
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474. This Joint
Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and from Spain, Czech
Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Design of the AMASS tools and methods for
multiconcern assurance (b)

D4.3

Work Package: WP4 Multi-Concern Assurance

Dissemination level: PU = Public

Status: Final

Date: 30 April 2018

Responsible partner: Thomas Gruber (AIT)

Contact information: Thomas.gruber@ait.ac.at

Document reference: AMASS_D4.3_WP4_AIT_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation

Thomas Gruber, Siddhartha Verma, Christoph
Schmittner, Sebastian Chlup

AIT Austrian Institute of Technology GmbH (AIT)

Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Alejandra Ruiz, Estibaliz Amparan, Garazi Juez Tecnalia Research & Innovation (TEC)

Helmut Martin, Robert Bramberger, Bernhard
Winkler

Virtual Vehicle Research Center (VIF)

Irfan Sljivo, Barbara Gallina, Zulqarnain Haider Maelardalens Hoegskola (MDH)

Stefano Puri Intecs (INT)

Marc Sango ALL4TEC (A4T)

Staffan Skogby, Detlef Scholle ALTEN Sweden (ALT)

Jan Mauersberger ANSYS medini Technologies AG (KMT)

Names Organisation

Adedjourna Morayo (Peer-review)
Commisariat a l’energie atomique et aux Energies
Alternatives (CEA)

Siddhartha Verma (Peer-review) AIT Austrian Institute of Technology GmbH (AIT)

Thomas Gruber (TC review) AIT Austrian Institute of Technology GmbH (AIT)

Barbara Gallina (TC review) Maelardalens Hoegskola (MDH)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 84

TABLE OF CONTENTS

Executive Summary .. 8

1. Introduction (*) ... 9
1.1 From Monoconcern to Multiconcern (*) ... 9
1.2 Scope and Objectives of this Deliverable (*) ... 9
1.3 Relation to other AMASS Deliverables (*) ... 10

2. Conceptual Level ... 11
2.1 System Dependability Co-Analysis / Assessment ... 11

2.1.1 Co-Analysis and Risk Assessment .. 12
2.1.2 Trade-off Analysis ... 21
2.1.3 Further development of SiSoPLE for enabling process-related co-assessment (*) 25
2.1.4 Co-assessment for Safety and Security Assurance (*) .. 32

2.2 Dependability Assurance Case Modelling ... 40
2.2.1 Introduction ... 40
2.2.2 Safety and Security Assurance Case (*) ... 40
2.2.3 Multiconcern Argumentation ... 44
2.2.4 Support for variability management at the argumentation level (*) 47

2.3 Multiconcern Contracts .. 47
2.3.1 Abstract functions in the contracts specification (*) .. 48
2.3.2 Contract-based trade-off analysis in parameterized architectures (*) 49
2.3.3 General extensions to contract based multi-concern assurance (*) 49
2.3.4 Contract-based trade-off analysis with the Analytical Network Process (*) 52

3. Design Level .. 53
3.1 Functional Architecture for AMASS Multiconcern Assurance .. 53

3.1.1 Overview .. 53
3.1.2 Dependability Assurance Modelling (*) ... 56
3.1.3 Contract-Based Multiconcern Assurance (*) ... 57
3.1.4 System Dependability Co-Analysis/Assessment (*) ... 58

3.2 AMASS Multiconcern Assurance Metamodel .. 62
3.2.1 Elaborations ... 62

4. Way Forward to the Implementation .. 65
4.1 Potential Tool support .. 65

4.1.1 OpenCert – supports “Dependability Assurance Modelling” ... 65
4.1.2 CHESS - supports “Contract-Based Multiconcern Assurance” .. 66
4.1.3 FMVEA - supports “System Dependability Co-Analysis/Assessment” 66
4.1.4 EPF-Composer - supports “System Dependability Co-analysis and assessment” 67
4.1.5 WEFACT - supports the assurance process workflow .. 68
4.1.6 Medini Analyze - supports the assurance process workflow (*) ... 69
4.1.7 AMASS Farkle - supports product assurance ... 70
4.1.8 Safety Architect – supports “System Dependability Co-Analysis/Assessment”....................... 72
4.1.9 AMT2.0 – supports “Contract-Based Multiconcern Assurance” ... 73
4.1.10 Extensions (*) ... 73
4.1.11 Implemented Multiconcern Assurance Related Requirements (*) ... 73

5. Conclusions (*) .. 76

Abreviations and Definitions (*) .. 77

References (*) .. 80

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 84

Appendix A: Changes since the Predecessor Version D4.2 (*) .. 84

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 84

List of Figures

Figure 1. Relationship between Dependability & Security and Attributes, Threats and Means (after
[14]) .. 11

Figure 2. Conceptual Overview of the SAHARA method ... 15
Figure 3. Main steps of FMEA... 17
Figure 4. Depiction of the relation of cause and effect model for failures and threats 17
Figure 5. Example for hierarchical network structure ... 22
Figure 6. Unweighted supermatrix of mutual effects between safety and security 23
Figure 7. Limit supermatrix of mutual effects between safety and security .. 24
Figure 8. Interaction between safety and security engineering... 29
Figure 9. Work Breakdown structure of process related to verification of system design 30
Figure 10. Process related to verification of system design in WEFACT ... 31
Figure 11. A testbed for fuzz testing of IEC 61850 .. 34
Figure 12. Process of Security breach [77] [78] .. 35
Figure 13. Error Model showing erroneous state transition due to security threat event and

vulnerability .. 36
Figure 14. WEFACT user interface .. 37
Figure 15. Sub processes in WEFACT and the share of those fulfilled.. 37
Figure 16. Example for an automated safety-, security- and performance-verification process................... 38
Figure 17. Concept for safety and security co-analysis by combined process inn WEFACT 39
Figure 18. FMVEA tool architecture. .. 39
Figure 19. An Assurance Case Fragment ... 41
Figure 20. Assurance Case Structure, argument modules decomposition for Cooperative driving

scenario .. 42
Figure 21. Multiconcern assurance case structure.. 43
Figure 22. GSN Argument Pattern for making multiconcern trade-offs ... 44
Figure 23. The dependency – impact relationship .. 45
Figure 24. The conflicting-impact relationship .. 46
Figure 25. The supporting-impact relationship ... 46
Figure 26. Assuring different concerns via multiconcern contracts, taken from [65] 48
Figure 27. Capturing interplay of concerns in argument contracts .. 50
Figure 28. Safety case contract argumentation pattern for capturing the conflicting relationships across

concern-specific modules .. 51
Figure 29. Safety case contract argument pattern for dependency relationship ... 52
Figure 30. The multiconcern assurance process ... 54
Figure 31. The three WP4 functionalities with explanations ... 55
Figure 32. Assurance Case Specification ... 56
Figure 33. Dependability Assurance Modelling block.. 57
Figure 34. Process-related Co-assessment ... 59
Figure 35. System Dependability co-analysis ... 60
Figure 36. The FMVEA architecture .. 61
Figure 37. Mockup of the FMVEA model editor including properties definition .. 61
Figure 38. The FMVEA results .. 62
Figure 39. Relation with other metamodels ... 63
Figure 40. Contract concern ... 64
Figure 41. Functional decomposition of the OpenCert platform ... 65
Figure 42. Basic concept of FMVEA .. 66
Figure 43. The EPF approach, adapted from [64]. ... 67
Figure 44. Screenshot WEFACT Version2 .. 68

file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/WP4/D4.3_in_progress/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-(b)_AMASS_draft_V1.0_clean.docx%23_Toc512887014

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 84

Figure 45. medini analyze overview ... 69
Figure 46. Cyber security analysis with medini analyze... 70
Figure 47. System Overview AMASS Farkle tool ... 72

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 84

List of Tables

Table 1. TARA Method mentioned in SAE J3061 .. 13
Table 2. Evaluation of TARA method by [25] ... 14
Table 3. Classification Examples of Knowledge 'K', Resources 'R', and Threat 'T' Value of Security

Threats .. 16
Table 4. CARE Attack Likelihood Parameter .. 19
Table 5. Likelihood categories ... 19
Table 6. WP4 requirements coverage ... 73

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 84

Executive Summary

This deliverable is the final result of Task 4.2 Conceptual approach for Multiconcern Assurance. As an
update of the intermediate deliverable D4.2 Design of the AMASS tools and methods for multiconcern
assurance (a) [2], it provides extensions to the multiconcern assurance features described there in order to
cope with the full set of requirements identified in D2.1 Business cases and high-level requirements [4].

