallel to many institutional (such as the Fair
Information Practice Principles (FIPP) recommended by the Federal Trade Commission (FTC)) and private
best practices guidelines (such as the cross-industry Self-Regulatory Principles for Online Behavioral
Advertising) [76]. On the other hand, the approach chosen in most of European countries has been early
national legislations later aligned in 1995 through a directive (95/46/EC) in the European Union, which
needed transcription into national laws by member states (the Data Act in Sweden in 1973 for instance),
sometimes even in their constitution (Portugal in 1976 and Spain and Austria in 1978 for instance).

Recently, a new regulation, the General Data Protection Regulation (GDPR, 2016/679) [77], has been voted
and entered into force to be applicable today without any need for transcription into national legal laws.
This new regulation aims at finding a balance between favouring the free transfer of personal data and
providing the adequate protections needed for such transfers and associated processings. It can be noted
that the impact of the GDPR is extremely large as it rules, in its Article 3, that not only processings
happening in EU are subject to the regulation, but also those processings which, though taking place
outside from the EU, concern EU residents. Among other points, the GDPR states the conditions for data
protection impact assessments (DPIA) and processings carrying high risks for the data subjects. These two
notions will be central to define our methodology. In the following, we will stay close to the GDPR
regulatory framework as it is expensive and consistently covers a large economic area.

3.6.1.2. Data Protection Impact Assessment for High Risk Data Processing

In case processing a piece of personal data “is likely to” make the data subject carry a high risk, the data
controller (under which the responsibilities and liabilities related to this processing are attached), Article 35
of the GDPR rules that a DPIA should be carried out. In fact, the GDPR let some space here for member
states and data controllers: supervisory authorities have been given the possibility to give their positions on
the conditions for processings to satisfy this criterion (as did the Belgian authority for instance [78]) and
data controllers are free to choose their methodology to perform the DPIA as long as it satisfies established
criteria as explained in an opinion from the WP29 [79]. The main goal of all these methods is the same: to
help choosing relevant measures to address the risks identified and to demonstrate this has been done for
compliance purposes.

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

3.6.1.3. Organisational and Technical Measures

When risks to rights and freedoms of data subject have been identified through the combination of
sufficiently high severity and likelihood, measures aiming at reducing these risks have to be selected. These
measures can be of different sorts and belong mainly to two different sorts: organisational measures, on
one hand, which target governance, processes and people, and technical on the other hand, which rely on
technical components and/or changes to be added to the filing system. A knowledge base of such measures
has been published by the CNIL [80], the French supervisory authority, to help data controllers to better
protect personal data when designing their systems. Other sources exist to find such measures such as for
instance the NIST SP 800-53 and its Security and Privacy Controls which can act as a guide and support
knowledge base to find ways to engineer privacy in a system [81].

3.6.1.4. Accountability through Compliance Demonstration

Beyond mere data protection by design as imposed by Article 25 of the GDPR, the new standard is to be
able to also demonstrate compliance (a principle called “accountability”) set out in Article 5 of the GDPR.
To comply with this obligation, it is needed to document all the elements which are artefacts of the data
protection related aspects of a system processing such data. In particular, the DPIA has to be carefully
driven and decisions made based on its outcomes must be well motivated. In this context, an assurance
case can help to show how arguments are supported and by which claims and evidences.

3.6.2. Privacy Assurance Case Methodology

3.6.2.1. Privacy-Related Requirements

Regulations tend to be prescriptive corpus which can be considered as requirements which should be
satisfied by economical actors. Concerning data protection, this still constitutes a challenge as the GDPR,
for instance, is a long and dense regulation which could be decomposed in many requirements, stratified at
different levels to organise them all. We take here as an example a series of requirements taken from the
GDPR. Generating such requirements in a structured way constitutes a field already addressed by other
works [82][83].

We take a simple example that we will develop in the following to show how an assurance case can be used
for data protection purposes. One of the keystones of data protection standards and regulations is the
concept of purpose limitation. This is an indispensable requirement which states in Article 5§1(b) of the
GDPR:

“[...] personal data shall be [...] collected for specified [...] purposes and not further
processed in a manner that is incompatible with those purposes |[...]”

Once such a requirement has been identified, it has to be met by the implementation and this should be
reflected in unit/integration test/verification cases results.

3.6.2.2. Requirements Traceability

In order to demonstrate compliance to regulations through satisfaction of requirements, the traceability of
these latter has to be ensured between multi-layer artefacts. The traceability can for instance link a high-
level requirement to several low-level requirements, or requirements to verification cases. Coming from
the development of critical systems area, such as avionics or automotive, such approaches are also relevant
for systems dealing with highly sensitive personal data. There is also a need to maintain the traceability
between these requirements and the solution chosen to satisfy them. Contracts can be used to this aim to
formalize privacy requirements and ensure the architectural level consistency.

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 124

AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0

3.6.2.3. Privacy Assurance Case and Evidences

The demonstration of which solutions can be used for evidences to satisfy a requirement can be made
through an assurance case. For example, Figure 65 shows an assurance case in the context of the GDPR.
The root targets compliance with Article 5§1 while the requirement expressed above is the sub-goal G5.1.b.

/ C8.1 I G5.1
| Bervice targets EU |<+—— Comply to GOPR
*._residants A Arficle 5 §1
/881 / 7 ABA
" Argumant over each A— = :._ Subparagraphs ars
/ subparagraph (’\‘ “-._conjonctive conditions
G5.1.a G5.1.b G5.A.f
Comply to GDPR Complyto GODPR | - ---- Comply to GDPAR
Article 5 §1(a) Article 5 §1(b) Article 5 §1(f)
/851 s 7 ABAD
" Use pre-validated A———>| Templates prevent from
S templates ;‘“\"n..,fﬂrgeﬂing relevant criteria_~
G5.1.b.A G5.1.b.2 G5.1.b.3 G5.1.b.4
Identify purposas in Ensure purposes Make the source code ‘Werify information flow
architectuns consistancy pUrpOsE aware wrt. purposas
e M."x x's..;ﬁ,i.h,z H"x ,-*"J H“x ,-*'IJ hl"x
Bn31h1 " Missing purpose- &n5.1.b.3 &n5.1.b.4
| Purposa-related .
: - related attributes Source code Sowrce code
attributes in data
. model input in data modeal templates filling static analysis
oy P - “.generation e M P M L

Figure 65. Example of data protection assurance case

It can be seen that goal G5.1.b is split into four other sub goals which are linked to solutions. These
solutions cover several layers of the system thus benefitting from the multi-concern approach of AMASS
since it will build on some elements already defined for other concerns.

3.6.3. Verification of Privacy-Related Requirements

In the context of the AMASS project, the Frama-C software analysis platform can be used to address
privacy-related concerns. Our method is inspired from the way to model privacy purposes suggested by
[84] applied to Secure Flow [85], a plug-in from the Frama-C software analysis platform [86]. This plug-in
allows to reason about information flow in a C program and can be leveraged for privacy purposes.

3.6.3.1. Architecture-Level Privacy-Related Requirements

The requirements at the architectural level are expressed in formal contracts. A data flow-oriented view of
the architecture can be used and augmented with specific privacy-related attributes for some of its
elements. An example of a concrete case is shown in Figure 66.

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Process id 1]
Process name rate_credit | $process
Processing purpose | marketing
Input data salary input $data 0 | $data_0_purpose
Data id 0 Inpurt data assets input $data_1 $data_1_purpose
Dita name salary T _: Cutput data rate output $data_ 2 | Sprocess 0_purposa
Caollection purpose | marketing \ X
! 1
Data id 1 | ! Data id 2
Diafa namea assets : : Diata name rate
Caollection purpose | non_targeted _marketing : ,:ﬁ : Processing purpose | marketing
. p ! B 1
& g o £
B -E : | 'E 1
i & &l
1

ate

-~

Rate
credit

Customer -

Figure 66. Architectural view of the data flow diagram and its attributes (white values correspond to Sn5.1.b.1 and
grey values correspond to Sn5.1.b.2 from Figure 65)

This small architecture shows an external entity (Customer) which send two pieces of data (salary and
assets) to a process (Rate credit) before this latter sends an output value (rate) to another part of the
system (not shown in this example). This set of basic elements constitutes a collection of personal data and
is thus subject to the GDPR and in particular its purpose limitation principle which corresponds to the
requirement described above.

In order to deal with privacy concepts, the classical view has been augmented with attributes attached to
each its constituting elements. They are manually input by the designer in the model design software and
define to identifiers (Data id and Process id), names (for Data and for Process), and purposes (for Collection
and for Processing). At this stage, the purposes need to be ordered by their permissivity. For example, it
can be considered that processing data with a marketing purpose is more permissive than with a restriction
to a non_targeted_marketing only. This relation can be defined as shown in Equation 1. Filling in these
attributes values, which have a white background in Figure 66, and defining the ordering of purposes
correspond to solution Sn5.1.b.1 from Figure 65.

”“non_targeted marketing” < “non targeted marketing”
“marketing” < “marketing”
“marketing” < ”non targeted marketing”

Equation 1. Definition of the < purposes ordering

The following step is to reason about the architecture to deduce new attribute values with the information
input. For instance, the Processing purpose of the data rate is inherited from the Processing purpose of the
process Rate credit. Similarly, the Input and Output data from the Rate credit process are generated from
its input datas in the architecture and qualified as input or output before being assigned variable beginning
with a S sign, acting as placeholders, which will be used to make the link with the source code at a later
stage. The result of this generation, which corresponds to solution Sn5.1.b.2 from Figure 65 is denoted with
a grey background in the tables in Figure 66.

3.6.3.2. Code-Level Privacy-Related Requirements

Two main steps are considered at code-level before performing the verification: a program corresponding
to the architecture has to be written on one hand and the privacy-related requirements have to be
specified on the other hand.

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

3.6.3.2.1. Program Generation

The development of a program which will be verified with regard to the privacy properties expressed above
will be based on code generation. The C code which will be generated will mainly handle two kinds of
aspects: inputs and outputs. The template used for inputs is shown in Code 1 where the name of this
specific data is declared and assigned to name input_i, a specific purpose is declared and assigned to
input_purpose_i, this purpose is then added to a key-value dictionary purposes storing the link between
data and purposes, a comment line which will be later (explained and) used for information flow control is
added, and an integer value is input from outside through a call to a function called read_input_i_value.
The letter i contained in variable names (input_i, input_purpose_i, and input_i_value) is a placeholder for
the identifiers Data id visible on Figure 66 (this remain the case throughout this section without any new
mention of it). Please note that there are also strings beginning with § (such as Sdata_i and
Sdata_i_purpose) and which also corresponds to their counterpart from the architectural level from Figure
66 .

char input i[] = “$data_i“;

char input purpose i[] = ”“$data_i purpose”;
insert (purposes, input i, input purpose 1i);
//@

int input i value = read input int();

Code 1. Template for input purpose limitation

The template used for output data is shown in Code 2. It follows the same principles as for the input data. It
can be noted it calls another function which consists in processing personal data before returning its result.

char output[] = ”“$data_i”;

char output purpose[] = ”“$process_i purpose”;
insert (purposes, output, output purpose);

int output value = $process (input i value, ..);
//@

return output value;

Code 2. Template for output purpose limitation

Given the architecture from Figure 66 which contains two inputs and one output data, the consolidated
template shown in Code 3 can be generated by instantiating the i corresponding to the identifiers of the
data elements.

int main(void)

{
char input 0[] = “$data_O0“;
char input 0 purpose[] = $data_0_purpose;
insert (purposes, input 0, input 0 purpose);
//@
int input 0 value = read input int();
char input 1[] = “$data 1%;
char input 1 purpose[] = $data_1_purpose;
insert (purposes, input 1, input 1 purpose);
//@
int input 1 value = read input int();
char output[] = “$data 2“;
char output purposel] = $process 0 _purpose;
insert (purposes, output, output purpose);
int output value = $process (input 0 value, input 1 value);
//@
return output value;

}

Code 3. Consolidated template for main function of Rate credit application

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

This process satisfies solution Sn5.1.b.3 from Figure 65 about template filling to preserve architectural
properties at the code-level.

3.6.3.2.2. Privacy Specification

As mentioned above, this consolidated template contains comment locations (lines beginning with /@)
which are places in which a formal specification will be input. This specification is expressed in a formal
language called ACSL [87], which will be used by Frama-C/SecureFlow to verify the C implementation meets
the specification. The privacy-related requirements thus need to be translated in ACSL such that
SecureFlow can use them. The current version of SecureFlow follows a pattern commonly used by
information flow control tools which relies on the annotation of variables with annotations denoting their
level of confidentiality. These two levels are private and public. To declare a variable to be private, a
comment //@ private must be added at the line preceding its declaration in the source code; if not done,
the variable is considered as public.

In terms of privacy-related requirements, the output data annotation will be public and data associated
with restrictive purposes will be set as private. It will then be verified if some data for which only a
restrictive purpose has been allowed are used or not to compute output data (considered to have a non-
restrictive purpose by definition). The algorithm corresponding to this is shown in Algorithm 1.

for 0 £ i < n:
if (lookup (purposes, input i) < lookup (purposes, output)):
input i value.status <- public
else:
input i value.status <- private
output value.status <- public

Algorithm 1. Purpose limitation ACSL specification generation

This algorithm calls a function called lookup which applies to a dictionary and is the counterpart of insert
introduced in input and output templates: it searches for the value corresponding to a key. The assignment
of the public or private annotation is specified as a status of the variable and is done through the sign <-.

Following the example and the purposes indicated in Figure 66, the output rate will be public, the input
salary will be public (as it has a permissive purpose), and assets will be private (as it is restricted to
non_targeted_marketing only). This result is combined with the filling of the template coming from Code 3
where all S-variables are substituted by values coming from the architecture (see Figure 66). The result of
this is shown in Code 4. The latest comment //@ assert is written in this long form in order to trigger the
information flow verification.

int main (void)

{

char input 0[] = "salary";

char input 0 purpose[] = "marketing";

insert (purposes, input 0, input 0 purpose);

//@

int input 0 value = read input int();

char input 1[] = "assets";

char input 1 purpose[] = "non_targeted marketing";

insert (purposes, input 1, input 1 purpose);
//@ private

int input 1 value = read input int();
char output[] = "rate";
char output purpose[] = "marketing";

insert (purposes, output, output purpose);
int output value = rate credit(salary value, assets value);

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

//@ assert security status(output_value) == public;
return output value;

Code 4. Purpose-limited main function of Rate credit application

The specification of the program made following this method prepares the satisfaction of solution Sn5.1.b.4
from Figure 65. In order for this verification to be performed, it is necessary to add a couple of other
annotations and content in the code. First, all functions called need to be, at least, abstractly described for
the SecureFlow to be able to deduce information flow properties from the main program. An ACSL
specification is thus added which indicates which variables are used to assign a value to the return value of
the function. For instance, for the function read_input_int, a technical variable *__fc stdin (denoting data
coming from the standard input) is used to compute \result as shown in Code 5.

//Q assigns \result \from *_fc_stdin;
char* read input int (void);

Code 5. Flow-oriented ACSL specification of read _input_int abstract function

The same is done for the insert function which serves to populate the purposes dictionary as shown in Code
6.

//@ assigns table \from table, key, value;
void insert (dict table, char key[], char valuel[]);

Code 6. Flow-oriented ACSL specification of insert abstract function

For the sake of completeness, the body of the rate_credit function must be filled and will be used by
SecureFlow to perform its verification. An example of this is shown in Code 7 where the content of assets is
only used if the salary is not enough.

int rate credit (int salary, int assets) {
int rate = salary * 12 / 100;
if (rate < 200) { rate += assets / 250; }
return rate;

Code 7. Definition of credit rate function

3.6.3.3. Traceability to Architecture Level

The verification performed by SecureFlow in this specific example indicates that the content of a private
variable flows towards a public variable. This is because assets has been associated a restrictive purpose
with regard to the purpose for which the data is processed by credit_rate (which is a permissive purpose
associated to its output value rate). This verification completes the use of sequential solutions suggested in
the privacy assurance case described in Figure 65 and the artefacts from the verification can be used as
evidences of contracts satisfaction at the architecture level. This will be used to demonstrate compliance to
the GDPR and may also be used for other concerns (for instance for security properties related to
confidentiality issues).

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

4. Cases Studies

In this chapter, some case studies are used to illustrate the execution of the workflows presented in the
Chapter 3. In particular, the AMASS CS11 is used to illustrate dependability co-analysis via ConcertoFLA; the
AMASS CS3 is used to illustrate the dependability multiconcern assurance approach; and the AMASS CS1 is
used to illustrate the dependability co-analysis via Safety Architect. Finally, the normative documents used
in the automotive domain are used to illustrate the process-related dependability co-assessment.

4.1. Case Study CS11 - Attitude and Orbit Control System (*)

Attitude and Orbit Control System (AOCS) is a satellite-on board application that provides two
functionalities: 1) attitude control, which controls the orientation of a satellite relative to a reference frame
(e.g., celestial bodies such as Sun and Earth etc.) and, 2) orbit control, which controls the position of a
satellite in an orbit. AOCS collects the attitude data from the attitude sensors and calculates control
torques to be applied on satellite using the actuators to achieve desired attitude and position in orbit.

European Cooperation for Space Standardization (ECSS) provides standards for engineering, management
and qualification of a space system, more specifically, ECSS-E-ST-40C [50] for software engineering and
ECSS-Q-ST-80C [51] for product assurance. ECSS-Q-ST-80C defines different criticality levels for a system
based on the severity of consequences of the failure. AOCS is categorized as critical system due to the
severe consequences of its failure and is required to fulfil the requirements applicable through ECSS
throughout its engineering process.

To this end, this case study is focused only on the attitude control function which will be addressed as
Attitude Control System (ACS) hereafter. ACS controls the orientation of satellite by applying the torques
through attitude actuators (reaction wheel and/or thrusters) in a closed loop over following steps:

e Reading data from the attitude sensors.

e Estimating the current attitude of the satellite relative to the reference frame of interest.
e (Calculating the deviation from the targeted attitude.

e (Calculating the control torque to minimize and converge to the targeted attitude.

e Generating and sending the commands to the attitude actuators to apply the computed torque on
satellite.

ACS has different functioning modes which correspond to different pointing requirements. These pointing
requirements are formulated according to the satellite mission and its objectives. For example, ACS in safe
mode is required to point its solar panels towards the Sun to power up all its critical parts, thus controlling
the attitude relative to the Sun. Similarly, ACS in mission mode for a telecommunication mission needs to
control the attitude relative to the Earth.

4.1.1. Description of the Use Case Scenario

We have considered a simple use case of ACS i.e., ACS in Sun Pointing mode to demonstrate the co-analysis
methodology. In this mode, ACS controls the attitude of a satellite relative to the Sun as the requirement is
to point to the Sun. ACS requires a sun sensor to acquire the attitude data, which provides the direction of
the Sun in the sensor’s reference frame. Attitude of the satellite is estimated from this attitude data and is
represented as an estimated sun vector, which depicts the satellite orientation in sun reference frame.
Estimates for the angular velocity of the satellite are computed from the measured angular rates using a
gyroscopic sensor. Additionally, gyroscopic disturbance torque is also calculated from these angular rates
to compensate for gyroscopic coupling in dynamics.

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 124

U& AMASS D4.8 V1.0

Methodological guide for multiconcern assurance (b)

In this use case, the generation of actuation commands to apply the computed control torque on the
satellite is considered out of the scope.

4.1.2. Demonstration of the Methodology

We start with the system definition and model five components to fulfil the above-mentioned ACS
functions, as illustrated in Figure 67.
As done in [34] and [72], the ACS system is defined as a composite component, which contains the
following components:
e SignalConditioner, which process and transforms sensor data to satellite reference frame.
e StateEstimator, which estimates the satellite state using the current state measurements and
historical data.
e PDController, which calculates the proportional and derivative torque using estimated sun vector
and angular velocities.
e SteerController, which calculates the torque using only the estimates of sun vector.
o FeedforwController, which computes the gyroscopic coupling torque.

e TorqueSelector, which selects the appropriate torque from the torques computed by PDController
and SteerController, as the control torque based on the current attitude of satellite.

A detailed description of each of the components and the difference between the controllers can be found
in [34], which represents an initial step towards a complete case study of AOCS (CS11 in D1.1 [1]). All of the
above-mentioned components along with the ACS composite component are defined along with their
interfaces, implementations and other entities and is shown in Figure 67.

«Component= «Component»
; memmmmmm-------- > dinterfaces «ComponentTypes [<J- - - - - J=Componentimplemen..
1 «Components «Components i Zisensors “1TorqueSelector LTorqueSelectorimpl
I E
+ |«Componentimplementation: «ComponentType» -
! £IsignalConditionerimpl |- =1signalConditioner . & getSunVec() & + getEstSunVec() & + getEstSunVec()
' AN . 4 getGyroscopic... _ | @ + getSpecTorque() [t & + getSpecTorque()
' L
' |#@ getGyroscopicData() o gD | 2 : g:tggggfrg::aomo P g 1 f.f}‘éf}ffoffq"féd
! | & getSunVec) @ getSunvec() Tl ! g .
' RN <Interface» | "
i =] Condl2Est] i !
' i
i «Components el A0 e ; i : i
I
H =StateEstimatorimpl b aComponen.tType» _,‘V () AT, I ' ! V!
' AN #1StateEstimator e & setCondGyrosc.. | ! H t
] y k- ' ! ' "
|4 setCondSunVec() e | Ce I D
b omponent '
| & setCondAngVelocity() L el sinad) : Interf: : qump:nentlr:p\em;ntanon ; i |
|| @ setCondGyroTorgque(@ setCondAngVelodi.. mmerace e «Components steerC. lerimpl H [
! & setCondGyroTorgu... Est2Control |5 AT TSI AT el ' o
) ' '
' =] SteerController '
H «Components 4@ setEstSunVec() S - @ + getEstSunVec() i ' i
i <Componentimplementation: «Components - @ setbstAng\elo.. [T oo @ + getEstSunVec() - eI : i !
: <1pDControllerimpl «ComponentTypes | .-~ gilisstisiGyolonms| 00 @+ setSpecTorque() : s
' - Z1PDController H ' [
H I
' & + getEstSunvec() i H . i
! @& + getEstAngVelocity() @& + getEstSunVec() ' | | !
! & + setPDTorque() @& + getEstAngVelocity ' | Vo
! & + setPDTorgue() 1 R LR E R LR ! ! |
I I
' ' . ‘\
' ! «Component «Component» | '
| <Interface» H <ComponentTypes i LComponentimplementati... I
- - i
i BT @ Torques .-~ []FeedforwardCon..] FeedforwardControllerl... } \
,,,,,,,,,,,,,,,,,,,,, « » . i
=IACSComposite @ setPDlorque) |27 & + getEstGyroT... @ + getEstGyroTorque() i \
-l |® setSpecTorquel | + setfeedforw.. | @ + setfeedforwardTor.. ! 3
@ +getSunVec() & @ setFeedforward.. [v
@ + getGyroscopicData() Tel ! |
@ + setCtriTorque() I, Tl : ;
I «Interface» TS Tmoooommoooomoooooomooooommooos |
- i
i

s =] IToquesActuators

2

@ setCtriTorque()

Figure 67. Class diagram showing the components of the ACS system

Next, input and output ports for all these components are defined along with their failure behaviours. And
then, all of these components are connected together to compose the ACS composite component as shown
in Figure 68. In the next step, the failure behaviour for all components is specified. In this use case, we

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

consider the “valueCoarse” type of failure and specified the failure behaviour only for this case — as
motivated in [33]. This failure on the input port of ACSComposite i.e., SunVec corresponds to the scenario,
where the Sun Sensor is providing incorrect measurements. To address the security concern, we model a
scenario that these incorrect values are due to a data spoofing attack and are not actually originated from
the Sensor unit. To demonstrate this, a state machine (Error Model) is created for the “SignalConditioner”
component, which shows the “dataSpoofingAttack” along with the “missingDatalntegritySchemes”
vulnerability and causing an “unauthorizedModificationOfService” threat. This has been demonstrated in
the Figure 69. Once, the failure behaviour and specialization is modelled, the input ports of the composite
component are injected with the faults and failure logic analysis is executed. As a result of the execution,
the calculated failure behaviour is back-propagated to the initial input model and stored in the FLAMM
based file.

’

«Component»
Z1ACSComposite

|EJ + torqueSelectorimpl....
[| estSunVec

«FPTCSpecification»
failure=[valueCoarse]

= + steerControlle...

estSunVec

estSunVec

. specTorque ctriTorque]

spetTorque

dTorque pdTorque ctriTorque

feedforwardTorque

ro;Eb Data estGyroTorque
2 condGyroscopicData ¥ 2

«FPTCSpecification»
failure=[valueCoarse]

[@ + feedforwardCo“.|

- estGyroTorque

feedforwardTorque

Figure 68. ACS Composite component

«ErrorModels
SignalConditioner Component Security Attack Model

Ps dataSpoofingAttack (mmissing DatalntegritySchemes

«ErrorStates| « Failure»
InitialState «Attacks EoniShated «Vulnerabilitys ErrorState2

condSunVec.valueCoarse

Figure 69. SignalConditioner Component Security Attack Model

ECSS Standard for product assurance has dedicated documents for dependability and safety i.e., ECSS-Q-ST-
30C [52] and ECSS-Q-ST-40C [53] respectively. The former puts an emphasis on the reliability attribute of
the dependability, where the latter targets safety explicitly. Both documents require the reliability and
safety analysis at all the stages of product design and development. The standards suggest various analysis
methods both top-down and bottom-up approaches, where fault tree analysis is one of the methods. In
addition to this, a recently introduced standard ESSB-ST-E-008 [71] provides requirements of cyber security
risk assessment analysis at all levels of development of space missions.

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 124

U‘é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

The resulting failure propagation paths stored in FLAMM file are utilized to generate multi-concern fault
tree. Figure 70 shows the complete fault tree for the ACS composite component for a system level failure
as “valueCoarse failure of ctrlTorque in ACSComposite” with the highlighted area corresponding to the
“SignalConditioner” component”. This highlighted part of the fault tree is shown in Figure 71 , which shows
both (safety and security) causes for the top-level event to occur. It shows that the
“unauthorizedModificationOfService” or a valueCoarse failure at port “condSunVec” of “SignalConditioner”
component can cause the “valueCoarse” failure on the “condSunVec” input port of “StateEstimator”
component. The “unauthorizedModificationofService” threat is caused due to the combination of
“dataSpoofingAttack” on the input port of “SignalConditioner” component and
“missingDatalntegritySchemes” vulnerability.

valueCoarse failure of ctriTorgue
in ACSComposite
(00

valueCoarse failure of criTorque
in torqueSelectorimpl

(00
OR
[[I |
valueCoarse failure of estSunvec valueCoarse failure of valueCoarse failure of pdTorque :al:;(nals;;allum I.)'
in torqueSelectorimpl specTorque in torqueSelectorimpl in torqueSelectorimpl eediorwardTorque in
00 (00 00 torqueSelectorimpl
(0.0
valueCoarse failure of estSunVec valueCoarse failure of valueCoarse failure of pdTorque :al';c“”;_:_a"“m of
in stateEstimatorimpl IspecTorque in steerControllerimpl| in pDControllerimpl eediorwardTorque in
(0.0 009 00 feedforwardControllerimpl
(0.9
[|
valueCoarse failure of valueCoarse failure of estSunvec valueCoarse failure of estSunvec valuelinarsel failure of valuitoar;e failure of
condSunVec in stateE: in steerControllerimpl in pDControllerimpl estangvelocity in estGyroTorque in
g 00 00 pDControllerimpl feedforwardControllerimpl
00 0.0

/ / \ \

H2020-JTI-ECSEL-2015 # 692474 Page 83 of 124

AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0

\ oR |\ I/OR\ \ /oa\ \
LT 2\ |
-

|
[| (
LT MD \
nnmanedeﬁmnmemx valueCoarse faiure of JalueCoarse fadure of estsunec alueCoarse faure of estsunvec Va||l€(0l§!fr.iir.e of walueCoarse failure of
& at port condSunivec in condsunVec in n sateEsimatoringl i stateEsimatorimol estangVelodty in estGyroTorque in
kignalc p ionalCondi i i el stateEstimatorimpl stteEstimatorimpl
(0g (00 oL} (09
7 1 \
/ I‘. ‘\
/ \ \
\
\
a
[A\ \

f orR |
[|
TN
issingD ata atp valueCoarse failure of sunvecin valueCoarse failure of valueCoarse failure of ::':m:;:f?;l;::; :’_“:K?‘:Zenhm;:ifn
s wulnerability in sunVecin signalConditionerimpl condSunVec in stateEstimatorimpl condSunVec i stateEstimatorimpl MB:ESMBI:UMpI sla"[lztihmag::l)m;i
i signalC (1] 1] 09
component ompenent 1o 1o
f / { \ \
/ \ \
A /) A
| OR / OR Iﬁ OR | OR f OR
| | \ | (
| | |
an\ \ \ I
unauthorizedMadificationOfServig valueCoarse failure of Senvi valueCoarse faiure of valueCoarse failure of valueCoarse fadure of
JueCoarse e of e at port condSunVec in condSunVec in e at port condSunVec n condSunVec in condGyroscopicData in condGyroscopicData in
!‘L’:N":(%”?{'S [ﬂ”"m " signalConditionerimpl componert signalCondiioneriml Kignal Condiionerimpl companent ignalCondi ignalCondi signalConditionerimpl
08 e (8] (00 (09 (] (00 (]
/ T
@] /
/ f
/
/
/\
/‘ AND \

A
T

&

L

)
S

TN

valueCoarse failure of
sunve in ACSComposite:
0q

N gyroscopicData in gyroscopicDatain
snvec "‘(‘;Su“’"'p"m ACSComposie ACSComposite
(] (0

fml

VTN

/)

[

N

TN
ata katp h valueCoarse failure of suriVec in fi ck at por valueCoarse fadure of sunVec in “;‘;E:xgi::ﬂf “;ﬁ?;;!nf]:ﬁnnf
suec in s vulnerability in ignalConditionerimpl sunVec in s vulnerability in signaiConditionerimy - y "
ianalC: sianalc bity “g g e P rakcondi ity s 09 o signalConditionerimpl signalConditionerimpl
component component component omponent o0 00

>

OR

"

[o |

N

valueCoarse failure of

valueCoarse failure of

valueCoarse faiure of

O

Figure 70. Automatically generated fault tree from failure propagation paths with highlighted SignalConditioner
Component tree

H2020-JTI-ECSEL-2015 # 692474

Page 84 of 124

@)

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

unauthorzedModificationOfServig valueCoarse failure of
e at port condSunVec in condSunVec in
signalConditionerimpl component signalConditionerimpl
(0.0) (0.0
|
issingDatalntegritySchem flataSpoofingAttack at po valueCoarse failure of sunVec in
s vulnerability in sunVec in signalConditionerimpl
signalConditionerimpl signalConditionerimpl (0.00
component component

lfu [fﬂ /
Figure 71. SignalConditioner Component fault tree illustrating multi-concern causes

4.2. Case Study CS3 - Cooperative Adaptive Cruise Control (CACC)

In this section, a case study related to CS3 Automotive Case Study: Collaborative automated fleet of
vehicles described in D1.1 [1] is considered. First a specific scenario is explained and then the
methodological guide is applied on it.

4.2.1. Description of the Use Case Scenario

This scenario is an excerpt of CS3 Automotive Case Study: Collaborative automated fleet of vehicles
described in D1.1 [1]. This Case Study handles a typical example of a collaborative safety-critical system: a
platoon of several vehicles.

In this subsection, a partial argument for CACC is presented. More specifically, the argument focuses on the
“rear collision” hazard under nominal, malfunctioning and malicious attack conditions, see Figure 72. The
nominal behaviour module assures our confidence that the risk of rear collision occurring is acceptable
when there is neither malfunctioning behaviour nor malicious attacks. The malfunctioning behaviour
module focuses on safety in presence of failures in the system, while the malicious intent module
addresses risks of rear collision due to malicious attack.