This document presents the various considerations and a consistent approach to multiconcern assurance at
both the concept level and the design level. On the concept level, our multiconcern assurance approach
focuses on analysis and risk assessment for assurance, assurance case modelling, and the extension of
contract-based approaches for realising safety and security assurance at the same time. On the design
level, we focus on how to implement the concept in toolchains and models for seamless and efficient
assurance in cyber-physical systems, considering existing work. The implementation details are further
elaborated, taking into account existing tools of the AMASS partners.

In this deliverable edition, enhanced methods for multiconcern assurance are presented and the scope is
extended from the focus on safety and security in D4.2 towards a wider variety of dependability attributes,
in particular in the sections on methods and tools for trade off analysis. The relations to the activities and
results in other WPs are pointed out and the AMASS CACM metamodel parts relevant for multiconcern
assurance are explained. Finally, a table depicts the coverage of the WP4 related requirements by the
methods described here.

In the next step, the results presented in this deliverable will guide the implementation of the third
iteration of the AMASS prototype (Task 4.3 Implementation for Multi-Concern Assurance), and the resulting
implementation will be delivered as D4.6 Prototype for multiconcern assurance (b) [5] at the end of month
29.

Finally, Task 4.4 Methodological Guidance for Multi-Concern Assurance will build on the results identified
here and on the experience in the case studies in order to provide methodological guidance to the AMASS
end-users for the application of the multiconcern assurance approaches; this will be documented in D4.8
Methodological guide for multiconcern assurance (b) [7] in month 31.

This deliverable represents an update of the AMASS D4.2 [2] deliverable released at M15; the sections
modified with respect to D4.2 have been marked with (*), then the details about the differences and
modifications are provided in Appendix A.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 84

1. Introduction (*)

The AMASS project builds on concepts and tools developed in former projects, in particular in OPENCOSS
[51] and SafeCer [85]. With respect to including security, ideas and approaches from EMC2 [87], SESAMO
[86], MERgE [84] and CONCERTO [83] influence AMASS. More details on which concepts from previous
projects were re-used or extended in AMASS can be found in D4.1 Baseline and requirements for
multiconcern assurance [1].

1.1 From Monoconcern to Multiconcern (*)

In a broad sense, multiconcern assurance is taking a holistic approach to achieve and balance the assurance
goals set by different quality attributes such as safety, security, performance, and reliability.

In AMASS, multiconcern assurance is focused on facing five challenges, which, if overcome, will enable
multiconcern assurance:

• Dependability Assurance Modelling: Extending the OPENCOSS CCL metamodel and vocabulary to
include additional dependability related concerns besides safety, and also supporting mappings
between concerns (presented in Section 3.1.2).

• Contract-Based Multi-Concern Assurance: Using contracts to support compositional assurance and
trade-offs (presented in Section 3.1.3).

• System Dependability Co-Analysis / Co-Assessment: Addressing security issues, which may affect
safety, and interrelations between safety and security, considering architecture related issues
(presented in Section 3.1.4)

• Looking at the interplay between safety and security in terms of process requirements.

• Investigate security-informed safety-oriented process lines (SiSoPLEs).

For the dependability assurance modelling and, in a narrow sense, multiconcern assurance, the goal is to
specify a unified assurance case in which all various quality attributes such as safety and security and their
interactions and interplay are clearly specified, such that all presented claims, argumentation, and
decisions are connected and traceable.

In a wider sense, it also relates to analysis/assessment and compositional approaches. The safety of a
component may depend on a secure environment or a certain level of security. There are, thus, inter-
dependencies between different quality attributes in a reusable component and its environment. Such
concerns need to be addressed and solved. In order to identify the need for security and safety and to
support trade-off analysis, co-analysis and co-assessments need to be used.

1.2 Scope and Objectives of this Deliverable (*)

This deliverable presents the final design of the multiconcern assurance features: Dependability Assurance
Modelling, Contract-Based Multiconcern Assurance, and System Dependability Co-Analysis and Co-
Assessment. It builds on the state of the art with respect to multiconcern assurance and the applicable
standards presented in D4.1 [1], elaborating the way forward identified there and covering the respective
requirements identified in D2.1 Business cases and high-level requirements [4]. It must be noted that the
result of multiconcern assurance influences model instances which belong to other technical work
packages.

Relations to other WPs are pointed out and the AMASS CACM metamodel parts relevant for multiconcern
assurance are explained. This deliverable is the final edition of the Design of the AMASS tools and methods
for multiconcern assurance; it builds on D4.2 [2] and presents extensions to the multiconcern features
described there.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 84

1.3 Relation to other AMASS Deliverables (*)

This deliverable is related to other deliverables: deliverables within WP4 as well as deliverables within
other work packages.

Within WP4, this deliverable is related to the following deliverables:

It builds on the state of the art in the area of multiconcern assurance and the applicable standards
presented in D4.1 [1] and on D4.2 [2], which contains the first iteration of the multiconcern assurance
concepts and designs.

The output of the deliverable represents the basis for the iteration (c) of the Integrated AMASS Platform
with respect to multiconcern assurance, which will be delivered as D4.6 Prototype for multiconcern
assurance (c) [5] in August 2018.

Together with D4.1, and with the experience in the implementation gathered in Task 4.3, D4.3 also forms a
basis for the guidelines to be developed in Task 4.4, which will be delivered as an updated version D4.8 [7]
in October 2018.

(Remark: The deliverable D4.4 [8] for the iteration (a) of the Integrated AMASS Platform was submitted
earlier than D4.2, in m10, and contained only the basic building block Assurance Case editor. It was
influenced by early conceptual considerations on multiconcern assurance in Task T4.2, but neither D4.2 nor
D4.3 was a basis for this early implementation step).

There are moreover relations to deliverables of other technical work packages:

D4.3 receives the WP4-relevant high-level requirements described in D2.1 [2]. It contains the concepts and
designs for the implementation of the remaining requirements after some had been implemented in D4.4
and the major part in D4.5 (based on D4.2 concepts and designs).

The evidence as results of individual assurance processes represents the instantiation of the evidence
metamodel, which is part of WP5. The result of a trade-off analysis can be used as annotations of the
assurance case, which is within the scope of WP4, but they also represent the basis for multiconcern-aware
design decisions, which influence the architectural metamodel instantiation in WP3.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 84

2. Conceptual Level

In systems engineering, dependability is a measure of a system's availability, reliability, maintainability, and
other attributes such as safety and security. Figure 1 gives an overview about attributes usually associated
with dependability, typical threats to dependability, and means for increasing a system’s dependability. It
shall be noted that AMASS also deals with performance as an additional attribute, which is not included in
dependability.

Figure 1. Relationship between Dependability & Security and Attributes, Threats and Means (after [14])

Multiconcern assurance is based on the consideration of dependability attribute during the whole system
lifecycle. One of the challenges is that we cannot consider dependability attributes in isolation. Attributes
interact and depend on each other. Therefore, co-engineering is necessary for reaching a sufficient level of
dependability and balance between different dependability attributes. Co-engineering refers to the
interactions between system engineering and the engineering of safety, security and other attributes.