4.2.2. Demonstration of the methodology

The nominal behaviour module is assured through decomposition of requirements on assumption-
guarantee contracts that deal with properties such as deceleration capability of the remote vehicles under

H2020-JTI-ECSEL-2015 # 692474 Page 85 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

platoon and CACC mode, the timing of the communication, the accuracy of the sensors as well as the
guaranteed distance based on these properties.

To address the malfunctioning behaviour, we go through each identified failure combination and show that
it is adequately addressed. For example, for value failures in the signal between the two cars (failComb2
goal) that are not clearly detectable, we rely on the accuracy of the remote sensor and the data integrity
during the transmission. Since the link between two cars depends on the security of the channel
(commChannel goal), we denote it with the dependency impact relationship.

Finally, in the malicious intent module we argue over all identified vulnerabilities. For example, if the
communication channel is unsecure, the attacker can send wrong messages to different cars and hence
cause the car2x value failures that may lead to rear collision. Hence, we encrypt the channel and secure the
encryption key. The problem of using encryption in this system is that it impacts the timing of
communication between the vehicles. On the one hand, using encryption conflicts with the timing contract
specified in the nominal behaviour module. This conflicting relationship will make us re-work the design
highlighted in red. A final Assurance Case should have all the conflicting relationships resolved. On the
other hand, using encryption facilitates assuring the data integrity in the malfunctioning behaviour module,
besides the implemented checksum. Hence, we use the choice symbol to depict that the data integrity is
adequately addressed by either checksum or encryption module.

rearCollisionHaz
Rearcolision hazard has been adequaiely addressed by
muliple concerns

-

nominalBehaviour

Unreasonable risk of rear malfunctioningBehaviour maliciousintent

colision hazard is absent under Unreasonable risk of rear collision hazard is \Unreasonable risk of rear

nominal condions absent under malfuncioning behaviour colision hazard i absent
under malicious infent

stratMalfuction stratMalicious
Argument over all idensfied plausible Argument over all idensied relevant
failure: combinasons vulnerabiliies

—]

stratNominal
Argument by allocasion of
requirements over archiieciural
elemenis using confracs

CACC-sys failComb failComb2 Secured
fincir i Car2x. I Taill ik
CACC mainains adequate disance 10 predecessor Car2x coourence e adequ;_“ef; ! E:amn;\:‘ﬂ e commChannel
venlde for sudden braking manosuvre not 1o result filure, distance sensor adar b o maicous. eacts ;he conlwmumcaPn);nanne\ i secured
in disiance less than 2m failure and local confrel essed - rom malicious atac)
fallure combination i /\ EI ommehamd /
/\ remoteAccuracy datalntegrity
Inconsisiency betwesn CAW-encryption uniqueldentifier
CACC: d CACC d egoVeh-man CACC-sys Accuracy of the remoie the sent and received The cooperation Forging unique
CACC-manager CACC-manager ego-VehiceManager CACC-sys daia is adequaie data is adequately awareness messages source Kentifer is
implements the implements the implements the impiemans the (CAW) are encrypied prevenied
maxDeceleraion guaraneeDisance | disanceSensor CACC-Sys i:l_—l hicl |
oconiract oconiract Accuracy confract fiming confract vehicleXAccurac: Y
keySecured

degradationCascade The communicason
9 encryption checksum channel encrypion
A key is secured
CACC degradafion cascade o
has reduced occurrence of Channel encrypson ISTPE":"?;! fn',:‘cr
propagasion of the faiure Suppors daia iniegriy PpOM= Qa3 Imegry
combinason

ECAW-encrypﬁor F__ICAW-checkeum

Figure 72. Assuring “rear collision” hazard in platooning/CACC capable vehicle

4.3. Process-related Dependability Co-Assessment: An Automotive
Case

In this section, process-related safety & security co-assessment in the automotive domain is in focus. More
specifically, this section builds on top of the work presented in [29] in which the alighnment of ISO 26262
and SAE J3061 at the level of ‘Software Design and Implementation’ was discussed. Commonalities and
variabilities in terms of work products and breaking down of the work was also discussed in [29].

H2020-JTI-ECSEL-2015 # 692474 Page 86 of 124

@ AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

In this section, first the main results presented in [29] are recalled, then the workflow, which was
presented in Figure 23, is applied to co-assess safety and security at the software design and

implementation level.

The following subsubsections are aimed at identifying the process elements, which can be retrieved from
the normative documents, and using them within the integration of EPF Composer and BVR Tool in order to

enable co-assessment.

4.3.1. Commonalities and Variabilities between SAE J3061 and ISO 26262

This subsection recalls the main findings, which were presented in [29]. More specifically, the process
related requirements at software design and implementation level were extrapolated (see Figure 73 and
Figure 74) and compared in order to retrieve common and variation points (see Figure 75) to be exploited
within the integration of EPF Composer and BVR Tool.

Ref!

ID

Requirements description

8.2

IR1

Based on the software architectural design, the detailed design of
the software units is developed.

1IR2

The detailed design will be implemented as a model or directly as
source code, in accordance with the modelling or coding guidelines
respectively.

IR3

The implementation-related properties are achievable at the source
code level if manual code development is used. If model-based
development with automatic code generation is used, these properties
apply to the model and need not apply to the source code.

IR4

In order to develop a single software unit design both software
safety requirements as well as all non-safety-related requirements are
implemented. Hence in this sub-phase safety-related and non-safety-
related requirements are handled within one development process.

8.4.1

IR5

The requirements of this subclause shall be complied with if the
software unit is safety-related. Note: "Safety-related” means that the
unit implements safety requirements

8.4.2

IR6

Software units are designed by using a notation that depends on the
ASIL and the recommendation level.

8.4.3

IR7

The specification of the software units shall describe functional
behaviour and internal design.

8.4.4

IR8

Design principles for software unit design and implementation shall
be applied depending on the ASIL and the recommendation levels.

8.4.5

IR9

Software unit design and implementation are verified by applying
methods according to the ASIL and the recommendation levels

4.2?

IR1Q

When ASIL and recommendation levels are not applied, a rationale
must be provided.

Figure 73. Requirements from 1SO 26262

Ref’

ID

Requirements description

6233

JR1

Software unit design implementation is based on the Cybersecurity
requirements allocated in the software architectural design

6.3

JR2

Design and implementation reviews comprises activities analysis,
review and refine Cybersecurity assessment.

8.2

JR3

Include the Cybersecurity activities described in this document® for
each lifecycle phase, with the corresponding activities for each lifecy-
cle phase described in the safety process.

8.6.17

JR4

Use the extensive tables and methods provided by ISO 26262 Part 6 for
design and implementation. The selection of methods and the rationale
are recorded in the documented planning of software development.

8.6.5

During software design and implementation, good coding practices
should be followed. Many of the methods are described in ISO 26262
and are called design principles .

Figure 74. Requirements from SAE J3061

H2020-JTI-ECSEL-2015 # 692474

Page 87 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

ID IR JR Common Name
CP1 IA1 | JAl Unit design
VPla | 1Al Design concerning safety
VP1b Al Design concerning cybersecurity
CP2 IA2 | JA3 Unit design review
VP2a | 1A2 Design review concerning safety
VP2b JA3 Design review concerning cybersecurity
CP3 IA3 | JA2 Unit implementation
VP3a | IA3 Unit implementation concerning safety
VP3b | JA2 Unit implementation concerning cybersecurity
CP4 A4 | JA4 Unit implementation review
VP4a | |1A4 Implementation review concerning safety
VP4b JA4 | Implementation review concerning cybersecurity

Figure 75. Common and Variation Points identification

4.3.2. Work Products

Based on the information contained in the two normative documents, the following work products are
defined in our case study:

e Software Unit Design Specification

e Software Unit Implementation

e Software Safety Requirements

e Software Cybersecurity Requirements

Software Unit Design Specification, Software Safety Requirements and Software Cybersecurity
Requirements serve as inputs to the various design tasks. These inputs have been created in another phase
of the software development process, which is outside the scope of the current use case. Software Unit
Implementation is an output of the design tasks and also serves as input to the review and implementation
tasks.

4.3.3. Roles

Based on the experience achieved in the context of critical system engineering, the following roles are
defined in our case study. These roles (played by engineers with different expertise) perform the design,
implementation and review tasks:

e Software Designer (assumption regarding expertise: non-safety and non-security)

e Safety Engineer (assumption: safety expert)

e Security Engineer (assumption: cybersecurity expert)

e Programmer, i.e., engineer with programming expertise (assumption regarding expertise: non-
safety and non-security)

e Software Tester, i.e., engineer with testing expertise

The Software Designer, the Safety Engineer and the Security Engineer are responsible for design tasks (see
4.3.5) and are also responsible for the Software Unit Implementation work product. The Programmer is
responsible for all implementation tasks while the Software Tester is responsible for review tasks, both
design review as well as implementation review.

4.3.4. Guidance

Based on what is stated in the normative documents, various Guidance elements relevant to the various
tasks can be defined. These elements are listed below:

H2020-JTI-ECSEL-2015 # 692474 Page 88 of 124

U& AMASS D4.8V1.0

Methodological guide for multiconcern assurance (b)

e Design Notations

e Rationale about Design Notations

e Design Principles

e Rationale about Design Principles

e Verification Methods

e Rationale about Verification Methods

e Design Activities Analysis

e Design Assessment Refinement

Modelling Guidelines

Source Code Guidelines

Implementation Verification Methods

Rationale about Implementation Verification Methods
Implementation Verification Methods (Safety-related)
Cybersecurity Implementation Activities Analysis
Cybersecurity Implementation Assessment Refinement

Design of software units is done using Design Notations and Design Principles which are selected according
to ASIL and recommendation levels for safety-related design. They are supported by Rationale about
Design Notations and Rationale about Design Principles respectively. Software unit design verification is
done using Verification Methods. Verification Methods for safety design are selected according to ASIL and
recommendation levels. Verification Methods are also supported by Rationale about Verification Methods.
For cybersecurity-related design, software unit design has Design Activities Analysis and Design Assessment
Refinement. Software implementation is either done as a model or as source code which has Modelling
Guidelines and Source Code Guidelines respectively. Software implementation verification is done using
Implementation Verification Methods and supported by Rationale about Implementation Verification
Methods. Safety-related Implementation Verification Methods are selected according to ASIL and
recommendation levels. Cybersecurity-related implementation verification, Cybersecurity Implementation
Activities Analysis and Cybersecurity Implementation Assessment Refinement are used.

4.3.5. Tasks

The following tasks related to ISO 26262 and SAE J3061 are defined. The defined tasks are related to the
Work Products, Roles and Guidance defined in Sections 4.3.1, 4.3.3 and 4.3.4. These relationships are
depicted in Table 1.

Table 1. Task/Work Product/Roles/Guidance Relationships

Task Work Products Roles Guidance
Unit Design | (Input) Software Unit Design | Software Designer. | Design Notations.
(Common) Specification. Rationale about Design
(Output) Software Unit Notations.
Implementation. Design Principles.
Rationale about Design
Principles.
Design (Input) Software Unit Design | (Primary) Safety | Design Notations.
Concerning Specification. Engineer. Rationale about Design
Safety (ISO | (Input) Software Safety | (Additional) Notations.
26262) Requirements. Software Designer. | Design Principles.
(Output) Software Unit Rationale about Design
Implementation. Principles.
Design (Input) Software Unit Design | (Primary) Security | Design Notations.
Concerning Specification. Engineer. Rationale about Design
Cybersecurity (Input) Software | (Additional) Notations.

H2020-JTI-ECSEL-2015 # 692474

Page 89 of 124

@ AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0
Task Work Products Roles Guidance
(SAE J3061) Cybersecurity Requirements. | Software Designer. | Design Principles.
(Output) Software Unit Rationale about Design
Implementation. Principles.
Unit Design | (Input) Software Unit Design | (Primary) Software | Verification Methods.
Review Specification. Tester. Rationale about Verification
(Common) (Input) Software Unit | (Additional) Methods.
Implementation. Software Designer.
Design Review | (Input) Software Unit Design | (Primary) Software | Verification Methods.
Concerning Specification. Tester. Rationale about Verification
Safety (1ISO | (Input) Software Unit | (Additional) Methods.
26262) Implementation. Software Designer.
(Additional) Safety
Engineer.

Design Review

(Input) Software Unit Design

(Primary) Software

Design Activities Analysis.

Concerning Specification. Tester. Design Assessment Refinement.
Cybersecurity (Input) Software Unit | (Additional)
(SAE J3061) Implementation. Software Designer.

(Additional)

Security Engineer.
Unit (Optional Input) Software | Programmer. Modelling Guidelines.
Implementation | Unit Design Specification. Source Code Guidelines.
(Common) (Input) Software Unit

Implementation.
Implementation | (Optional Input) Software | Programmer. Modelling Guidelines.
Concerning Unit Design Specification. Source Code Guidelines.
Safety (ISO | (Input) Software Unit
26262) Implementation.
Implementation | (Optional Input) Software | Programmer. Modelling Guidelines.
Concerning Unit Design Specification. Source Code Guidelines.
Cybersecurity (Input) Software Unit
(SAE J3061) Implementation.
Unit (Optional Input) Software | (Primary) Software | Implementation Verification
Implementation | Unit Design Specification. Tester. Methods.
Review (Input) Software Unit | (Additional) Rationale about
(Common) Implementation. Software Designer. | Implementation Verification
Methods.

Implementation | (Optional Input) Software | (Primary) Software | Implementation Verification
Review Unit Design Specification. Tester. Methods (Safety-related)
Concerning (Input) Software Unit | (Additional)
Safety (ISO | Implementation. Software Designer.
26262) (Additional) Safety

Engineer.
Implementation | (Optional Input) Software | (Primary) Software | Cybersecurity Implementation
Review Unit Design Specification. Tester. Activities Analysis.
Concerning (Input) Software Unit | (Additional) Cybersecurity Implementation
Cybersecurity Implementation. Software Designer. | Assessment Refinement.
(SAE J3061) (Additional)

Security Engineer.

H2020-JTI-ECSEL-2015 # 692474

Page 90 of 124

AMASS Methodological guide for multiconcern assurance (b)

D4.8V1.0

4.3.6.

Work Break Down Structure

The Software Unit Design and Implementation Safety process is defined as a Work Break Down Structure
(WBS). The WBS is composed of phases (delivery milestones), iterations, activities, tasks and their
respective precedence rules. The defined WBS is shown in Table 2. The work products and team allocation
are also defined for the tasks in the WBS.

Table 2. Work Break Down Structure

Index | Process/Phase/Activity/Task Type Predecessors
0 Software Unit Design and Implementation Delivery Process
1 Design And Design Review (One) Phase
2 Unit Design And Review — Commonality Iteration
3 Unit Design — Commonality Activity
4 Unit Design Task
5 Unit Design Review — Commonality Activity 3
6 Unit Design Review Task
7 Implementation And Implementation Review (One) Phase 1
8 Unit Implementation And Review — Commonality Iteration
9 Unit Implementation — Commonality Activity
10 Unit Implementation Task
11 Unit Implementation Review — Commonality Activity 9
12 Unit Implementation Review Task
13 Design And Design Review (Two) Phase 7
14 Unit Design And Review — Variability Iteration
15 Unit Design — Variability Activity
16 Design Concerning Safety Task
17 Unit Design Review — Variability Activity 15
18 Design Review Concerning Safety Task
19 Implementation And Implementation Review (Two) Phase 13
20 Unit Implementation And Review — Variability Iteration
21 Unit Implementation — Variability Activity
22 Implementation Concerning Safety Task
23 Unit Implementation Review - Variability Activity 21
24 Implementation Review Concerning Safety Task

4.3.7. Domain Engineering

During the domain engineering phase, which is aimed at generating a Security-informed Safety-oriented
Process Line (SoPL), all process elements, identified in the previous subsubsections, are interpreted as
features (listed in Table 3). These features can be mandatory for all concerns or can be selected only if
needed (i.e., optional feature).

Constraints among features are also specified during this phase. The constraints are specified to enforce
rules for valid combinations of feature selection. To minimize the number of complex constraints, multiple
simple constraints are specified instead and associated to a feature.

Table 3. Feature Tree — Variability Model

Feature Mandatory/ | Cardinality | Reference
Optional

Software Unit Design and Implementation - -

ProcessModel - -

ConcernChoice Mandatory 1..1

H2020-JTI-ECSEL-2015 # 692474

Page 91 of 124

@ AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0
Feature Mandatory/ | Cardinality | Reference
Optional
Safety Optional -
Cybersecurity Optional -
MultiConcern Optional -
Activities Mandatory | - Section 4.3.5
Commonality Point Mandatory | -
DesignCom Mandatory | -
DesignReviewCom Mandatory | -
ImplementationCom Mandatory | -
ImplementationReviewCom Mandatory | -
Variability Point Mandatory | -
DesignVar Mandatory | 1..1
DesignSafety Optional -
DesignCybersecurity Optional -
DesignMultiConcern Optional -
DesignSafety Mandatory | -
DesignCybersecurity Mandatory | -
DesignReviewVar Mandatory | 1..1
DesignReviewSafety Optional -
DesignReviewCybersecurity Optional -
DesignReviewMultiConcern Optional -
DesignReviewSafety Mandatory | -
DesignReviewCybersecurity Mandatory | -
ImplementationVar Mandatory | 1..1
ImplementationSafety Optional -
ImplementationCybersecurity Optional -
ImplementationMultiConcern Optional -
ImplementationSafety Mandatory | -
ImplementationCybersecurity Mandatory | -
ImplementationReviewVar Mandatory | 1..1
ImplementationReviewSafety Optional -
ImplementationReviewCybersecurity Optional -
ImplementationReviewMultiConcern Optional -
ImplementationReviewSafety Mandatory | -
ImplementationReviewCybersecurity Mandatory | -
Work Products Mandatory | - Section 4.3.2
SoftwareUnitDesignSpecification Optional -
SoftwareUnitimplementation Optional -
SoftwareSafetyRequirements Optional -
SoftwareCybersecurityRequirements Optional -
Guidance Mandatory | - Section 4.3.4
DesignNotations Optional -
RationaleDesignNotations Optional -
DesignPrinciples Optional -
RationaleDesignPrinciples Optional -
VerificationMethods Optional -
RationaleVerificationMethods Optional -
DesignActivitiesAnalysis Optional -
DesignAssessmentRefinement Optional -

H2020-JTI-ECSEL-2015 # 692474

Page 92 of 124

U‘é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

Feature Mandatory/ | Cardinality | Reference
Optional

ModellingGuidelines Optional -
SourceCodeGuidelines Optional -
ImplementationVerificationMethods Optional -
RationalelmplementationVerificationMethods Optional -
ImplementationVerificationMethodsSafety Optional -
CybersecuritylmplementationActivitiesAnalysis Optional -
CybersecuritylmplementationAssessmentRefinement | Optional -

Roles Mandatory | 1..* Section 4.3.3
SoftwareDesigner Optional -
SafetyEngineer Optional -
Programmer Optional -
SoftwareTester Optional -

4.3.8. Variability Model Creation (VSpec Editor)

The features, which were engineered and presented in Table 3, are, in this subsection, organized in a tree
structure, which represents the SoPL model regarding the software design and implementation. More
precisely, by using the VSpec Editor in BVR, the SoPL model is created and its representation is shown in
Figure 76. This model shows that a Process Model can be configured in various ways depending on the
feature selection. The features that compose the Process Model are: ConcernChoice, Activities,
WorkProducts, Guidance and Roles.

SoftwareUnitDesignAndImplementation : BYRMadel

ProcessMadel

[l[+]| Cuncernchnice] [l[+]| Activities (+) WorkProducts (+) Guidance] (+) Rules]

Figure 76. Feature Tree — Top Level

A step by step evolution of the SoPL model, along with the related constraints, is depicted in the following
figures (Figure 77 through Figure 97).

Figure 77 depicts a view with ConcernChoice, Roles and Activities expanded. ConcernChoice is expanded
with three choices, Safety, Cybersecurity and MultiConcern, and any one and only one (cardinality 1..1)
may be chosen at a time. The Roles are SoftwareDesigner, SafetyEngineer, Programmer and
SoftwareTester. At least one Role must be selected for any process model. However, one may select more
than one Role too (cardinality 1..*). Activities are split into two sub trees, CommonalityPoint (activities
which are common to the choices of ConcernChoice) and VariabilityPoint (activities which differ for each
one of the choices of ConcernChoice).

H2020-JTI-ECSEL-2015 # 692474 Page 93 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

SoftwareUnitDesignAndImplementation : BVRMadel

ProcessModel

[(+) Guidance]

[Acti\.rities]

[(+) WorkProducts]

'S0 26262 "SAE J3061"

Safet Cybersecurit —= —— = = —=
l ety] l yoersecurLy [MultiConcern] [(+) CommonalityPoint] [(+) Val'iabilityPoint] [SoftwareDesigner] [SafetyEngineer] [Pl'ogrammer] [SoftwareTester]

Figure 77. ConcernChoice, Roles and Activities Expanded

The WorkProducts subtree is depicted in Figure 78 along with the relevant constraints. The WorkProducts
are SoftwareUnitDesignSpecification, SoftwareUnitimplementation, SoftwareSafetyRequirements and
SoftwareCybersecurityRequirements. WorkProducts are optionally chosen for a Process Model. The
constraints specify the need for SoftwareSafetyRequirements in the case ConcernChoice is Safety or
MultiConcern and the need for SoftwareCybersecurityRequirements in the case ConcernChoice is
Cybersecurity or MultiConcern.

The Guidance sub tree is depicted in Figure 79 and Figure 80. The sub tree has been split into two figures to
ensure readability. The relevant constraints are also shown. For example, RationaleDesignNotations implies
the existence of DesignNotations.

ISoFtwal'eUnitDesignAndImpIementation : BVRModel I

ProcessModel

[(+) ConcernChoice] [(+) Acti\rities] l WorkProducts ' [(+) Guidance]

- = \
[SoFtwareUnitDesignSpeciFication] [SoftwareUnitImplementation] [SoFtwareSaFetyRequirements] [SoFtwareCybersecul'ityRequirements]

i

{Safety or Multiloncern) . X .
Multifoncern) implies

impiies SofcwareSafetyRequirements i X
SoftwarelybersecurityFequirements

I (Cybersecurity or

Figure 78. WorkProducts Subtree

H2020-JTI-ECSEL-2015 # 692474 Page 94 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

ISaftwal elnitDesignAndImplementation ; BVRModel

ProcessModel

'(+) ConcernChoice | | (+) Activities ' ' (+) WorkProducts !
B

____=--——_g-=|=----q!-!----_q-----

[E i i] [n tionaleDesi "] [n ignPrincip] [Ratw naleD wP\inUpIEs] [VE\iﬁ(atmnMEthnds] [Kdum cati] [r: i itiesAnal i] [DEs\gnAssEssmentREﬁnEmenl] [Mudeuingsuidalmes] [Snul(eCudeGuidahnes]
Rat ionaleDesignNotations RationaleDesignPrinciples RationaleVerificacionNechods
implies Designiotations implies DesignPrinciples implies VerificationNethods

Figure 79. Guidance Subtree (1 of 2)

[Imp\ementatinn\iariFi(ationMethnds] [Rat\nnalaImpIamantatinn\"er\ﬁ{atmnMathuds] [Imp\ementatmn\falificatiunMethodsSafaty] [Cyberse{urityImp\ementatinnA(tivitiasAnalysis] [Cybersa{urityImp\ementatmnAssassmentReﬁnamant]

Rationale ImplementationVerificationMethods
implies ImplementationVerificationMethods

Figure 80. Guidance Subtree (2 of 2)

The CommonalityPoint and VariabilityPoint subtrees are depicted in Figure 81. The CommonalityPoint
subtree consists of activities, which are common to all choices of ConcernChoice. These common activities
are: DesignCom, DesignReviewCom, ImplementationCom, and ImplementationReviewCom.

The VariabilityPoint subtree consists of activities, which contribute to discriminate the concerns. These
activities are: DesignVar, DesignReviewVar, ImplemenationVar, and ImplementationReviewVar.

ISoFtwal elnitDesignAndImplementation : BYRModel I

ProcessModel

Activities

' (+) ConcernChaice '

[(+) World?raducts] [(+) Guwdan(e]

CommonalityPaint VariabilityPaoint

[H) DesignCom] [(+) DesignReviewCom] [H) ImplementationCom] [H) ImplemantaticnRe\ﬂechm] (+) DesignVar

[(+) DesignRe\ﬂewVar] [[+) Imp\ementation\:‘ar] [(+) ImplementationRaviawVar]

Figure 81. CommonalityPoint and VariabilityPoint Subtrees

The subtree corresponding to DesignCom is depicted in Figure 82. This subtree does not contain any further
levels. There are three constraints related to Roles, Work Products and Guidance specified.

H2020-JTI-ECSEL-2015 # 692474 Page 95 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

SoftwareUnitDesignAndImplementation | BYRModel I

ProcessModel

[(+) ConcernChoice ' [Acti\rities] [(+) WorkPi'oducts] [(+) Guidance] ((-i—) Roles]

CommonalityPoink

l (+) VariabilityPoint '

DesignCom [(+) DesignReviewCom] [(+) ImplementationCom] [(+) ImplementationR eviewCom]

X X X DegignClom implies Degignlfom implies
DesignCom implies i i . X K .
. (Sofctwvarelnictlesignipecification ({besignilotations
Sofcwvarelesigner i i X i i
and SoftwvarelnitImplementacion) and DegsignPrinciples)

Figure 82. DesignCom Subtree

The subtree corresponding to DesignReviewCom is depicted in Figure 83. This subtree does not contain any
further levels. There are three constraints related to Roles, Work Products and Guidance specified.

ISoftwareUnitDesignAndImplementation : BVRModel I

ProcessModel

((+) ConcernChoice] [Activities] [(+) WorkPi'oducts] [(+) Guidance]

CommaonalityPoint

l {+) VariabilityPaint '

DesignReviewCom [(+) ImplementationCom] [(+) ImplementationReviewCom]

l (+) DesignCom l

DegignReviewCom)) —
. K DesignReviewvlom X X
implies | {SoftwareTester . K .) . . DesignBeviewlom
i implies {(SoftwareUniclesignsSpecification) K L X
and Softwarelesigner) i . implies VerificationMethods
i and Softwvarelnitimplementation)
and SafecvEnginesr)

Figure 83. DesignReviewCom Subtree

The subtree corresponding to ImplementationCom is depicted in Figure 84. This subtree does not contain
any further levels. There are three constraints related to Roles, Work Products and Guidance specified.

H2020-JTI-ECSEL-2015 # 692474 Page 96 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

SoftwareUnitDesignAndImplementation : BVRModel I

ProcessModel

(+) ConcernChoice

[hctivities] [(+) WorlProducts] [(+) Guidance] (+) Roles]

CommonalityPoint

' (+) VariabilityPoint '

(+) DesignCom [(+) DesignReviewCom] ImplementationCom [(+) ImplementationReviewCom]

. ImplementacionCom ImplementationCom
ImpiementationCom
. i implies (SoftwarelinitlesignSpecification implies (ModellingGuidelines
implies Frogrammer i . . .
and SoftwarelinicImplementcacion| and SourceCodeGuidelines)

Figure 84. ImplementationCom Subtree

The subtree corresponding to ImplementationReviewCom is depicted in Figure 85. This subtree does not
contain any further levels. There are three constraints related to Roles, Work Products and Guidance
specified.

ISoFtwal'eUnitDesignAndImpIementation : BVRModel I

ProcessModel

[(+) Concel'nchoice] [Acti\rities] [(+) WorkProducts] [(+) Guidance]

CommonalityPoint

l (+) VariabilityPoint '

[(+) DesignCom] [(+) DesignR evi

om) ()

kationCom] tationRevi

ImplementationBeviewlom

i i ImplementationBeviewlom X X
implies {({SoftwareTester ImplementationBeviewlom

implies (SoftwarelUnitlesignSpecification

and Softwarelesigner) implies ImplementationVerificationMethods

. and SoftwarelnitImplementation)
and SafetvEngineer)

Figure 85. ImplementationReviewCom Subtree

The DesignVar and DesignSafety subtrees are depicted in Figure 86. The DesignVar subtree consists of three
elements, DesignSafety, DesignCybersecurity and DesignMultiConcern, related to each one of the choices
of ConcernChoice and connected in exclusive-OR manner. The constraint restricting DesignSafety only to a
choice of Safety for ConcernChoice ensures the exclusive-OR relation. Besides, DesignSafety also consists of
constraints for Roles, WorkProducts and Guidance. DesignSafety does not have any further level.

H2020-JTI-ECSEL-2015 # 692474 Page 97 of 124

"
@ AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

ISnftwal elnitDesignAndImplementation : BVRModel

ProcessModel

I (+) Concerncholce)*'m’tlas[(ﬂ WorkProducts] [(ﬂ Guidance]

l (+) CommenalityPoint l

VariabilityPoint

DesignVar

A..l

L ——
[(+) DEsignCyberse:ur\tv] [(+) DesignMultiConcern]

[{+) DesignReview\ar] [(+) Implement ationVar] [{+) ImplementationR eviewyar]

DesignSafety

Safecy Iimplies ({DesignSafecy DegignSafety implies DegignSafecy implies
.) DesignSafety Implies . . e .
and (not DesignCyhersecurity]) SaretvE . (SoftwarelUniclDesignSpecification (Designiotations
arfe nginesr
and (not DesignMNultiConcern)) vEng and SoftwarelnitImplementation) and DesignPrinciples)

Figure 86. DesignVar and DesignSafety Subtrees

The DesignVar and DesignCybersecurity subtrees are depicted in Figure 87. The constraint restricting
DesignCybersecurity only to a choice of Cybersecurity for ConcernChoice ensures the exclusive-OR relation.

Besides, DesignCybersecurity also consists of constraints for Roles, WorkProducts and Guidance.
DesignCybersecurity does not have any further level.

SoftwareUnitDesignandImplementation : BYRModel

ProcessModel

Activities

' (+) ConcernChaice '

[(+) Wor kProducts] [(+) Guidance]

' ({+) CommonalityFoint l

VariabilityPoint

DesignVar
JAR
L

DesignCybersecurity

[(+)DesignReuiew\1'a|‘] [(+) Implementation\:’ar] [(+)ImplamantationRe\riew\J’ar]

-

l {+) DesignSafety '

——

l (+) DesignMultiConcern '

Cybhersecurity implies))
) .) DesignCybersecurity DesignCybersecurity
{ (DesignCyhersecurity DegignCybersecurity)))) j _)
implies (SoftwarelnitDesignSpecification implies (DesignNotations
and {not Degigniafety)) implies SoftwareDesigner .) . .
) . and SofcwarelUnicImplemencacion) and DesignFrinciples)
and (not DesignNulciConcern))

Figure 87. DesignVar and DesignCybersecurity Subtrees

The DesignVar and DesignMultiConcern subtrees are depicted in Figure 88. The constraint restricting
DesignMultiConcern only to a choice of MultiConcern for ConcernChoice ensures the exclusive-OR relation.
Besides, DesignMultiConcern also consists of constraints for Roles, WorkProducts and Guidance.

DesignMultiConcern also has a next level consisting of elements DesignSafety and DesignCybersecurity to
cover multi concern design tasks.