In this chapter, co-engineering is explored and designed. More specifically, system dependability co-
analysis and co-assessment are considered in Section 2.1, which provides subsections on co-analysis and
risk assessment, on trade-off analysis, on further development of SiSoPLE for enabling process-related co-
assessment, and, finally, on co-assessment for safety and security assurance. Then follows section 2.2
dependability assurance case modelling with, after an introduction, sections on the safety and security
assurance case and on multiconcern argumentation. Section 2.3 provides information on multiconcern
contracts.

2.1 System Dependability Co-Analysis / Assessment

Co-analysis and co-assessment are integral parts of multiconcern assurance.In this last iteration of the
“Design of the AMASS tools and methods for multiconcern assurance” document [3], we extend the
viewpoint of the predecessor version [2] to more quality attributes than merely safety and security.

In D4.1 [1] Section 4.2.2, we reviewed the state of the art concerning safety & security co-analysis, focusing
on model-based approaches. In D4.1 Section 4.2.4, we briefly reviewed safety & security co-assessment in
the context of safety & security co-engineering and assurance, focusing on the process of assessment
framework.

Within the AMASS project, we distinguish between co-analysis and co-assessment:

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 84

• Co-analysis and risk assessment refers to the methods, techniques, and activities to identify safety
hazards and security threats. For example, Hazard Analysis and Risk Assessment (HARA) and Threat
analysis and Risk Assessment (TARA) are established methods enabling co-analysis.

• Co-assessment refers to processes, methods, and techniques to evaluate whether a component of
a system fulfils its claims that safety and security risks are effectively addressed, such that one can
obtain confidence that a system will achieve its dependability objectives (see also section 2.2). We
distinguish two inter-related types of assessments:

o Process-related co-assessment for standard compliance, e.g. the assessment of compliance
to IEC 62443-4-1 [52] focuses on the secure development process (see also sections 2.1.3,

3.1.4, and 4.1.4, and D4.1 [1] for other domains).

o Product-related co-assessment for product-specific safety and security measures, e.g. the
assessment of compliance to IEC 62443-4-2 [52] focuses on the product-specific security
requirements.

In the AMASS project, we adapt and extend existing co-analysis and co-assessment approaches which
contribute to co- or multiconcern assurance. Note that safety & security co-engineering is currently under
active development in research, industry, and the standards. Several AMASS partners play an active role on
this topic. Some of the methods are mentioned in D4.1 [1]. In this deliverable, we focus on the methods
that we deem to be the most promising within the AMASS project.

2.1.1 Co-Analysis and Risk Assessment

Co-analysis covers a wide range of methods and techniques to identify safety hazards and security threats,
which are often the activities in the early stage of a product/system development lifecycle, e.g. in the
requirements engineering as well as the design phase. These analyses are also regarded as approaches to
risk assessment, because the goal of the analyses is often to identify safety and security risks. In the
following, this document focuses on methods for those domains which are applied in the AMASS use cases.

In a recent work [23], the authors evaluate several best practice engineering approaches to safety and
security, including the methods for systematic risk management and for system validation (risk
management, Security-aware Hazard Analysis and Risk Assessment (SAHARA), FMVEA, and Attack Tree
Analysis (ATA)) and for comprehensive dependability evidence provisioning (assurance case), especially in
the context of ISO 26262 process landscape. While in the context of automotive functional safety the
hazard analysis and risk assessment (HARA) method is standardised and mandated by the ISO 26262
standard, several candidates for a cybersecurity threat analysis and risk assessment (TARA) method exist.
Some of these methods are mentioned in the SAE J3061 cybersecurity guidebook but there are more of
such methods published.

SAE J3061 states on the collection of cybersecurity analysis techniques. “Appendix A - Description of
cybersecurity analysis techniques” is provided as a reference to further research and to facilitate design
and process improvements. Appendix A is not a comprehensive listing of “Cybersecurity analysis
techniques” [24]. An overview and review of available threat analysis methods and their automotive
applicability is given in [25]. In particular, this review also includes an analysis of the development phases in
which these methods can be sensibly applied. While only a few are suited as TARA for early concept stages,
some others have properties which are highly desirable at later development stages. Based on this analysis
we selected the sequel of methods described in detail in the following. Notable methods are:

• TARA methods listed in SAE J3061:

o E-Safety Vehicle Intrusion Protected Applications (EVITA) method [35]

o Threat, Vulnerabilities, and implementation Risks Analysis (TVRA) [36]

o Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) [34]

o HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS) model [37]

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 84

o Attack Tree Analysis (ATA) [30]

o Software Vulnerability Analysis [38]

• TARA methods beyond SAE J3061:

o Failure mode and Vulnerability Effect Analysis (FMVEA) - Failure mode and failure effect
model for safety and security cause-effect analysis [39]

o Security Aware Hazard Analysis and Risk Assessment (SAHARA) [40]

o SHIELD method giving guidance for security, privacy and dependability assessment of

embedded systems, developed in the European SHIELD project1

o Combined Harm Assessment of Safety and Security for Information Systems (CHASSIS) [41]

o Boolean Logic Driven Markov Processes (BDMP) [42]

o Threat Matrix [43]

o Binary Risk Analysis (BRA) [44]

o STAMP (Systems- Theoretic Accident Model and Processes) Based Process Analysis (STPA-
SEC) [45]

D4.1 [1] already outlined a set of safety and security analysis techniques. Some of those methods are
further explained in [24] and Table 1 which provides an overview of the TARA methods mentioned and not
mentioned in SAE J3061. Also in this case, the overview is taken from Macher et al. 2016 and gives an
overview of the different TARA methods mentioned in J3061 (Appendices A-C) [25].

Table 1. TARA Method mentioned in SAE J3061

 Method
Name

Applicable
Phase

Key facts

SA
E

J3
06

1
 r

ec
o

m
m

en
d

ed

EVITA
method

Concept
phase

Outcome of a research project; classification separates different
aspects of the consequences of security threats (operational, safety,
privacy, and financial).

Classification of severity is adopted and thus not conforming to the ISO
26262 standard; classification of safety-related and non-safety-related
threats differs and could thus lead to in-balances; accuracy of attack
potential measures and expression as probabilities is still an open issue.

TVRA --- Models the likelihood and impact of attacks; complex 10 steps
approach; developed for data - and telecommunication networks;
hardly applicable for cyber physical systems in vehicles.

OCTAVE --- This approach is best suited for enterprise information security risk
assessments; hardly applicable for cyber physical systems in vehicles;
brings together stakeholders thru series of workshops.

HEAVENS
model

System
phase

Based on Microsoft's STRIDE approach; determination of threat level
(TL), impact level (IL), and security level (SL) for classification of threats;
requires a high amount of work to analyse and determine the SL of
individual threats; implies lots of discussion potential for each individual
factor of each single threat.

1 https://www.shield-h2020.eu

https://www.shield-h2020.eu/

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 84

ATA System
phase

Analogous to fault tree analysis (FTA); identification of threats in a
hierarchical manner; adequate for exploiting combinations of threats
(attack patterns); requires more details of the system design to be more
accurate, requires as prerequisite input identified attack goals.

SW
vulnerability

analysis

SW phase Examines software code to prevent occurrence of potential
vulnerabilities; focuses on SW development level.

Table 2 gives an overview of the TARA methods not mentioned in SAE J3061. Also in this case, the overview
is borrowed from Macher et al. 2016 [25].

Table 2. Evaluation of TARA method by [25]

 Method
Name

Applicable
Phase

Key facts

n
o

t
in

 S
A

E
J3

0
6

1

FMVEA System
phase

Based on the FMEA; identify threat modes (via e.g. STRIDE model) for
each component/function of the system, identify system level effects
and risks, categorise risks via quantification of attacker effort, system
properties for attack likelihood and threat effects.

SAHARA Concept
phase

Threat analysis via STRIDE model; security and safety analysis possible
in a combined and independent manner; easy quantification scheme;
no adaptation of standardised quantification scheme for safety;
requires less analysis efforts and details of the analysed system.

SHIELD System
phase

Evaluates multiple system configurations; only evaluates system's
security, privacy and dependability level; implies a high discussion
potential for each classification, due to the lack of guidance on how to
estimate the security, privacy, and dependability values.

CHASSIS Concept
phase

Combined safety and security assessments; relies on modelling of
misuse cases and misuse sequence diagrams; implies additional
modelling expenses for the early development phase; structures the
harm information in the form of HAZOP tables and in combination with
the BDMP technique.

BDMP System
phase

Based on ATA and FTA; fault tree and attack tree analysis are combined
and extended with temporal connections.

Threat
Matrix

System
phase

Proposed by US Department of Transportation; used to consolidate
threat data; threat matrix is spreadsheet based; variation of the FMEA
approach; geared towards the establishment of a threat database; not
a preferable approach for concept analysis.

BRA Concept
phase

Threat impact determination via 10 yes/no questions; quick risk
conversations to enable discussion of a specific risk; not a full risk
management methodology; quantitative analysis not based on statistics
or monetary values; not a threat discovery or threat risk assessment
technique on its own.

STPA-SEC --- Control model based analysis, originally developed for safety and later
extended for security. A mixture of a system engineering approach and
analysis technique, compatibility with ISO 26262 lifecycle still in
discussion, modelling based on control loops which can mask security
relevant issues.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 84

2.1.1.1 SAHARA as co-analysis method

In the context of the AMASS project, the following methods represent a reference for co-analysis.

The SAHARA method [40] combines the automotive hazard analysis and risk assessment (HARA) with the
security domain STRIDE approach to quantify impacts of security threats and safety hazards on system
concepts at initial concept phase. STRIDE is a threat modelling approach and an acronym for Spoofing,
Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privileges. The key
concept of the STRIDE approach is the systematic analysis of system components for susceptibility to
threats and mitigation of all threats to enable argumentation of a certain security of the system.

Figure 2. Conceptual Overview of the SAHARA method

Figure 2 shows the conceptual overview of the SAHARA method and coupling of the safety and security
analysis methods involved. For the initial stage, ISO 26262 confirms HARA analysis (see the right side of
Figure 2) can be performed in a conventional manner. This means that the functions provided by the
system are analysed for their possible malfunction (hazards) and the worst possible situation in which this
malfunction may happen. The hazard and situation combinations (hazardous event) are analysed and
quantified according to the ISO 26262 standard regarding their severity (S) and controllability (C) by the
driver in the event of an occurrence. Further, the frequency and duration of exposure (E) in which this
hazardous situation may occur is quantified. These factors (S, C, and E) determine the automotive safety
integrity level (ASIL), the central metric for determination of development efforts required for the rest of
the development process.

The security-focused analysis of possible attack vectors of the system can be done independently by
specialists of the security domain (see the left side of Figure 2). For this analysis, the STRIDE threat model
approach is used to expose security design flaws of the system design by methodically reviewing the
system design. This is done in five steps: 1) the identification of security objectives; 2) a survey of the
application; 3) the decomposition of the application; 4) the identification of threats; and 5) the
identification of vulnerabilities. This threat modelling approach does not prove a given design secure but
helps to learn from mistakes and avoid repeating them. The two loosely coupled analysis steps (security

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 84

analysis and safety analysis) can either be performed by individual teams or in cooperation with safety and
security experts.

Table 3. Classification Examples of Knowledge 'K', Resources 'R', and Threat 'T' Value of Security Threats

Level Required Knowledge (K)
Classification

Required Resources (R)
Classification

Threat Criticality (T)
Classification

0 Unknown internals (black-box
approach)

No tools required No impact

1 Basic understanding of internals
(grey-box approach)

Standard tools Annoying, partial reduced service

2 Internals disclosed (white-box
approach)

Non-standard tools Damage of goods, privacy
intrusion

3 Advanced tools Life-threatening possible,
maximum security impact

After this identification of possible security threats and safety hazards, the SAHARA method combines the
outcomes of the security analysis with the outcomes of the safety analysis. The ASIL concept of the safety
analysis is thus adopted and applied to the security analysis outcomes. In order to quantify the security
level (SecL) of a threat, the required knowledge (K) and resources (R) to pose the threat, as well as the
impact of the successful attack (T), are estimated (cf. Table 3). The factor T also implies impacts on human
life (quality of life) as well as possible impacts on safety features. This information on security threats that
may lead to a violation of safety goals is passed on for further safety analysis (depicted as SAHARA part 2 in
Figure 2).

The required know-how - 'K' - is classified as: Level 0 - no prior knowledge required (the equivalent of
black-box approach). Level 1 - covers persons with technical skills and basic understanding of internals
(representing the equivalent of grey-box approaches). Level 2 – represents white-box approaches, persons
with focused interests and domain knowledge.

Required resources - 'R' - to threaten the system's security are classified as: Level 0 - threats not requiring
any tools at all or an everyday commodity, available even in unprepared situations. Level 1 - tools that can
be found in any average household. Level 2 - availability of these tools is more limited (such as special
workshops). Level 3 - are advanced tools whose accessibility is very limited and are not widespread.

The criticality of the successful attack - 'T' - is classified as: Level 0 – indicates a security irrelevant impact.
Level 1 - is limited to annoying, possibly reduced availability of services. Level 2 - implying damage of goods
or manipulation of data or services. Level 3 – represents the highest criticality (affecting car fleets) and also
implies impacts on human life (quality of life) as well as possible impacts on safety features.

In general, the SAHARA quantification scheme is less complex and requires fewer analysis efforts and
details of the analysed system than other available approaches. The quantification of required know-how
and tools can also be seen as equivalent to a likelihood estimation of an attack to be carried out.
Nevertheless, this quantification provides the possibility to determine limits on the resources spent in
preventing the system from being vulnerable to a specific threat (risk management for security threats) and
the quantification of the threat impact on safety goals (threat level 3) or its non-impact on them (all
others). Moreover, a combined review of the safety analysis by security and safety experts can also help to
improve the completeness of security analysis. Bringing together and combining the different mind-sets
and engineering approaches of safety engineers and security engineers, who are able to work
independently from one another and also mutually benefit from each other’s findings, is a fruitful approach
that is likely to achieve higher analysis maturity standards.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 84

2.1.1.2 FMVEA as co-analysis method

The FMVEA Method [27] was developed in the context of the ARROWHEAD project and extends the
established Failure Mode and Effect Analysis with security related threat modes.

Figure 3. Main steps of FMEA

Figure 3 gives an overview of the main steps for the standard FMEA. A system is modelled and divided into
parts and all the potential failure modes are identified for each part. Depending on the detail level, parts
can be process steps, functions, system architecture elements or software/hardware parts. All system
effects are identified for each potential failure mode and the severity is evaluated. For all failure modes
with a critical severity, potential failure causes and their likelihood are evaluated and the criticality is
calculated.

Figure 4. Depiction of the relation of cause and effect model for failures and threats

Figure 4 gives an overview of the cause and effect model for the Failure Modes, Vulnerabilities and Effects
Analysis. The failure part consists, as before, of failure cause, failure mode, and effect. Security related
parts are added here, including vulnerability, threat agent, threat mode and effect. Depending on the level
of analysis a vulnerability can be an architectural weakness or a known software vulnerability. Compared to
safety, security requires not only a weakness but also an element, which is exploiting this weakness. This
can be a software or a human attacker. Different threat modelling concepts can be used for the
identification of threat modes such as CIA (confidentiality, integrity, availability), summarizing security
properties an attack could exploit, or also STRIDE. Based on the severity of the effect, measured in terms of
financial damage, loss of confidentiality or privacy and operational or safety impact and the likelihood of
the failure or threat the criticality is measured. In the likelihood context, the system properties and attacker
properties should be investigated.