H2020-JTI-ECSEL-2015 # 692474 Page 98 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

ISnftWa\ eUnitDesignAndimplementation : BYRModel

ProcessModel

(+) WorkProducts (+) Guidance

(+) ConcemnChoica

(&) commonicypoin:) (variatieypan |
/Nt

[(+) DeslgnReviewVar] [(+) ImplementationVar] [(+) lmplemer\tationReviewVar]

== . e
(e pesignsafery) (0 pesgneybersecuty | (pesgnmticoncem)

[T~

MuitiConcern implies X X X X X X
. DesignMultiConcern DesignNqultiConcern DesignNultiConcern
{ {DesignMulciConcern " -
Qo safet implies (SoftwareDesigner implies (SoftwarelnitDesignSpecification implies (DesignNotations DesignSafety DesignCybersscurity
and DesignSafe
& ¥l and SafecyEngineer) and SoftwareUnitImplemencation) and DesignPrinciples)
and DesignCybersecurity)

Figure 88. DesignVar and DesignMultiConcern Subtrees

The DesignReviewVar and DesignReviewSafety subtrees are depicted in Figure 89. The DesignReviewVar
subtree consists of three elements, DesignReviewSafety, DesignReviewCybersecurity and
DesignReviewMultiConcern, related to each one of the choices of ConcernChoice and connected in
exclusive-OR manner. The constraint restricting DesignReviewSafety only to a choice of Safety for
ConcernChoice ensures the exclusive-OR relation. Besides, DesignReviewSafety also consists of constraints
for Roles, WorkProducts and Guidance. DesignReviewSafety does not have any further level.

ISnftwareunitDes\gnAndImplementatmn + BVRModel I

ProcessModel

(+) ConcernChoice

[{+) WorkProducts] [(+) Guidance]

' (+) CommenalityPoint ' WariabilityPoink

[(+) DesignVar] [DasignReviawVal] [(+) ImplementationVar] [(+) ImplementationReviewVar]
ol

L
[(+) DesignReviewCybersecurity] [{+) DesignReviewMultiConcern]

DesignReviewSafety

Safety implies ((DesignBeviewSafety

implies (({SoftwareTester
and (not DesignReviewvCybersecurity))

and SoftvareDesigner)
and SafecyEngineer)

implies (SoftwareUnitDesignSpecification

and SoftwvarelUnitImplementation)

DesignReviewSafety
implies VerificationMethods

DesignReviewSafety /

DesignReviewSafety I

and {(not DesignReviewNultiConcern)|)

Figure 89. DesignReviewVar and DesignReviewSafety Subtrees

The DesignReviewVar and DesignReviewCybersecurity subtrees are depicted in Figure 90. The constraint
restricting DesignReviewCybersecurity only to a choice of Cybersecurity for ConcernChoice ensures the
exclusive-OR relation. Besides, DesignReviewCybersecurity also consists of constraints for Roles,
WorkProducts and Guidance. DesignReviewCybersecurity does not have any further level.

H2020-JTI-ECSEL-2015 # 692474 Page 99 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

ISoftwaraUn\tDas\gnAndImplementatlon 1 BWRModel I

ProcessModel

{+) ConcernChoice

[{+) WorkProducts] [(+) Guidance]

l {+) CommonalityPoint ' VariabilityPoint

[(+)Design\iar] [DesignRemewVa\] [(+)Imp\ementatinn\iar] [(+)ImplementatmnRaviaw\"ar]
1

— P —

(+) DesignReviewsafety DesignReviewCybersecur \ty] [(+) DesignRe\tiewMuIt\Concern]
Cybersecurity implies DesignReviewlybersecuricy DesignReviewCyhersecuricy
. . . . DesignRevievCiybersecurity .
{{DesignReviewCyhersecurity implies |({SaftwareTester X _ . i implies {{VerificationMathods
implies (SofcwarelUnitDesignSpecification
and (not DesignReviewSafety)) and SoftwareDesigner| . and DesignActivitiesAnalysis)
- _ _ and SoftwarelnitImplementatian]
and (not DesignBeviewNultiConcern)) and SafetyEngineser)

and DesignAssessmencRefinement|

Figure 90. ReviewVar and DesignReviewCybersecurity Subtrees

The DesignReviewVar and DesignReviewMultiConcern subtrees are depicted in Figure 91. The constraint
restricting DesignReviewMultiConcern only to a choice of MultiConcern for ConcernChoice ensures the
exclusive-OR relation. Besides, DesignReviewMultiConcern also consists of constraints for Roles,
WorkProducts and Guidance. DesignReviewMultiConcern also has a next level consisting of elements
DesignReviewSafety and DesignReviewCybersecurity to cover multi concern design review tasks.

I SoftwarelnitDesignAndImplementation ; BYRModsl I

ProcessModel

(+) ConcernChoice (+) WorkProducts

(+) CommonalityPoint VariabityPoint

[(+)Design\iar] [r i] [(+)] [(+) i]
A.J

(o o=] (wo ,) [nconcern)

MultiConcern implies DesignPevievNulciCancern DesignRevievNultiConcern
DesignPeviewNuleiConcern
{ (DesignReviewkultiConcern implies [{SoftwarsTester implies {(VerificationNethods
implies (SoftwarelnitDesignSpecification
and DesignReviewSafety) and SoftwareDesigner) and DesignActivitiesAnalysis)
. . . and SoftwarelinicImplemencacion) _
and DesignReviewCybersecuricy) and SafecyEngineer) and DesignissessmentRefinement)

Figure 91. DesignReviewVar and DesignReviewMultiConcern Subtrees

The ImplementationVar and ImplementationSafety subtrees are depicted in Figure 92. The
ImplementationVar subtree consists of three elements, ImplementationSafety,
ImplementationCybersecurity and ImplementationMultiConcern, related to each one of the choices of
ConcernChoice and connected in exclusive-OR manner. The constraint restricting ImplementationSafety
only to a choice of Safety for ConcernChoice ensures the exclusive-OR relation. Besides,
ImplementationSafety also consists of constraints for Roles, WorkProducts and Guidance.
ImplementationSafety does not have any further level.

H2020-JTI-ECSEL-2015 # 692474 Page 100 of 124

@

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

I SoftwarelUnitDesignandImplementation : BVRModel I

ProcessModel

(+) ConcernChoice

[(+) WorkProducts] [(+) Guidance] (+) Roles

I (+) CommenalityPoint ' WariabilityPoink

[(+)Des\gn\n'ar] [(+)DasignRewewVar] [ImplamentatinnVal‘] [(+)ImplamentatinnRauiew\iar]
w1

- ——

i
[{+) Implementationvaarsecuritv] [(+) Implement ationMultiConcern]

ImplementationSafety

ImplementationSafecy ImplemencationSafecy

ImplemencacionSafecy . . . e . . .
implies (SoftwarelUnitDesignSpecification implies (ModellingGuidelines

and (not ImplementationCybersecurity))
implies Programmer
and SoftwvareUnitImplementation)

Safecy implies (({ImplementationSafety
and (not ImplementationMultiConcern))

and SourceCodeGuidelines)

Figure 92. ImplementationVar and ImplementationSafety Subtrees

The ImplementationVar and ImplementationCybersecurity subtrees are depicted in Figure 93. The
constraint restricting ImplementationCybersecurity only to a choice of Cybersecurity for ConcernChoice
ensures the exclusive-OR relation. Besides, ImplementationCybersecurity also consists of constraints for
Roles, WorkProducts and Guidance. ImplementationCybersecurity does not have any further level.

I SoftwareUnitDesignandImplementation : BYRModel I

ProcessModel

(+) ConcernChoice

[(+) WorkProducts] [(+) Guidance]

' (+) CommenalityPoint l WariabilityPoint

[(+)Deslgn\fa|] [(+)DeslgnRewaw\tar] [Imp\emantatlon\far] [(+)Imp\emantatlonRevlaw\;‘ar]
1

L
[(+) ImplementationSafety] [Implamentatinncvhersecurity] [(+) ImplementationMultiConcern]

Cybersecurity implies . .
i ImplementationCybersecurity ImplemencationCyhersecurity
{(ImplementationCybersecuricy ImplemencacionCybersecurity
. implies (SoftwarelnitDesignipecification implies (ModellingGuidelines
and (not ImplementationSafecy)) implies Programmer
. and SoftwareUnitImplementation) and SourcelodeGuidelines)
and (not ImplementationMultiCancern))

Figure 93. ImplementationVar and ImplementationCybersecurity Subtrees

The ImplementationVar and ImplementationMultiConcern subtrees are depicted in Figure 94. The
constraint restricting ImplementationMultiConcern only to a choice of MultiConcern for ConcernChoice
ensures the exclusive-OR relation. Besides, ImplementationMultiConcern also consists of constraints for
Roles, WorkProducts and Guidance. ImplementationMultiConcern also has a next level consisting of

elements ImplementationSafety and ImplementationCybersecurity to cover multi concern implementation
tasks.

H2020-JTI-ECSEL-2015 # 692474 Page 101 of 124

N\ AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

ISnftwalaumtDes\gr\And]mplamantatmn + BVRMode! I

ProcessModel

(+) ConcemCheice) WorkProducts | [(+) Guidance

(+) CommonalityPoint VariabilityPoint

(ewpesgniar) (o)) (@)
AJ

@) (@ .) (e er)

NuitiConcern implies
ImplementationMultiConcern ImplemencationduitiConcern

{ (ImplemencacionNulciConcern ImplementationMultiConcern - " "
impiies (SoftwarsUnicDesignSpecificacion implies (ModellingGuidelines

and Implementationsafecy) impiies Programmer
and SoftvarelinitImplemencacion) and SourceCadeGuidelines)

and ImplementationCybersecurity)

Figure 94. ImplementationVar and ImplementationMultiConcern Subtrees

The ImplementationReviewVar and ImplementationReviewSafety subtrees are depicted in Figure 95. The
ImplementationReviewVar subtree consists of three elements, ImplementationReviewSafety,
ImplementationReviewCybersecurity and ImplementationReviewMultiConcern, related to each one of the
choices of ConcernChoice and connected in exclusive-OR manner. The constraint restricting
ImplementationReviewSafety only to a choice of Safety for ConcernChoice ensures the exclusive-OR
relation. Besides, ImplementationReviewSafety also consists of constraints for Roles, WorkProducts and
Guidance. ImplementationReviewSafety does not have any further level.

I SoftwareUnitDesignAndImplementation : BVRModel I

ProcessModel

(4) ConcernChoice

(+) WorkProducts

| (+) CommonalityPoint | [Varlahlhty?mnt]

((+)Des\gn\fa\] [H)DaslgnREwEw\fa\] [(+)lmplementatmn\f&\] [lmplemenlatmnREwEwVa\]

|rr] [(+)lmp\emm yharsa:unty] ((+)]mp\amer\tatmnRevlawMU\thnn(e\n]

implies ({SoftwareT=ster
and (not ImplemencationRevievCyhersecuricy)) implies (SoftvarsUnitDesignSpecificacion impiies (ImplemsncationVerificacionNethods

and {not ImplemencationReviewMultiConcern) | and SoftwareUnicImplemencacion) and ImplementationVerificacionMethodsSafecy)

ImplemencacionReviewSafety
Safety implies {(ImplementationRevievSafety ImplementationReviewSafety ImplementationReviewSafety
and Softwvarebesigner)

and SafetyEngineer)

Figure 95. ImplementationReviewVar and ImplementationReviewSafety Subtrees

The ImplementationReviewVar and ImplementationReviewCybersecurity subtrees are depicted in Figure
96. The constraint restricting ImplementationReviewCybersecurity only to a choice of Cybersecurity for
ConcernChoice ensures the exclusive-OR relation. Besides, ImplementationReviewCybersecurity also
consists of constraints for Roles, WorkProducts and Guidance. ImplementationReviewCybersecurity does
not have any further level.

H2020-JTI-ECSEL-2015 # 692474 Page 102 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

I SoftwareUni:DesignAndimplementation : BVRModel I

Processhode!

(+) ConcemCheice () Warkeroducts | (1) Guidance

(+) CommenalityPoint VariabityPoint

(#0essvar) (10) (=) ()

@) |) ([t)

Cybersecurity implies ImplementationReviewCybersecurity ImplementationReviewCybersscurity
ImplementationReviewCyhersecurity

{{ImplemencationReviewCybersecuricy implies {(SoftwareTester implies {{ImplemencationVerificationNechods
implies (SaftwareUnichesignSpacification o

and {not ImplemencacionReviewSafecy)) and SofcwareDesigner) X and CyhersecuricyImplemencacionAetiviciesinalysis)
and SofcwareUnicImplemencacion)

and (not ImplementationReviewNultiConcern)) and SafetyEnginesc) and CybersecurityimplementationAssessmentRefinement)

Figure 96. ImplementationReviewVar and ImplementationReviewCybersecurity Subtrees

The ImplementationReviewVar and ImplementationReviewMultiConcern subtrees are depicted in Figure
97. The constraint restricting ImplementationReviewMultiConcern only to a choice of MultiConcern for
ConcernChoice ensures the exclusive-OR relation. Besides, ImplementationReviewMultiConcern also
consists of constraints for Roles, WorkProducts and Guidance. ImplementationReviewMultiConcern also
has a next level consisting of elements ImplementationReviewSafety and
ImplementationReviewCybersecurity to cover multi concern implementation review tasks.

SoftwareUritDesignandimpiementation ; BVRMods!

Procecemodsl

4) Concemchaice (4) werkProdutts

(+) Cammonaitypoine | (vanazieypant

@ = B Ok)))

Taple
implies
3 and Implemencac

InplementacionRevievhulc i

;Imnlws (Sofcwarelinichesignipec
and SoftwarstinitImplementacion)

())

pEnCatlonACt LVIC12ARAl SIS

ana ¢ ityTepiemencats Refinement)

ana Cybersecuric

Figure 97. ImplementationReviewVar and ImplementationReviewMultiConcern Subtrees

4.3.9. Configuration Resolution (Resolution Editor)

An example of a valid resolution of the Variability Model is depicted in Figure 98 for the choice
‘MultiConcern’. All specified constraints are resolved correctly in the model depicted.

' ProcessModel = true '

ConcernChoice = true [A:UVIUES =true] [(+) WorkProducts = true] [(+) Guidance = true] [(+) Roles = true]
[Safety = False] [Cybersecurlty = false] [MultiConcern = true] [CommonaltyPoint = true] [VariablityPoint = true]
[Des\gﬂcum =true] [D = true] [=true] [=true] [Des\gn\/a\ = true] [(+) b =true] [(+) =true] [(+) ImplementationReviewVar = true]

[Designsafety = False] [DesignCybersecurity = False] [DesignMultiConcern = true]

Gmrsiwe) (G “e)

Figure 98. Example - Valid Resolution with ConcernChoice ‘MultiConcern’

The same valid resolution showing cardinality is depicted in Figure 99.

H2020-JTI-ECSEL-2015 # 692474 Page 103 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

ProcessModel = true

[Activities = true] [(+) WorkProducts = true] [(+) Guidance = true] (+) Roles = true

ConcernChoice = true
: 5~

l (+) CommanalityPoint = brue ' VariabilityPoint = true

[DesignSafetv =Ffalse] [Designvaersecul ity = False] [DesignMuItiConcarn =true]

[DesignSafety = true] [DesignCybersecul ity = brug]

Figure 99. Example - Valid Resolution Showing Cardinality with ConcernChoice ‘MultiConcern’

4.3.10. Model Realization (Realization Editor)

After the usage of the VSpec Editor (to build the Variability Model) and the Resolution Editor (to resolve
valid configurations), variability management is continued by use of the Realization Editor.

The Base Model produced using the EPF Composer is used as input by the Realization Editor and fragment
substitutions are applied to modify the Base Model according to the new resolved configuration.

For example, if the Base Model represents a safety-related (mono-concern = safety) process model (e.g.,
Figure 39) and if the mono-concern cybersecurity is chosen, the entire capability pattern for cybersecurity
(shown in Figure 35) replaces (Replacement) the tasks concerning safety (Placement) in the base model
(listed in Table 2).

Figure 100 through Figure 104 illustrate the creation of fragment substitutions. Figure 100, for instance,
illustrates the fragment substitution which indicates that the fragment UnitDesignReviewSafety
(Placement) should be replaced by the fragment UnitDesignReviewCybersecurity (Replacement).