Identification
of system and

functions

Identification
of failure

modes

Determination
of effects of

failure modes

Identification
of possible

causes
Risk reduction

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 84

Existing databases and domain knowledge can be used for identifying potential failure modes. Since the
challenge of security for the automotive domain has emerged relatively recently, there is less knowledge
about the threat modes than is the case in some other fields and domains. The analysis is based on a
system model, depicting network architecture and data flows. In the practice, we currently use threat
modelling to identify and analyse threat modes for each element of the system model. The main steps
involved in a threat modelling process include:

1. Model a system by drawing the system architecture in data-flow diagram (DFD), adding system
details to the elements in the DFD, and draw the trust boundaries.

2. Identify threats stemming from data flows by using a threat identification methodology such as the
STRIDE or CIA method [28]. An assessment of the severity of the threats can be added.

3. Address each threat by redesigning the system, adding mitigation, or ignoring it if the risk is
acceptable.

4. Validate the threat modelling diagram against actual system and all identified threats are
addressed.

A DFD diagram consists of five types of elements: process, data store, data flow, external interactor, and
trust boundary. A process is a software component that takes input and performs actions and/or generates
output. In a DFD, a process can be modelled in different levels of granularity. If necessary, a high-level
process can be decomposed into more detailed low-level processes in a hierarchical manner. For example,
if we start to model all software components of a “Head Unit” at Level 0, we can further decompose it into
processes of “Communication Gateway”, “Linux OS”, “Applications”, and “HMI” at a lower level for Level 1.
Depending on the available system details and threat identification needs, a process can be further
decomposed into lower-level components such as specific Linux kernel modules.

Further to this, a data store in the DFD represents a firmware, file system, or memory. A data flow in the
DFD is a directed arrow, representing the flow of data between two elements. For example, a data flow can
be a protocol specific communication link such as CAN Bus, FlexRay, or HTTPs. An external interactor is
either a human user or a user agent that interacts with a process from the outside. Trust boundaries divide
the elements in the diagram into different trust zones, e.g. elements reside in the in-car systems and
external hosts communicated from untrusted open networks. The assumptions on the trust boundary
greatly influence the result of threat identification. A data flow originated outside the trust boundary is
assumed to be untrustworthy by default such that additional verification or security controls should be
applied.

When identifying threats, different methodologies can be applied. STRIDE is a popular methodology due to
its easy-for-developer origin and extensive documentation of applications. However, depending on the
granularity of the system information available and the timing of the threat modelling in the development
lifecycle, alternative methodologies can also be used for optimal cost-benefit results. For example, the
enumeration of potential attacks on each of the elements in a brainstorming session by domain experts will
already improve the security posture of the design at the concept phase. Mitigations are technical or
organizational countermeasures corresponding to the identified threats. The linking of mitigations to the
threats ensures that all identified threats will be considered and addressed, and puts mitigations into
perspective with the overall security architecture. Threat modelling is essentially a theoretical model of
perceived threats to a system. Validating the theoretical model against the actual system will ensure the
correctness of the results from the threat modelling. Validating that all identified threats are addressed
provides additional layer of quality control on the security activities in the development process.
Depending on the level of details for the failure modes either data from past events or generic failure
modes can be used.

For the rating of severity, the FMVEA can either determine the severity directly or use information from
previously conducted analysis such as e.g. SAHARA. Since FMVEA requires at least a basic system
architecture more information for the rating of likelihood are available, like more detailed potential attack
surfaces and weaknesses.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 84

Table 4. CARE Attack Likelihood Parameter

Parameter Values

Capabilities Amateur (3) Mechanic, Repair shop
(2)

Hacker, Automotive
expert (1)

Expert team from
multiple domains
(0)

Availability
of
Information

Information
publicly available
(3)

Information available
for maintenance of for
customer / operator (2)

Information available
for production, OEM,
system integrator (1)

Information
available in
company of ECU
supplier (0)

Reachability Always accessible
via untrusted
networks (3)

Accessible via private
networks or part time
accessible via untrusted
networks(2)

Part time accessible
via private networks
or easily accessible
via physical (1)

Only accessible via
physical (0)

Required
Equipment

Publically
available
standard IT

devices / SW2 (3)

Publically available
specialised IT devices /

SW3 (2)

Tailor-made /
proprietary IT devices

/ SW4 (1)

Multiple Tailor-
made /
proprietary IT
devices / SW (0)

Table 4 shows a likelihood rating system, which differs between the four factors:

• necessary capabilities of the attacker

• availability of information about the attacked systems

• reachability of the attacked systems

• required equipment for the easiest identified attack.

Ratings for all categories are added up and assigned to one of five Likelihood categories (Table 5).

Table 5. Likelihood categories

Range 0-2 3-5 6-8 9-11 >11

Category Improbable Remote Occasional Probable Frequent

Values 0 1 2 3 4 5 6 7 8 9 10 11 >11

This was done to be consistent with the five likelihood categories presented in IEC 60812, Analysis
techniques for system reliability – Procedure for failure mode and effects analysis (FMEA). The result is a
Likelihood Rating from Improbable to Frequent.

2.1.1.3 ATA used in co-analysis

The Fault Tree Analysis (FTA) is widely known as a state of the art methodology to analyse systems and
subsystems in the context of the functional safety of systems. It is a deductive failure analysis, meaning that
a known failure mode or undesired state is decomposed into a quantity of lower level events. By doing so, a
tree of events and their logical combinations is constructed, giving in-depth information about the
occurrence of the investigated top-level failure mode.

2 Readily available equipment, as example simple OBD diagnostics devices, common IT devices such as notebooks.
3 Equipment that is obtainable with little effort, as for example computing power from a cloud provider, in-vehicle

communication devices (e.g., CAN cards), or costly workshop diagnosis devices.
4 Equipment that is not readily available, because it is either proprietary or custom made.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 84

The fault tree analysis is a quantitative analysis, as each event or logical gate may be assigned a statistical
probability. Subsystem failures occur at a failure rate λ and the logical combination with other subsystem
failures leads to a quantified occurrence of the top level failure mode. This further leads to a better
understanding of the system under investigation, especially when this system is integrated into a larger
system-of-systems or is part of a distributed cyber-physical system. In the automotive domain, where
complex multi-level integrator-supplier relationships exist, the FTA is requested by many standards
(ISO 26262, IEC 61508) and is therefore state-of-the-art.

As tackled in D4.1 [1] Section 4.2.2.3, the concept of the FTA in the field of functional safety is also
applicable to the field of security. This allows capturing malicious risks on an extended fault tree. In this
case, the top level event expresses the occurrence of a security related incident of the system under
investigation. At the lower levels potential attacks are logically combined aggregating information about
the top level event.

Since the late 1990s a methodology evolved which uses structured data to identify threats to computer
systems. While the so called attack tree analysis (ATA) was first applied within the domain of computer
networks [30], it constantly evolved and was applied to other system categories, e.g. Supervisory Control
and Data Acquisition (SCADA) systems. Conducting an ATA provides several advantages, compared to
different methods. The ATA helps to understand what potential attack goals are, who the attackers are,
what attacks are most likely to occur, which security assumptions apply to a given system, and finally,
which investments regarding countermeasures are considered most effective.

Attackers may have different motivations, and opportunity crimes typically require less effort than well-
planned operations. The kind of access to the system available to the attacker also plays a large role.
Different unique skills may also be required by an attacker. The risk aversion of the attacker may heavily
influence the attack execution. Acceptance of certain risks (e.g. publicity, jail time, death) leads to totally
different attacks. Finally, a lack of all of these points may be compensated through the availability of
appropriate funding. Attack trees help to describe the security of systems under investigation by building
kind of knowledge databases. They are also a way to capture expertise, and make this knowledge available
for future re-use, speeding up decisions and increasing their transparency.