R ISO_SAE.bvr (VSpec) IR ISO_SAE.bvr (Resolution) I} ISO_SAE.bvr (Realization) &2 = 0
Variation points Bindings
Variation points VSpec Kind Fragment
Replacement UnitDesignCyberSecuri
UnitDesignReviewCyberSecuri
Replacement UnitImplCyberSecurity
Create FragmentSubstitution Replacement Unﬁlmp]RewewCyberSecurlty
o e E Replacement UnitDesignMultiConcern
Clear Selection Replacement UnitDesignReviewMultiConcern
Replacement UnitImplMultiConcern
Replacement UnitImplReviewMultiConcern
Placement UnitDesignSafe
Placement UnitDesignReviewSafety
Placement UnitImplSafety
Placement UnitImplReviewSafety

Figure 100. Creation of Fragment Substitution

Figure 101 depicts the creation of Placements and Replacements. More specifically, in Figure 101, an
example of the creation of a Placement (Unit Design Review) concerning Safety is shown. The associated
activity, task descriptors, role descriptors and work product descriptors are displayed.

H2020-JTI-ECSEL-2015 # 692474 Page 104 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

IV} ISO_SAE bvr (Realization) 2 @ modelxmi 22
Variation points ' Bindings v 4 Process Component Software Unit Design And Implementation Safety)
4 Method Element Property pkg_loadCheck

Variation points VSpec Kind Fragment
Replacement |UnitDesignCyberSecurity # Method Element Property me_edited
[Replacement UnitDesignReviewCyberSecurity <4 Process Package Design And Design Review
Replacement UnitimplCyberSecurity o =
Rencariait Unitimp bersecurity 4 Process Package i 'And ! Review
Replacement UnitDesignMultiConcern v 4 Process Package Design And Design Review
UnitDesig e Lt v 4 Process Package Unit Design And Review - Commonality

p! C .

Replacement UnitimplReviewMultiConcern + Process Package Unit Design - Variability

Placement UnitDesignSafety ~ 4 Process Package Unit Design Review - Variability
r v 4 Activity Unit Design Review - Variability
g <4 Activity Description Unit Design Review - Variability, QbRgodenEee9cJbSEWFzCg
+ Task Descriptor design_review_concerning_safety
< Method Element Property me_references
NenEee9c)bSEWFzCy Descriptor Description design_review_concerning_safety, WIXmUNenEee9cJbSEWFzCg
v Role Descriptor software_tester
4 Method Element Property descriptor_createdByReference
4 Method Element Property me_references
< Descriptor Description software_tester, WIXmUdenEee9cJb5EWFzCg
v 4 Work Product Descriptor software_unit_design_specification
4 Method Element Property descriptor_createdByReference
< Method Element Property me_references

Create Placement 4 Descriptor Description software_unit_design_specification, WIXmV9enEee9c)bSEWFzCg
Create Replacement ~ 4 Work Product Descriptor software_unit_implementation

Create Placement (Containmentless) < Method Element Property descriptor_createdByReference

Create Replacement (Containmentless) <+ Method Element Property me_references

Clear Selection 4 Descriptor Description software_unit_impl ion,) 9cJbSEWFzCg

v 4 Work Product Descriptor Software Safety Requirements
<4 Descriptor Description Software Safety Requirements, NUIAANeoEee9cJbSEWFzCg
v & Work Order
% Content Description ,_kZHusNghEeeYSviyW_QSnw
4 Iteration Unit Design And Review - Commonality v
< >

Figure 101. Creation of Placement/Replacement

Figure 102 depicts the binding between the elements (abstract features) created using the VSpec editor
with the chosen concrete fragments. The elements created in the VSpec editor correspond to the elements
depicted in Figure 90 for Design Review concerning Cybersecurity.

MR 1SO_SAE.bvr (VSpec) I} ISO_SAE.bvr (Resolution) Hl} ISO_SAE.bvr (Realization) = 0

Variation points Bindings

Variation points VSpec Kind Fragment

DesRe NULL v |Replacement UnitDesignReviewCyberSecurity
DesignSafety A |[Placement UnitDesignReviewSafety
DesignCybersecurity
DesignMultiConcern
DesignSafety
DesignCybersecurity
DesignReviewVar
DesignReviewSafety

DesignReviewCybersecurity [

Figure 102. Linking VSpec to Fragment Substitution

In this example, Unit Design Review Safety is the substitution fragment which is selected as a Placement
fragment, and hence, is to be removed from the model being realized. This is depicted in Figure 103.

H2020-JTI-ECSEL-2015 # 692474 Page 105 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

IR 1ISO_SAE.bvr (Realization) 2 @ modelxmi 2

Variation points ' Bindings v < Process Package DeliveryProcesses A
Variation points Vspec Kind Fragment v 4 Process Component Software Unit Design And Implementation Safety
[Replacem...[UnitDesignCyberSecurity | < Method Element Property pkg_loadCheck

Replacem... UnitDesignReviewCyberSecurity <4 Method Element Property me_edited

|Replacem... |UnitimplCyberSecurity 3 2 =

Replacem... UnitimpIReviewCyberSecurity < Process Package Design And Design Review

Replacem... [UnitDesi iConcern < Process Package Implementation And Implementation Review

pep Ll : e v 4 Process Package Design And Design Review

Replacem... [UnitImpIMultiConcern 3)) .

IReplacem... [Unitimp ItiConcern v <% Process Package Unit Design And Review - Commonality

Placement _|UnitDesignSafe! <+ Process Package Unit Design - Variability

Placement yUn\tlImPISafety v < Process Package Unit Design Review - Variability

Placement |UnitImplReviewSafety 4 Activity Unit Design Review - Variability

> ¢ Task Descriptor design_review_concerning_safety
% Role Descriptor software_tester
<4 Work Product Descriptor software_unit_design_specification
4 Work Product Descriptor software_unit_implementation
4 Work Product Descriptor Software Safety Requirements
¢ Work Order
4 s \
% Phase Design And Design Review
% Work Order
< Process Package Implementation And Implementation Review
4 Delivery Process Software Unit Design And Implementation Safety v

< >

Figure 103. Placement Unit Design Review Safety

Also in this example, Unit Design Review Cybersecurity is the substitution fragment which is selected as a
Replacement fragment, and hence is to be added to the model being realized. This is depicted in Figure
104.

UIR ISO_SAE.bvr (Realization) &2 & modelxmi 52
Variation points Bindings v 4 Process Component Cybersecurity A
Variation points VSpec Kind Fragment + Method Element Property pkg_IOédCheck
Replacement |UnitDesignCyberSecuri % Method Element Property me_edited
Replacement UnitDesignReviewCyberSecuri ~ < Process Package Design And Design Review

Replacement |UnitImplCyberSecurity

SaTIp. Lt 4 i 1 i .3 o il
Replacement_|UnitimplReviewCyberSecurity v <% Process Package Unit Design And Review - Variability
|Replacement_|UnitDesi iConcern v <4 Process Package Unit Design - Variability
Replacement |UnitD oncern +

Replacement |UnitImp oncern . g . .
R UnitImpl iConcern 4 Task Descriptor Design Concerning Cybersecurity

Placement _|UnitDesignSafety
Placement] signRevi Y
Placement

Placement

<4 Work Product Descriptor software_unit_implementation
% Role Descriptor security_engineer

Y v < Process Package Unit Design Review - Variability

<4 Activity Unit Design Review - Variability

4 Task Descriptor Design Review Concerning Cybersecurity

4 Role Descriptor software_tester

4 Work Product Descriptor software_unit_design_specification

4 Work Product Descriptor software_cybersecurity_requirements
¢ Work Order

+ .

% Phase Design And Design Review

< >

Figure 104. Replacement Unit Design Review Cybersecurity

The Realization Model created using the Realization Editor by a series of substitutions consisting of
Placements and Replacements can be exported back to the Base Model Editor (EPF Composer).

The consolidated activity diagram of the realized cybersecurity model is depicted in Figure 105 through
Figure 107. The activity diagram is split into three parts to enhance readability. Figure 105 depicts the
phases, iterations and activities of the delivery process. The phases are executed sequentially. The activities
which make up each phase are executed iteratively as described. The tasks which make up the activities are
depicted in Figure 106 and Figure 107. Figure 106 depicts the Commonality tasks while Figure 107 depicts
the Variability tasks related to Cybersecurity.

H2020-JTI-ECSEL-2015 # 692474 Page 106 of 124

) AMASS

Methodological guide for multiconcern assurance (b)

DesignAnd Des'Jr'\ Review (One)

Ut Des gin And Review - Commonality

Phase Iteration Activity
A= ey Lt i - Cimmmcraity
= o

!

j‘;'h

mplementation And w—eFemtm Review (One)

s

Unt implementabon And Review - Commonaity

i rsamristor Sy wa - Commoraly

|

. Sk - Varalety

implementation And implementation Review (Tw o)

Unit implementation And Review - Variabity

= £
o
DesignAnd Design Review (Tw o) Unit DesignAnd Review - Variabiity
S —
E.C_i ey L g martaton - Ly
- =<}

U e R RS

Figure 105. Detailed Activity Diagram Cybersecurity (1 of 3)

D4.8V1.0

Activity Task/Role/Work Product
) L&
ja) Softwars Software
B3 u =
L= Tesin el
Unit Design - Commanality Specficaton et
| B
& [~ Saftware
W Softwars Designer LUint D=zign it o
BE | =
Unit Design Review - Commonalty B . L
Som\r-ut B B4
Unk Software Tester Uit Design Review
Impiemertation
= =
Lge g
o] Softw are
[ESAE acitw are e
Urit implemergation - Commanalty " tation Implementation
| l 0 FL
l._:__li L%‘ [ﬂ. ~ Unit . ntation
Unit Ienpiesnantation Review - Commonalty Programmer Unit Implementation Softw are Tester mvrm& al

Figure 106. Detailed Activity Diagram Cybersecurity (2 of 3)

H2020-JTI-ECSEL-2015 # 692474

Page 107 of 124

AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

Activity Task/Role/Work Product
Lis =
Selware L
mm Softw are
Specdicaton Linit
3 B Design
= 2 Sofware Specification
Unit Design - Variabilty Sabely
Fequraments g
l Softw are
g A Unit
e g hd
e e 3.’3 S Implementation
t . L)
i l
Unit Design Review - Varabity) R
& 5 L
5
msm.m Software Tester DESigN Review
Impementation Concerning Safety
E=aEy Lt\.."' o
=LA Softw are Softw are
Uil Implemertation . 'Variabiity Unik Unit
Irplementaton Implementation
B8 ; £ & e
\ r \ @) - knplamentation
Unit implementation Review - Varabiity Progra Implementation Softw are Tester Review Concerning
Concerning Safety Safety

Figure 107. Detailed Activity Diagram Cybersecurity (3 of 3)

The consolidated activity diagram of the realized multi concern model is depicted in Figure 108 through
Figure 110. The activity diagram is split into three parts to enhance readability. Only the Variability
elements for multi concern are depicted as the elements shown in Figure 105 and Figure 106 are the same
for multi concern. The diagram corresponds to our interpretation of the ‘Pattern Engineering Lifecycle’

depicted in Figure 37.

Activity Task/Role/Work Product
o
Software S
=3 o i~ Softw are
s Szectcaton Uk
Ungt Design - Variabity B Design
Softwace Speciication
Cytersecurty
Requrements Lo
y l Softw are
(= ‘ . % Unit
L & Implementation
) Vi S Oesign Concarnng
Unit Design Review - Variabity scwty Bngree ooy l
e & o
tw are
e Software Tester Design Review
mprementaton Concerning Cybersecurty
5 £>3
i"‘f, 4 Softw are SoMe
=t 2] Unt Unt
Unt implementation - Variabity implementation Implementation
— L] l o "0
EE S g 0r 5 O molementation
- Programmer Impiementabon Software Tester Ruyiew Concerning
Unt implementation Review - Varabity Concerning Cybersecurity Cybersecurty

Figure 108. Detailed Activity Diagram Multi Concern (1 of 3)

H2020-JTI-ECSEL-2015 # 692474

Page 108 of 124

AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

Activity Task/Role/Work Product
L L
Soltw are Safftw are
Lind Une (-] Lags
) Desgn Design Softw are Seftware
[_ A Specticaton Specfication e i
LA B -9 Design Design
Unit Diesign - Visraity Software Softw are Fpachicuton Specifcation
Saledy Cylbers seurity [s
Requrements Requrements Softw an Softw aTE
Uit Uit
l l implemantation irplementation
5 8 o i e
—— Satety Engineer DESIGN Concening Becuriy Enginesr Design Concerning
Uit Dasign Review - Variabaty Sxdaty Cybersecuriy [} & (=3
i -
Software Tester Design Review Design Review
Concerming Saf sty Cancanming Cybers sourity
. i
Software Softaare
et ™
e meratar L=l -]

Figure 109. Detailed Activity Diagram Multi Concern (2 of 3)

Activity Task/Role/Work Product
(2 L L» L L
'__" Softw are Softw are
Uini implamantation - \Varabiity ﬂ?\:m i E::w C it Unit
Implementation Implementation —— =
E3 l % o e
o o e - — Imghementation impiemantation
Unit implemerntation Review - Variabity Programmer ITEMEntanon Implementation Software Tester ppuipy Conceming Review Concerning

Concarning Safety Concarning Cybers ecurity Safety Cybersecurity

Figure 110. Detailed Activity Diagram Multi Concern (3 of 3)

4.3.11. Case Study Conclusion

The parts of the use case modelled in the EPF Composer provide a process model and the related process-
related assurance assets for co-assessment. The parts of the use case modelled in the BVR tool provide a
means to deal with cross-concern reuse/co-assessment of the software development process factoring
safety and cybersecurity requirements.

H2020-JTI-ECSEL-2015 # 692474

Page 109 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

4.4. CS1:Industrial and Automation Control Systems (IACS) (*)

In this section, the CS1: Industrial and Automation Control Systems (IACS) described in D1.1 [1] is
considered to illustrate the dependability co-analysis via Safety Architect. Two use case scenarios have
been defined for the CS1: US1 (Compliance Management), US2 (Safety and security co-assessment). The
illustration of the dependability co-analysis via Safety Architect is explained for US2.

4.4.1. Description of the Use Case Scenario

We have considered Schneider Electric Saitel® RTUs — high-level architecture, depicted in Figure 111, to
demonstrate the system safety and security co-analysis methodology presented in Section 3.5.2.

Schneider

Schneider Electric Saitel® RTUs - Architecture
]

ssignal=
3 JEC 10x

L] £
asignale =Blocks
) DNP [Web Server
2
7
| «Blocks e 4 J£]]
[®] Devices Configurati.., (@ Local Acquisition e
=] RealTimeDB 2
«Block»
7] =] Communication
«signals
] Modbus

)

=signal=

[DNP

Figure 111. High-level Archiecture of SchneiderElectric Saitel RTU

The objective of CS1-US2 (Safety and security co-assessment) is to support the RTU Safety & Security
Assurance Case with AMASS platform and dedicated external tools. In this use case, the Safety Architect
and Cyber Architect tools are integrated with the AMASS platform as external tools to provide this safety
and security co-analysis support.

4.4.2. Demonstration of the Methodology

As explained in Section 3.5.2 (System Dependability Co-analysis via Safety Architect), a possible usage
scenario for Safety & Security co-analysis is composed by 8 steps. These steps are illustrated below:

Step 1: System engineers can design its system architecture model with CHESS tool. The Schneider Electric
Saitel® RTUs — high-level architecture model in CHESS is shown in Figure 112 .

H2020-JTI-ECSEL-2015 # 692474 Page 110 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

«Block»
Schneider Electric Saitel RTUs - Architecture

«part» «panv» «part»
= : Device Configuration Files ©1: Real Time DB = : WEB Server
«FlowPort» «FlowPort» «FlowPort»
€| ® inout flowport1: <Undefined> (-Z| & inout flowport2: <Undefined>

8 inout flowport2: <Undefined>

Connector:
«FlowPort» sHowbois E—)}———A

[©] @ inout flowport2: <Undefined> & out flowport1: <Undefined>

-

«FlowPort»

® inout flowport3: <Undefined>

«FlowPort»
€| ® inout flowport3: <Undefined>

«FlowPort» [
©
inout flowport5: <Undefined > Connector2

«FlowPort»
8 inout flowport4: <Undefined>

onnector1 «FlowPort»
9] & in flowport1: <Undefined>

Modbus

—1

«FlowPort|
B') Connector3

© inout flowport6: <Undefined> T

= : Communication

«FlowPort»

«FlowPort : .
(-ﬂ # inout flowport4: <Undefined> «FlowPort»
© inout flowport5: <Undefined>] @ out flowportl: <Undefined> [_) Connector. :l
«FlowPort» Other devices «FlowPorts S Howiore

€| E inout flowport7: <Undefined> x .
& inout flowport6: <Undefined> P €| © inout flowport2: <Undefined>

Figure 112. SchneiderElectric Saitel RTU High-level Architecture model in CHESS

Step 2: Safety Engineers can import system model from the AMASS platform — CHESS tool to Safety
Architect tool for safety analysis thanks to the connector between CHESS and Safety Architect, as illustrated

in Figure 113 and Figure 114.

'Q CHESS import | x
CHESS import g& L~
KQ

Import a CHESS model from an UML file.

Select UML file to import:
‘ t:\Users\Sango\Documents\AMASS\My workspace\Amass_P1_20171207\amass_P1\workspace\AMASS-CS1 —SaiteI—RTU\‘ Browse...

Select import scope
£ <Model> RootElement

< Back Next = Cancel

Figure 113. Import from CHESS tool to Safety Architect tool

H2020-JTI-ECSEL-2015 # 692474 Page 111 of 124

AMASS

Methodological guide for multiconcern assurance (b)

D4.8V1.0

=

" Device Configuration File:

[=* Connector1

' >

=*|EC 10x

' Schneider Electric Saitel RTUs - Architectul

0 Real Time DB

= Modbus

= Connector2

= Connector.

=)WEB Server

m_um.m

= Communication

= Connector5

Figure 114. Safety Architect WBS model from CHESS WBS model

Step 3: Security engineers (in parallel to safety analysis or based on the process defined in other AMASS
platform tools, such as EPF or external tools, such as WEFACT) can perform its security analysis in Safety
Architect as illustrated in Figure 115.

\7 Cyber Architect 1.5.0 - AMASS-CS1-5Saitel-RTU

o

Projects
Active project

type filter text

=
~ Operating modes bases

&=

& %

|| @ Closed module | <7 Check # Metrics [& Report | 20 Q @

S veme erfasiams D 3 Twmewe > 4R
3.1 - Evaluate the threat scenarios Vulnerabilities

(10perating modes

~ % AMASS-CS1-Saitel-RTU
o AMASS-CS1-Saitel-RTU.ca
= Attached files

& Reports
~ Threats bases ik
i Threats

Available projects

£ History Be =08

Version Date ~ Threat scenarios bases 5

Evio 10/1/18 T1:56 AM [FiThreat scenarios base

~ Vulnerabilities bases ik

) Vulnerabilities

~ Vulnerabilities treatment

v & Supporting assets base

= Real Time DB
=il WEB Server
=i| Communication

=il Device Configuration Files

"

- m] X
o Security measures -
}+ Description
Base content H R R
Drag columns here to group rows ~
hd hd hd hd
CHA
swW
28 Modifiable PER Can be improved, col
NTW
FILE
29 Insufficient control by the sw Incomplete specificat
developers or maintainers
Does not work correctly or
30 in accordance with SwW
expectations
31 Transferable SW Clause of total transfy
It is the only transmission CHA
33 resource for the flow NTW
It can be used to modify
34 the rules for sharing the IT NTW Transmission protocc
or telephone channel
x |l Hninio CHA v

Current activity: 3.1 - Evaluate the threat scenarios

Figure 115.

Cyber Architect project initialised with EBIOS knowledge bases

Step 4: Assurance Engineers (Safety & Security experts), can exploit the bridge between Safety Architect

and Cyber Architect to perform it co-analysis. For example, to analyse the impact of security into safety,
assurance engineers can import threats sources or vulnerabilities from Cyber Architect into Safety

Architect, as illustrated in Figure 116.

H2020-JTI-ECSEL-2015 # 692474

Page 112 of 124

@ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

' Cyber Architect import O X
Select required elements from a Cyber Architect project Q P
Select source elements or threat sources from a Cyber Architect file. v <(Q

Select a CA file to import
CAUsers\Sango\Desktop\CA\CyberArchitect-1.5.0-NO-LICENCE-win32.win32.x86_64\v| Browse...

Select threat sources to impaort as basic system events

~ [m] &7 Threats sources A
& People or groups of people who are malevolent
[]¥] Malevolent member of staff with possibilities of action limited
[1% Malevolent member of staff with significant knowledge and possibilities for actic
[]¥] Malevolent member of staff with unlimited knowledge and possibilities for actiol “

[= PR

< >

Select source elements to import as failure modes

[] Does not work correctly or in accordance with expectations -
[] = Transferable

= Communicated flows may be altered

[] Itis the only transmission resource for the flow

[] It can be used to modify the rules for sharing the IT or telephone channel

—

< Back Mext > Finish Cancel

Figure 116. An interface between Safety Architect and Cyber Architect

Step 5: Assurance Engineers can activate the Security Viewpoint in Safety Architect tool to perform Safety
and Security Co-analysis. The activation of Safety & Security viewpoint in Safety Architect allows the
annotation of input and output ports of system components with vulnerability modes (e.g., communicated
flows may be altered) imported in previous step. The co-analysis is realized thanks to security analysis
artefacts (e.g., vulnerabilities and threats sources) and safety analysis artefacts (e.g., internal failure, failure
modes), as illustrated in Figure 117.

H2020-JTI-ECSEL-2015 # 692474 Page 113 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

(j \‘j Threat Source: People or groups of people who are malevolent

9 communication

% Real Timg D8 input

Vulnerability :
Communicated flows
may be altered
& Communication output

1 Potential Security Precondition :
o Barrier Erroneous /
S

Internal Failure .., Potential Safety
= Barrier

Figure 117. Safety & Security viewpoint in Safety Architect

Step 6: Assurance Engineers can generate propagation trees, i.e., fault trees extended with malicious
events, thanks to the previous Safety & Security co-analysis and the Safety Architect propagation engine
with the “Safety & Security” viewpoint selection shown in Figure 118.

g Propagation O X

Propagation !pﬁ

Select engine for propagation

Model selection

SA file: | WheelBrakingSystem.sa ~
Engine selection
Engine: | Internal propagation engine ~

Description:

Internal propagation engine.

This engine can use different strategies to explore the model during the propagation:

- Factorising method: Strategy which doesn't propagate twice the nodes which have already been entirely propagated, but
uses transfers instead.

- Recursive method: Proven strategy, but which can lead to very long propagation on models containing loops

Viewpoint selection

Viewpoint: | Safety & Security ~

Propagation rules

Set the propagation rules for the failure mode types,
the rows represent the sources and the columns represent the targets.

From \ To | Erroneous ‘ Absent | Untimely | Malicious | Specific ‘
Erroneous O [} O O
Absent [| O O
Untimely |] | [
Malicious |] O [
Specific O [} O]

< Back Finish Cancel

Figure 118. Safety & Security viewpoint selection in Safety Architect

H2020-JTI-ECSEL-2015 # 692474 Page 114 of 124

AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

The propagation tree generated in Safety Architect can be exported in OpenPSA format (.xml files) and can
be read by OpenPSA based tools, such as Arbre Analyste, as illustrated in Figure 119.

‘ |
AND
AND_1
| |
[Pdtential_Security_Barrier](Precondtion_:_Erroneolis) | [Real_Time| DB_input](Vulnerabiity_:_Communicated_flows_may_lbe_attered) an
{Schneider Electric Saitel RTUs - Architecture} {Schneider Electric Satel RTUs - Architecture} [Potential_Safety_Barrier](Erroneous)
::Communication :Communication .
[Potential Security Barrier] [Real Time DB input] o Electric Satel RTUs - Architecture}
(Precondition : Erreneous) (Vulnerability : Communicated flows may be altered) i l Communication
= = e [Potential Safety Barrier]
yeNone y=None (Erroneous)
L J
y=Nane
Threat_Source:_People|_or_groups_of_people_who_are_malevolent
People or groups |
of people who are {Real_Time_DB}-~{Internal_Failure]
malevolent,
[) {Schneider Electric Saitel RTUs - Architecture}
y=None -‘Real Time DB
[]
{Communication}->{internal_Failure] | [input)(E) y=None
{Schneider Electric Saitel RTUs - Architecture} {Schneider Electric Saitel RTUs - Architecture} [Modbus](E)
“Communication SLIE C'E:gﬂ’]m”" i {Schneider Electric Saitel RTUS - Architecture}
L] € :Real Time DB
y=None d [Modbus]
¥=None ©

y=None

Figure 119. Propagation Tree (fault tree extended with malicious events) in Safety Architect

Step 7: System Architect can import the previous propagation from Safety Architect to CHESS to display the
propagation tree as a critical path in its architecture. For this, go in AMASS Platform (the eclipse bundle)
then in “CHESS — Fault Tree Viewer — view fault tree diagram from .xml file”, as illustrated in Figure 120.

Run Processlines VW CHESS Window Help

- = = Analysis
Basic Operations
Validation
Functional Verifications
Safety Analysis
Safety Case

//Debug Operations 3
Fault Tree Viewer » wieew Fault Tree diagram from xmi file
Conftract-based Safety Analysic on selected component [

Figure 120. Import Safety Architect propagation tree in CHESS tool

Step 8: Assurance engineer can indicate the location of the evidence resource in OpenCert, such as
Fault/Attack Trees or FMEA/FMVEA tables generated in Safety Architect tool, as illustrated in Figure 121.

-~ & defaultevidence
~ = Artefact Model Risk Analysis Evidence
~ [Artefact Definition Risk Analysis
47 Artefact FT & AT
-~ {7 Artefact FMIVEA
3 X Assurance Asset Event AssuranceAssetEvent 1
4+ Resource

Selection| Parent| List| Tree| Table | Tree with Check-boxes
M Properties 5= | [CDO Repositories
4 Resocurce
Base ~ Properties
1
Name

Description:
Farmat:

Location: | ChUsers\Sango\Desktop\fmvea-2018-04-16 213622.x1sx

Commit Asign

Figure 121. Evidence resource location in OpenCert

H2020-JTI-ECSEL-2015 # 692474 Page 115 of 124

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

5. Conclusions

The Multiconcern Assurance approach of AMASS aims at capturing the multi-faceted nature of assurance
with a variety of techniques that provides multi-faceted evidence (e.g. co-analysis, co-assessment) and
argument fragments (multi-concern assurance) to the assurance case.

In this document, the guide for the AMASS Multiconcern Assurance approach has been given. More
specifically, a set of workflows has been specified that indicates the activities to be conducted to use the
AMASS Multiconcern Assurance Approach. Some case studies have been used to exemplify the execution
of the workflows.

This version of the guide is related to the third and final prototype of the AMASS platform, called P2. It
provides the sustainable basis for efficient, partly automated, model-based multiconcern assurance in
compliance with applicable standards.

H2020-JTI-ECSEL-2015 # 692474 Page 116 of 124

‘_)é AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

Abbreviations and Definitions

Abbreviation | Explanation

ACS Attitude Control System

AOCS Attitude and Orbit Control System

ARP Aerospace Recommended Practice

ARTEMIS ARTEMIS I'nd'ustry Association is the association for actors in Embedded Intelligent
Systems within Europe

ASIL Automotive Safety Integrity Level

AT Attack Tree

ATA Attack Tree Analysis

BCL Basic Constraint Language

BPMN Business Process Model and Notation

BVR Base Variability Resolution - 'a do'main-specific language designed specifically to
enable software product-line engineering (SPLE)

CA Cyber Architect

CACC Cooperative Adaptive Cruise Control

CACM Common Assurance and Certification Metamodel

CCL Common Certification Language

CHESSML CHESS Modelling Language

CNIL Commission Nationale de I'Informatique et des Libertés

CPS Cyber-Physical Systems

CS Case Study

CVL Common Variability Language

DOORS Dynamic Object-Oriented Requirements System

DPIA Data Protection Impact Assessments

EBIOS Expression des Besoins et Identification des Objectifs de Sécurité

ECSEL Electronic Components and Systems for European Leadership

ECSS European Cooperation for Space Standardization

EMC2 Embedded multi-core systems for mixed criticality applications in dynamic and
changeable real-time environments

EPF-C Eclipse Process Framework-Composer

EU European Union

FLAMM Failure Logic Analysis Meta Model

FMEA Failure Modes and Effects Analysis

FMVEA Failure Modes, Vulnerabilities and Effect Analysis

FODA Feature-Oriented Domain Analysis

FT Fault Tolerance

FPTC Failure Propagation Transformation Calculus

FTA Fault Tree Analysis

GDPR General Data Protection Regulation

GSN Goal Structured Notation

GUI Graphical User Interface

HARA Hazard Analysis and Risk Assessment

H2020-JTI-ECSEL-2015 # 692474 Page 117 of 124

‘@ AM[ASS Methodological guide for multiconcern assurance (b)

D4.8V1.0
HAZOP HAZard and OPerability study
HW Hardware
IACS Industrial and Automation Control Systems
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
IT Information Technology
JU Joint Undertaking
LTL Linear-time Temporal Logic
MARTE Modelling and Analysis of Real Time and Embedded systems
MAST Modelling and Analysis Suite for Real-Time Applications
MERgE Multi-Concerns Interactions System Engineering
MOF Meta-Object Facility
NIST National Institute of Standards and Technology
OCRA Othello Contracts Refinement Analysis
OPENCOSS Open Platform for EvolutioNary Certification of Safety-critical Systems
ReqlF Requirements Interchange Format
RCP Rich Client Format
RobotML Robot Modelling Language
RTU Remote Terminal Unit
SA Safety Architect
SACM Structured Assurance Case Metamodel
SAE Society of Automotive Engineers
SAHARA Security-aware Hazard Analysis and Risk Assessment
SIL Safety Integrity Level
SL Security Level
SiSoPLE Security-informed Safety-oriented Process Line Engineering
SoPLE Safety-oriented Process Line Engineering
SPEM Software & Systems Process Engineering Metamodel
SPLCA Software Product Line Covering Array
SSA System Safety Assessment
SSE Safety and Security Engineering
STL Signal Temporal Logic
STO Scientific Technical Objective
STPA-SEC STAMP (Systems- Theoretic Accident Model and Processes) Based Process Analysis
STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation of
privilege
SUDI Software Unit Design and Implementation
SUT System Under Test
SVN Subversion
sw Software
SysML System Modelling Language
TARA Threat Analysis and Risk Assessment
UMA Unified Method Architecture
UML Unified Modelling Language

H2020-JTI-ECSEL-2015 # 692474

Page 118 of 124

\@ AM[ASS Methodological guide for multiconcern assurance (b)

D4.8V1.0

URL Uniform Resource Locator

V&V Verification and Validation

WBS Work Break Down Structure

WEFACT Workflow Engine for Analysis, Certification and Test
WP Work Package

XML EXtensible Markup Language

XSAP Extended Safety Analysis Platform

H2020-JTI-ECSEL-2015 # 692474

Page 119 of 124

U_ﬁ AMASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

References

(1]
(2]
(3]
(4]
(5]

(6]

(7]
(8]
(9]

(10]
(11]
(12]
(13]

(14]
(15]
(16]
(17]

(18]
(19]

[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]

(28]
[29]

(30]

AMASS D1.1 Case studies description and business impact, 30th November 2016.

AMASS D4.1 Baseline and requirements for multiconcern assurance, 30th September 2016.

AMASS DA4.3 Design of the AMASS tools and methods for multiconcern assurance (b), 30th April 2018
AMASS DA4.5 Prototype for multiconcern assurance (b), 31th October 2017.

Goal Structuring Notation Working Group. GSN Community Standard. Retrieved from
http://www.goalstructuringnotation.info, Nov 2011.

AMASS D3.3 Design of the AMASS tools and methods for architecture-driven assurance (b), 31st
March 2018.

AMASS D3.8 Methodological guide for architecture-driven assurance (b), 31th October 2018.

AMASS D6.8 Methodological guide for cross/intra-domain reuse (b), 31th October 2018.

AMASS D5.3 Design of the AMASS tools and methods for seamless interoperability (b), 30th June
2018.