Attack trees are basically data trees, where the root node represents an attack goal. An attack goal
represents the violation of a security property, such as confidentiality or authenticity. The subordinate leaf-
nodes represent attacks, targeting their linked attack goal. Multiple attack trees aiming at different attack
goals may exist in parallel for complex systems. In this case, common attacks, which are relevant to
multiple attack goals, are of special interest. When developing an attack tree, logical expressions are used
to relate different applicable attacks to each other. A logical OR gate represents alternatives for attacking a
system, whereas an AND gate determines attacks which are only successful in combination with each
other.

Each leaf node of an attack tree may be assigned Boolean properties, e.g. to indicate the feasibility of an
attack. The options in this case are “possible” and “impossible”. Depending on the tree data structure,
known system properties, or implemented security measures, certain tree branches may become irrelevant
during analysis, as these properties are propagated up the tree. In contrast to Boolean properties,
continuous node values may be assigned to leaf nodes. Typical examples are cost, time, or resource
estimations, as these help to quantify the probability of occurrence of attack scenarios.

Attack trees provide valuable information to safety- and security-engineers. The consideration of Boolean
properties and continuous node values within a single analysis allows complex tree evaluations, e.g. to
“determine the best possible attack which costs €1000 or less”. To determine if and which dedicated
countermeasures against certain threats are taken, thresholds and guidelines are necessary to evaluate the
selected metrics. From the automotive integrator’s perspective, assumptions are also subject to inclusion
within an attack tree. A comprehensive list of assumptions, resulting from e.g. requirements, may influence
security decisions based on attack trees.

An attack tree is built in three steps:

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 84

1. Identify the attack goals.

2. Identify attacks against each goal, repeat as necessary.

3. Re-use patterns of attacks for re-usable components.

If attack trees for a given system have reached a mature state, impact analyses give information on how a
system modification affects the selected metrics. The value of an attack goal thus needs to be calculated as
described. Following on from this first step, changes are applied to the system and new leaf nodes or even
a new attack must be introduced. The tree is subject to upward modification as necessary. Finally, the new
attack goal values are calculated and compared to the previous ones. This approach may also be used to
compare and rank different attacks to the system under investigation.

2.1.2 Trade-off Analysis

Trade-off analysis deals with the attempt to satisfy requirements with respect to different competing
quality attributes with the goal of finding a balanced set of mitigation measures for the design resulting in a
“multiconcern-aware” architecture.

Several publications of Despotou et al. ([57], [58] and [59]) draft approaches called FANDA and TOM for
assessing design alternatives and facilitating trade-offs in critical systems; they were discussed in D4.1 [1].
While FANDA and TOM aim at facilitating the dependability (or assurance) case, the approach presented
here focuses on satisfying non-functional system requirements with respect to different quality attributes
by modelling both security-related attacks and safety-related failures in a common scheme in order to find
an optimised architecture and design.

The basic idea for Trade-off-Analysis presented in this subsection is to use Analytical Network Process (ANP)
[66] to analyse the impact of failures and cyber-attacks on overall safety and security of the given system,
and use this information as basis for system modification. ANP basically helps in integrating and analysing
information obtained from several sources.

As for system architecture, we propose an application of the ANP which results in something similar to
FMEA, where we divide the system into components and for each component we analyse failure and threat
modes. Next, we need to analyse how these components interact at subsystem level i.e. derive the sub
system failure / attack rate and how these failures / attacks affect the system safety and security. A
hierarchical structure of the system (with networks because of cross domain or intra domain dependability)
can be obtained.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 84

Figure 5. Example for hierarchical network structure

The above Figure 5 is a simple example (just for a rough idea) of a safety-security hierarchical network
structure for analysis. For understanding, in safety domain (right side of Figure 5), “failure cause 1” causes
failure of “component 1” with a rate λ1, failure of Subsystem 2 is a disjunction of failure1, failure2 and
failure3 (if any of these failures occurs at component level, subsystem 2 will fail). Subsystem 1 is
compromised by sequential conjunction, at first step, component 1 fails, which makes it possible for
attacker who already exploited vulnerability 2 to attack subsystem 1 with rate ʎ6 to get access and control.

Based on the failure rate/attack rate and effect of these subsystem failures/compromises on system safety,
their criticality is evaluated. All this information is provided in a matrix form which is called SUPERMATRIX,
see Figure 6. This Supermatrix includes all the information from several sources such as the impacts of
component failure on subsystem, of subsystem failure on system safety, of any attack mode on system, or
of any attack mode on subsystem failure and vice versa for security.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 84

Figure 6. Unweighted supermatrix of mutual effects between safety and security

I. Red circle 2 entries show what is the impact of subsystem compromise / failure on overall safety.

To calculate this part we suggest using Logical Markov Continuous Time Models as explained later.
Impact values are based on severity and rate of failure/ compromise of subsystem. The overall rate
is obtained by combining failure attack rates appropriately according to logical operator present.

II. Green circle 1 entries show the attack rate with which the component vulnerabilities are exploited;
this finally leads to compromising the subsystems, which has failure effect. Red circle 1 entries
show how component failures interact to cause subsystem failure. These entries are based on
relative comparison of failure/attack rates of components w.r.t. to subsystem.

The ANP approach is based on steady state concept, which means after some powers, raised to the matrix
it will become constant, and the matrix obtained is called LIMIT SUPERMATRIX as shown below in Figure 7.
From this matrix, we know the impact of failure causes and attacks on the overall safety and security.

However, to take into account multistage, multiple failure causes / attacks, and their interaction at
different levels, we can use logical operators 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 (∩), 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 (∪),
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (↔). Combining these operators analytically is however a great challenge
mathematically. Continuous Time Markov Models (CTMM) however, provide a great advantage analytically
in combining these operators for the analysis, and are being used in both safety and security domain. To
analyse RAMS and Security, one approach can be to combine failure/maintenance tree with attack-defence
tree using Logic driven CTMM. A state based transition model can be used to combine RAMS and security
aspects. Such as if we consider ETRMS level 3 railway system, the GSM-R communication system for
communication between RBC’s (trackside system) and trains, consists of many units such as BTS (Base
Transceiver Station), RIU (Radio Interface Units), Euro Radio, GPRS infrastructure, Base Controller Station
etc., failure of one or more of these units can cause failure of GSM-R communication system failure, which
has effect on safety and availability of the railway system.

Similarly, cyber-attacks such as malware, access to communication network, unauthorised interception,
cryptanalysis, and man-in-the-middle attack can cause a compromise on integrity of communicated
messages or service denial which has effect on safety and availability. Combining these failures and attacks
can be done using logical operators and continuous time Markov models which will help us analyse RAMS
impact on the railway system due to compromise on GSM-R communication system caused due to
propagation of failures/attacks/ their combination. Similarly, the impact on security of the system can be

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 84

analysed. This information obtained from CTMM analysis can be adequately provided in the ANP’s
Supermatrix for extending ANP analysis to other attributes than only safety and security. In context with
the Swedish Railway Signalling System, Morant et al. [60] apply Continuous Time Markov Models for failure
and availability analysis using combined failure/maintenance trees. Similarly, Jhawar et al. [61] also apply
Continuous Time Markov Models using logical operators for security analysis.

Figure 7. Limit supermatrix of mutual effects between safety and security

Red circle entries show the impact of corresponding component failures (failure cause) on safety and
security. Blue circle entries show the impact of corresponding component (vulnerability) exploit on safety
and security.

One of the key aspect on using Logical Markov Models for integrating security concerns as above is the use
attack rates. Attack rates, similar to failure rates provide a basis for combining cross domain multistage
attacks/failures rate and impact (severity + rate of occurrence). However, in the current state of art for
considering security concerns for safety as used in FMVEA, the likelihood of successful attack is based on
semi-quantitative explicit analysis of susceptibility and threat property of system. The attack rate cannot be
determined using empirical data and statistics as such due to constantly changing threat and defence
scenario. Therefore, we need a comprehensive approach for calibrating empirical data with semi-
qualitative analysis approach to arrive at an appropriate attack rate ʎ.