AMASS D6.3 Design of the AMASS tools and methods for cross/intra-domain reuse (b), 31 July 2018.
AMASS D4.6 Prototype for multiconcern assurance (c), 31° August 2018.

AMASS D2.5 AMASS user guidance and methodological framework, October 2018.

P. Koopman. Better Embedded System Software. Drumnadrochit Education LLC, ISBN-13: 978-0-
9844490-0-2, 2010.

https://www.all4tec.net/safety-architect

https://www.all4tec.com/cyber-architect

MERGE Project — http://www.merge-project.eu/

https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-
securite/

Eclipse Process Framework Project. http://www.eclipse.org/epf/

Object Management Group: The Software & Systems Process Engineering Metamodel Specification
(SPEM) Version 2.0 (2008). http://www.omg.org/spec/SPEM/2.0/

BVR Tool. https://github.com/SINTEF-9012/bvr
ISO 26262: Road Vehicles-Functional Safety. International Standard, 2011.

SAE J3061: Surface Vehicle Recommended Practice, Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems, Tech. Rep., January 2016.

Eclipse Process Framework (EPF) Composer User Manual.

https://www.eclipse.org/epf/general/EPF Installation Tutorial User Manual.pdf

BVR Tool. https://bvr-tool.sintef.cloud/

The SafeCer project (Certification of Software-intensive Systems with Reusable Components)
http://cordis.europa.eu/project/rcn/103721 en.html and
http://cordis.europa.eu/project/rcn/105610 en.html

The OPENCOSS project (Open Platform for EvolutioNary Certification Of Safety-critical Systems)
http://www.opencoss-project.eu/

The CHESS tool https://www.polarsys.org/projects/polarsys.chess

Arbre Analyste https://www.arbre-analyste.fr

J. P. Castellanos Ardila and B. Gallina. Towards Efficiently Checking Compliance Against Automotive
Security and Safety Standards. Proceedings of the 7™ IEEE Wo0SoCER, joint event of the 28t
International Symposium on Software Reliability (ISSRE), IEEE Computer Society, Toulouse, France, 23
of October 2017.

B. Gallina, S. Kashiyarandi, H. Martin, R. Bramberger.Modeling a safety-and automotive-oriented
process line to enable reuse and flexible process derivation. In Proceedings of the IEEE 38th

H2020-JTI-ECSEL-2015 # 692474 Page 120 of 124

https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.1_Baseline-and-Requirements-for-Multi-Concern-Assurance_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.5_Prototype-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
http://www.goalstructuringnotation.info/
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.8_Methodological-guide-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.8_Methodological-guide-for-cross-intra-domain-reuse-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.3_Design-of-the-AMASS-tools-and-methods-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.3_Design-of-the-AMASS-tools-and-methods-for-cross-intra-domain-reuse-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.6_Prototype-for-multiconcern-assurance-%28c%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.5_AMASS-user-guidance-and-methodological-framework_AMASS_Final.pdf
https://www.all4tec.net/safety-architect
https://www.all4tec.net/safety-architect
https://www.all4tec.com/cyber-architect
http://www.merge-project.eu/
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/
http://www.eclipse.org/epf/
http://www.omg.org/spec/SPEM/2.0/
https://github.com/SINTEF-9012/bvr
https://www.eclipse.org/epf/general/EPF_Installation_Tutorial_User_Manual.pdf
https://bvr-tool.sintef.cloud/
http://cordis.europa.eu/project/rcn/103721_en.html
http://cordis.europa.eu/project/rcn/105610_en.html
http://www.opencoss-project.eu/
https://www.polarsys.org/projects/polarsys.chess
https://www.arbre-analyste.fr/

‘@ AM[ASS Methodological guide for multiconcern assurance (b) D4.8 V1.0

(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]

(39]
[40]
[41]
[42]

(43]

[44]

(45]
[46]
[47]

(48]

International Computer Software and Applications Conference Workshops (COMPSACW), pp. 504-
509, IEEE, 2014.

C. Schmittner, Z. Ma, P. Puschner. Limitation and Improvement of STPA-Sec for Safety and Security
Co-analysis. In International Conference on Computer Safety, Reliability, and Security (SAFECOMP,
pp. 195-209, Springer International Publishing, September 2016.

C. Schmittner, Z. Ma, P. Smith. FMVEA for safety and security analysis of intelligent and cooperative
vehicles. In International Conference on Computer Safety, Reliability, and Security (SAFECOMP), pp.
282-288, Springer, Cham, September 2014.

A. Ruiz Lopez, B. Gallina, J. Luis de la Vara, S. Mazzini, H. Espinoza Ortiz. AMASS: Architecture-driven,
Multi-concern, Seamless, Reuse-Oriented Assurance and Certification of CPSs. 5th International
Workshop on Next Generation of System Assurance Approaches for Safety-Critical Systems (SASSUR),
Trondheim, Norway, September 2016.

B. Gallina, Z. Haider, A. Carlsson. Towards Generating ECSS-compliant Fault Tree Analysis’ Results via
ConcertoFLA. 2nd International Conference on Reliability Engineering (ICRE), Milan, Italy, December
20-22, 2017.

B. Gallina, E. Sefer, and A. Refsdal. Towards Safety Risk Assessment of Socio-technical Systems via
Failure Logic Analysis. 2nd IEEE International Workshop on Risk Assessment and Risk-driven Testing
(RISK), joint event of ISSRE, doi: 10.1109/ISSREW.2014.49, pp.287-292, Naples, Italy, November 3-6,
2014.

Mazzini, S., Favaro, J., Puri, S., Baracchi, L.: CHESS: an open source methodology and toolset for the
development of critical systems. Third Workshop on Open Source Software for Model Driven
Engineering (0OSS4MDE 2016).

WEFACT user manual and Installation Instructions, 2018”.

International Electro-technical Commission, “Functional safety of electrical/ electronic/
programmable electronic safety-related systems”, IEC-61508, 1998.

International Organization for Standardization, “Road vehicles — Functional safety”, 1SO-26262,
2011.

International Organization for Standardization, “Robots and robotic devices - Safety requirements for
personal care robots”, 1S0-13482, 2014.

SAE International, “Guidelines for Development of Civil Aircraft and Systems”, Aerospace
Recommended Practice, ARP-4754, 1996.

SAE International, “Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment”, Aerospace Recommended Practice, ARP-4761, 1996.

International Organization for Standardization / International Electro-technical Commission,
“Information Technology — Security Techniques — Information Security Risk Management”, 1SO/IEC
27005, 2013.

International Organization for Standardization / International Electro-technical Commission,
“Information technology - Security techniques - Evaluation criteria for IT security”, 1SO/IEC-15408,
2009.

International Electro-technical Commission, “Industrial communication networks - Network and
system security”, ISA/IEC-62443, 2013.

The European Organisation for Civil Aviation Equipment, “Airworthiness Security Process
Specification”, ED-202A, 2014.

The European Organisation for Civil Aviation Equipment, “Airworthiness Security Methods and
Considerations”, ED-203, 2015.

Radio Technical Commission for Aeronautics, “Airworthiness Security Methods and Considerations”,
RTCA DO-356, 2014.

7 Available in the AMASS project repository: WEFACT_UserManual.docx and WEFACT _Installation_Instructions.docx

H2020-JTI-ECSEL-2015 # 692474 Page 121 of 124

U‘é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

[49]
(50]
(51]
(52]

(53]
(54]

(55]

(56]

(57]
(58]
(59]

(60]

(61]

(62]

(63]
(64]
(65]

(66]

(67]

(68]

(69]

CONCERTO Deliverable D3.3 “Design and implementation of analysis methods for non-functional
properties — Final version”, November 2015.

ECSS-E-ST-40C, Space engineering - Software, 06/03/2009.

ECSS-Q-ST-80C, Space product assurance - Software product assurance, 06/03/20009.

ECSS-Q-ST-30C, Space product assurance - Dependability, 06/03/2009.

ECSS-Q-ST-40C, Space product assurance - Safety, 06/03/2009.

G. Macher, A. Hoeller, H. Sporer, E. Armengaud, C. Kreiner. A Comprehensive Safety, Security, and
Serviceability Assessment Method. 34th International Conference on Computer Safety, Reliability,
and Security (SAFECOMP), Delft, The Netherlands, 2015.

B. Gallina, L. Fabre. Benefits of Security-informed Safety-oriented Process Line Engineering. IEEE 34th
Digital Avionics Systems Conference (DASC-34), Prague, Czech Republic, September 13-17, ISBN 978-
1-4799-8939-3, 2015.

T. Amorim, H. Martin, Z. Ma, Ch. Schmittner, D. Schneider, G. Macher, B. Winkler, M. Krammer,
Ch. Kreiner. Systematic Pattern Approach for Safety and Security Co-engineering in the
Automotive Domain. In Proceedings of the 36™ International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), Lecture Notes in Computer Science, vol 10488. Springer,
Cham, Trento, Italy, 2017.

OoMgG, Structured Assurance Case Metamodel (SACM) version 2
http://www.omg.org/spec/SACM/2.0/Betal/, June 2016

The Hon. Lord Cullen (1990), The Public Inquiry into the Piper Alpha Disaster, Vols. 1 and 2 (Report to
Parliament by the Secretary of State for Energy by Command of Her Majesty, November).

http://www.arrowhead.eu

E. Denney, G. Pai and |. Habli. Dynamic Safety Cases for Through-Life Safety Assurance. IEEE/ACM
37th IEEE International Conference on Software Engineering (ICSE), Florence, pp. 587-590, doi:
10.1109/1CSE.2015.199, 2015.

@. Haugen and O. @gard. BVR - better variability results. Proceedings of the 8th International
Conference on System Analysis and Modelling: Models and Reusability (SAM), Valencia, Spain. In D.
Amyot, P. Fonseca i Casas, and G. Mussbacher, editors, System Analysis and Modelling: Models and
Reusability, volume 8769 of Lecture Notes in Computer Science, pages 1-15, Springer International
Publishing, 2014.

@. Haugen, “Common Variability Language (CVL),” Object Management Group, Tech. Rep. ad/2012-
08-05, August 2012.

VARIES D4.2- BVR - The language. https://bvr-tool.sintef.cloud/docs/VARIES D4.2 v01 PP FINAL.pdf
VARIES, http://www.varies.eu/, accessed: 2017-07-13.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, Carnegie-Mellon University Software Engineering
Institute, November 1990.

M. F. Johansen, O. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen. Generating better partial
covering arrays by modelling weights on sub-product lines. Proceedings of the 15th International
Conference on Model Driven Engineering Languages and Systems (MODELS), Innsbruck, Austria,
LNCS, vol 7590. Springer, pp. 269-284, September 30-October 5, 2012.

A. Vasilevskiy and @. Haugen. Resolution of interfering product fragments in software product line
engineering. In J. Dingel, W. Schulte, I. Ramos, S. Abrahdo, and E. Insfran, editors, Model-Driven
Engineering Languages and Systems, volume 8767 of Lecture Notes in Computer Science, pages 467—
483. Springer International Publishing, 2014.

Eclipse Process Framework Composer, Part 1: Key Concepts, by Peter Haumer, 2007.
https://eclipse.org/epf/general/EPFComposerOverviewPartl.pdf

Eclipse Process Framework Composer, Part 2: Authoring method content and processes, by Peter

H2020-JTI-ECSEL-2015 # 692474 Page 122 of 124

http://www.omg.org/spec/SACM/2.0/Beta1/
http://www.arrowhead.eu/
https://bvr-tool.sintef.cloud/docs/VARIES_D4.2_v01_PP_FINAL.pdf
http://www.varies.eu/
https://eclipse.org/epf/general/EPFComposerOverviewPart1.pdf

U/é AMASS Methodological guide for multiconcern assurance (b) D4.8V1.0

[70]

[71]

[72]

(73]

(74]

[75]

(76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

Haumer, 2007. http://www.eclipse.org/epf/general/EPFComposerOverviewPart2.pdf

International Organization for Standardization / International Electro-technical Commission,
“Analysis techniques for system reliability — Procedure for failure mode and effects analysis (FMEA)”,
IEC 61812, 2006.

ESSB-ST-E-008 - Secure Software Engineering Standard, 2016.

Z. Haider, B. Gallina and E. Zornoza “FLA2FT: Automatic generation of fault tree from ConcertoFLA
results” 3" International Conference on System Reliability and Safety (ICSRS), 2018.

Ewen Denney, Ganesh Pai and lbrahim Habli. “Dynamic Safety Cases for Through-life Safety
Assurance” In 37th International Conference on Software Engineering (ICSE. 2015)—New ldeas and
Emerging Results (NIER) 2015 May

OPENCOSS D5.6 Compositional Certification Framework: Methodological Guide (report), March 2015
Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta, Kristin Yvonne Rozier: Model
Checking at Scale: Automated Air Traffic Control Design Space Exploration. CAV (2) 2016: 3-22

leuan Jolly, Data protection in the United States: overview, in Data Protection Global Guide,
Thomson Reuters, 2017

European Parliament and Council, Regulation (EU) 2016/679 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance), in Official Journal
of the European Union, 2016

Commission de la Protection de la Vie Privée (CPVP), Recommandation n° 01/2018, 2018

Article 29 Data Protection Working Party (WP29), Guidelines on Data Protection Impact Assessment
(DPIA) and determining whether processing is “likely to result in a high risk” for the purposes of
Regulation 2016/679, 2017

Commission Nationale de I'Informatique et des Libertés (CNIL), Privacy Impact Assessment (PIA)
Knowledge Bases, 2018

National Institute of Standards and Technology (NIST), Special Publication 800-53 - Security and
Privacy Controls for Federal Information Systems and Organizations, 2013

Lin Liu, Eric Yu, John Mylopoulos, Security and Privacy Requirements Analysis within a Social Setting,
in Proceedings of the 11th IEEE International Requirements Engineering Conference, 2003

Mina Deng, Kim Wuyts, Riccardo Scandariato, Bart Preneel, Wouter Joosen, A privacy threat analysis
framework: supporting the elicitation and fulfiiment of privacy requirements, in Journal of
Requirements Engineering, 2010

Katia Hayati, Martin Abadi, Language-Based Enforcement of Privacy Policies, in Privacy Enhancing
Technologies, PET 2004, Lecture Notes in Computer Science, vol 3424, 2004

Gergd Barany, Julien Signoles, Hybrid Information Flow Analysis for Real-World C Code, in Tests and
Proofs, TAP 2017, Lecture Notes in Computer Science, vol 10375, 2017

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, Boris Yakobowski, Frama-C: A
software analysis perspective, in Journal of Formal Aspects of Computing, 2015

Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliatre, Claude Marché, Benjamin Monate, Yannick
Moy, Virgile Prevosto, ACSL: ANSI/ISO C Specification Language, 2010

The Concerto Project, http://www.concerto-project.org/

H2020-JTI-ECSEL-2015 # 692474 Page 123 of 124

http://www.eclipse.org/epf/general/EPFComposerOverviewPart2.pdf
http://www.concerto-project.org/

@ AMASS

Methodological guide for multiconcern assurance (b) D4.8 V1.0
Appendix A. Changes with respect to D4.7 (*)
New Sections:
Section Title
2.1.1.1. Contract-based trade-off analysis in parameterized architectures
3.1.1 Contract-based trade-off analysis in parameterized architectures
3.4 Standard-related dependability co-assessment via OpenCert
3.6 Privacy Analysis
4.4 CS1: Industrial and Automation Control Systems (IACS)
Sections whose number has changed:
Former New .
Section No. | Section No. Title
3.4 3.5 System Dependability Co-Analysis
Modified Sections:
Chapter/Section | Title Change
1 Introduction Minor changes to better explain the
context/motivation of the final version of this
deliverable.
2.1.1 Contract Based Multi-concern | Addition of 2.1.1.1
Assurance
2.3.3 FMVEA Extension
3.1 Contract-Based Multiconcern | Extension
Assurance
3.2 Dependability assurance case | Enhancement of the guidelines and
modelling restructuring
4.1 Case Study CS11 - Attitude and Orbit | Extension of the case study and application of
Control System multi-concern analysis.

H2020-JTI-ECSEL-2015 # 692474

Page 124 of 124