In addition to current parameters i.e. susceptibility and threat property, we may need to consider some
other factors (with a scale as we have for susceptibility and threat property) which helps in taking into
account the dynamics of threat and remediation technique, these factors may possibly include factors as
mentioned in “Temporal Metrics” of Common Vulnerability Scoring System (CVSS). The three factors are
Exploitability, Remediation Level and Report Confidence. Exploitability factor measures the current state of
exploit techniques or code availability for exploiting a vulnerability. Current states of exploit in ascending
order of their values possibly be Unproven (No exploit code, only theoretical), Proof-of-Concept, Functional
(code available, works in most situations), and High. Similarly, Remediation Levels (RL) of vulnerability in

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 84

ascending order of their values can be Official Fix (when official patch is available), Temporary fix, Work
around, and Unavailable. Report confidence is about the official status of acknowledgement of
vulnerability. We should also include the impact of attack on several attributes, such as if the impact is
safety critical and catastrophic then we should consider a higher attack rate and also patching rate should
be less because a SIL 4 requirement needs more time for assurance of efficiency of patch, to be on safer
side.

2.1.3 Further development of SiSoPLE for enabling process-related co-assessment

(*)

This subsection first recalls basic information on SiSoPLE (Security-informed Safety-oriented Process Line
Engineering), which is the extension of SoPLE (Safety-oriented Process Line Engineering), developed in the
framework of the SafeCer project. The recalled information is mainly borrowed from [15]. Then, this
subsection recalls a couple of normative spaces, where the need for SiSoPLE is evident and emerging.

Finally, this subsection sets the conceptual underpinning for a more in-depth development of SiSoPLE.

2.1.3.1 SiSoPLE and SiS-related terminological framework

SiSoPLE was initially introduced by Gallina et al. 2015 [15]. SiSoPLE builds on top of the dependability-
related terminological framework and its expansion.

More specifically, as recalled by Gallina et al. 2015 [15], Aviezienis et al. 2004 [16] introduced a
terminological framework aimed at characterizing dependability in terms of its attributes, threats (faults,
errors, and failures) and means. Dependability is usually indicated as an umbrella term, which embraces
various aspects (attributes) related to trustworthiness. Safety and security are two dependability attributes.

Safety is defined as absence of catastrophic consequences on the user(s) and the environment. Security is
defined as composite attribute constituted of availability, integrity, and confidentiality. Availability is
defined as readiness for correct service. Integrity is defined as absence of improper system alterations.
Finally, confidentiality is defined as absence of unauthorised disclosure of information.

Security-informed safety is an expression that has been recently introduced [17] to indicate an old truth:
“For a system to be safe, it also has to be secure”. To guarantee an agreed level of safety/security, besides
knowing what can go wrong, a risk assessment is needed.

Despite the existence of the dependability terminological frameworks and despite the awareness related to
the above-stated truth, the security and safety communities have progressed by following different
development paths. For instance, they define risk in a slightly different way. The safety community defines
risk as the evaluation of the effect of a failure condition. This assessment takes into consideration the
probability and severity and thus enables the judgment with respect to acceptability.

The security community defines risk [18] as threat x vulnerability x consequence, where consequence takes
into consideration the attacker capability, the asset (i.e., aircraft if the risk is assessed at aircraft level)
exposure and thus enables the judgment with respect to acceptability.

Further to terminological differences, process differences exist between the security and the safety
domains. However, there are strong reasons to align the safety and the security processes. Four main
reasons were identified to motivate the introduction of SiSoPLE: (1) security assessment should be mostly
focused on safety-critical and safety-related functions. If security assessment is performed without the
knowledge of failure conditions, it may be performed inadequately and potentially not completely.
Therefore, safety assessment should feed inputs to the security risk assessment process to highlight
functions of importance to the security analysis; (2) safety decisions regarding requirements and
architecture should ideally not interfere with similar security decisions. In the worst case, safety measures
could conflict with security measures or one domain could limit technical solutions for the other domain.
Architecture or equipment decision rather than being taken unilaterally should be taken in a collaborative

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 84

manner between safety and security; (3) once security threats are identified, they may need to be fed back
into the safety process to show the relationship between threat conditions and failure conditions; and (4)
finally, a common picture of risk assessment encompassing security and safety will likely be preferred by
certification authorities. Certification authorities may accept separate system assessments for safety and
security. However, the certification authorities will expect to see a global understanding of these risks and
their influence on system design.

SiSoPLE is a process lines engineering method that, similarly to SoPLE, is constituted of a scoping phase, a
domain engineering phase, and finally a process engineering phase.

During the domain engineering phase, commonalities and variabilities are identified. To do that, for each
standard, the following actions are taken:

• identification of certification-relevant process elements (e.g., activities and tasks)
• identification of the order in which activities and tasks should be performed
• identification of the way in which tasks are grouped to form activities
• identification of the way in which activities are grouped to form phases

Then, activities are compared with activities, tasks with tasks, etc. We also compare the order of execution.
To ease this comparison, several aspects such as: irrelevant terminological differences; irrelevant ordering
differences; and irrelevant grouping differences have to be overcome. More specifically, to overcome
irrelevant terminological differences, the dependability-related terminological framework constitutes the
starting point.

Overcoming irrelevant terminological differences or identifying significant points of variations is crucial
since it permits (process) engineers to reduce the complexity of the systems to be engineered as well as the
complexity of the certification process.

Once the commonalities and variabilities are known, a SiSoPLE model should be provided. To engineer
single processes, aimed at satisfying a single certification body, process elements are expected to be
selected and composed: all the commonalities are expected to be selected, jointly with the required
variants, selected at corresponding variation points.

A security informed safety process line is expected to enable the alignment of security and safety
standards. As discussed in the background, there are strong reasons to enable such alignment since, if the
alignment is not performed, the resulting safety assessment conclusions may be incomplete, the technical
solution might be less than ideal and more engineering effort might be required to harmonise both security
requirements and architecture with the safety requirements late in the design phase.

While there is also potential for re-use between the security and the safety processes, these aspects mostly
highlight that without some level of synergy between the security and the safety processes, an organization
may not produce a safe system or encounter resource and/or technical challenges.

Technical aspects related to in-depth SiSoPLE modelling and single SiSoProcess engineering are given in
AMASS D6.2 [12]. Some initial results were published in [21]. Additional work regarding compliance
checking in the context of co-assessment is under development. The direction is the one currently
pioneered by Castellanos et al. 2017 [47] consisting of combining SiSoPLE with defeasible logics, and an
approach for compliance by design specifically created for business processes.

Moreover, continuation of SafeCer work on generation of process-based argument fragments is also in
focus. MDSafeCer [49][48] and THRUST-related [50] solutions are being adopted and extended to argue
about compliance in the context of safety and security standards’ interplay.

2.1.3.2 Normative spaces ready for SiSoPLE (*)

In this subsection, examples of normative spaces are given. In particular, the attention is focused on those
domains (avionics and automotive) where multiconcern normative spaces seem to be defined and
awareness regarding the need for co-assessment is spreading.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 84

Avionics: RTCA DO-326A/ED-202A

RTCA DO-326A/ED-202A [19] is a joint product of two industry committees: the EUROCAE Working Group
WG-72, titled “Aeronautical Systems Security” and the RTCA Special Committee SC216, also titled
“Aeronautical Systems Security”. DO-326A is a document that provides guidance to handle the threat of
intentional unauthorised electronic interaction to aircraft safety. More specifically, it defines a set of
partially ordered activities that need to be performed in support of the airworthiness process to handle
such threat. This set of partially ordered activities is known as Airworthiness Security Process. This process
is constituted of a set of activities: Plan for Security Aspects of Certification (PSecAC), Security Scope
Definition, Preliminary Aircraft Security Risk Assessment, Security Risk Assessment, Security Development
related activities, Security effectiveness assurance, and Communication of evidence (via PSecAC Summary).
These activities are in turn composed of various tasks.

In this section, we focus on a single activity, called Preliminary Aircraft Security Risk Assessment (PASRA),
which belongs to the risk assessment set of activities. PASRA is aimed at identifying threat conditions and
threat scenarios and assessing all security risks at aircraft level. PASRA takes as input the architecture under
consideration, failure conditions and severity (which are established during the execution of the system
development process described in ARP4761) and the information related to the security environment and
perimeter, defined during the Security Scope Definition. Based on the input received, the following set of
tasks is performed within the PASRA task: Threat Condition Identification and Evaluation, Threat Scenario
Identification, Security Measure Characterization, and Level of Threat Evaluation. The final outcome of
PASRA is the Preliminary Security Effectiveness Objectives, based on identified & evaluated threat
conditions. DO-326A describes what security-related activities need to be performed but does not provide
much guidance about how to perform these activities. DO-326A is expected to be used in conjunction with
its companion document DO-356, which provides guidance and methods for accomplishing the activities
identified in DO-326A in the areas of Security Risk Assessment and Effectiveness Assurance.

Avionics: ARP4761 Including its Expected Evolution

ARP4761 [20] Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne
Systems and Equipment is an Aerospace Recommended Practice from SAE International. ARP4761 is a
document that provides guidance to perform safety assessment. More specifically, defines a set of partially
ordered activities that need to be performed in support of the airworthiness process to handle hazardous
events (system and equipment failure or malfunction that may lead to hazard). This set of partially ordered
tasks is known as Airworthiness Safety Assessment Process. This process, as newly stated in ARP4754A, is
constituted of: Functional Hazard Assessment (FHA), performed at aircraft and system level, Preliminary
Aircraft Safety Assessment (PASA), Preliminary System Safety Assessment (PSSA), System Safety
Assessment (SSA) and, Aircraft Safety Assessment (ASA). Let us focus on Aircraft-level FHA. Aircraft-level
FHA is aimed at identifying failure conditions and assessing all safety risks at aircraft level. Aircraft-level FHA
takes in input the list of top-level functions plus the initial design decisions (architecture), the aircraft
objectives and requirements. Based on the input received, the following set of steps is performed within
the Aircraft-level FHA task: identification of all functions and corresponding failure conditions,
determination of effects of the failure conditions, and classification of the determined effects. The final
outcome of Aircraft-level FHA is the safety objectives and the derived safety requirements, based on
identified & evaluated failure conditions.

Avionics: RTCA DO-326A/ED-202A and ARP4761 comparison

The Preliminary Aircraft Security Risk Assessment (PASRA) and the Aircraft-level Functional Hazard
Assessment (AFHA), which are respectively defined in the above standards are further considered. By
comparing PASRA and AFHA, commonalities and variabilities can be identified. PASRA and AFHA are both
characterised by similar steps. PASRA and AFHA are both expected to produce in output a work product
indicating the identified and evaluated conditions; such output can be seen as a partial commonality.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 84

Commonality identification is not only useful for the purpose of reuse of cross-concern process
information. It is also useful to enable in-depth co-assessment. As it was discussed by Gallina et al. [15],
commonality identification and more in general SiSoPLE modelling would increase effectiveness since
conflicts between safety and security will be dealt with early in the lifecycle and the risk of re-work later in
the development cycle is reduced. SiSoPLE enables the alignment of multiple standards within a single
model and thus it offers a means for the introduction of synergies between safety and security experts,
avoiding potential conflicts.

Automotive: ISO 26262

ISO 26262 [62] regulates all phases of the entire lifecycle of the product (item), starting from the

management and requirements specification phases up to the production release. The standard

recommends the usage of a V-model at item level as well as at element (software and hardware) level. ISO

26262 consists of 9 normative parts, each of which is structured into clauses. All the clauses state the

objectives, inputs for the clause, recommendations and requirements to be fulfilled and finally the work

products that are to be generated. Notes are also included. Notes are not normative and are expected to

help the applicant in understanding and interpreting the requirements. Additionally, obligations on the

corresponding methods are also imposed based on the assigned ASIL (Automotive Safety Integrity Level).

Within this deliverable, the attention is limited to clause 8 of Part 6, which is related to the left-hand side of

the software V-model, more specifically to Software Unit Design and Implementation. The first objective of

this clause (Software Unit Design and Implementation) is to specify the software units in accordance with

the software architectural design and the associated software safety requirements. A single activity (A1)

can be identified for this purpose: A1-Specify the software units. The outcome for this activity is the work

product Software unit design specification, which is the result of the application of the following

requirements:

• The requirements of this clause shall be complied with if the software unit is safety-related
("Safety- related" means that the unit implements safety requirements).

• Software units are designed by using a notation that depends on the ASIL and the recommendation
level.

• The specification of the software units shall describe the functional behaviour and the internal
design to the level of detail necessary for their implementation.

• Design principles for software unit design shall be applied depending on the ASIL and the
recommendation levels to reach properties like consistency of the interfaces, correct order of
execution of subprograms and functions, etc.

Automotive: SAE J3061

SAE J3061 [24] is a recently published Cybersecurity Guidebook, that provides a process framework for a
security lifecycle for cyber- physical vehicle systems. SAE J3061 methods and procedures are very similar to
the ones described in ISO 26262. This similarity allows the process to be applied in three different ways: a)
separately from a system safety engineering process with integrated communication points, b) the two
processes can be tightly integrated, or c) develop shared process and steps that are shared with safety, and
then add the unique Cybersecurity process and steps. Options b) and c) have in common that they allow for
cross-concern reuse. This reuse is specifically mentioned in part 8 Process Implementation of SAE J3061: "if
a Cybersecurity process is tailored from an organization existing safety process and the processes are
analogous to each other (share a common framework), then the Cybersecurity process can be developed
by leveraging work that has already been done in the safety process development". However, in system
safety the focus is on safety-critical systems, whereas in system Cybersecurity, both safety and non-safety-
critical systems are considered, since a Cybersecurity-critical system is a system which may lead to financial,
operational, privacy or safety losses.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 84

Within this deliverable, also in the case of SAE J3061, the attention is limited to a small portion related to
clause 8, Part 6 of ISO 26262.

Section 8.6.5 of SAE J3061 describes the Software Unit Design and Implementation phase in which one of
the activities is the Design of the software units. The result of this activity is the Software unit design and it
is related to two guiding principles on Cybersecurity for Cyber-physical systems. These principles are:

• Design the feature with Cybersecurity in mind, starting in the concept phase of the development
lifecycle. Engineers should consider Cybersecurity when defining the requirements that are to be
met for the system and features.

• Have status reviews to assess whether design work is on track to meet the Cybersecurity
requirements.

Automotive: Interplay and comparison between ISO 26262 and SAE J3061

By comparing ISO 26262, clause 8 of Part 6 and Section 8.6.5 of SAE J3061, commonalities and variabilities
can be identified. Thus, similar observation as for the avionics domain can be formulated.

Moreover, it should be also observed that ISO 26262 is used to create a safety case where developers show
that a system achieves a reasonable level of functional safety and is free of unreasonable risk. Functional
safety concerns failures in electrical/electronic (E/E) components, which may lead to a hazard.
Identification of hazards is performed with methods like hazard analysis and risk assessment and fault tree
analysis. The ISO 26262-2011 concerning automotive functional safety does not mention any cybersecurity
relation. This means that safety processes based on the first edition of the ISO standard did not cover any
security aspects.

Figure 8. Interaction between safety and security engineering

However, the trend is towards implementing highly interconnected system functions in software, the
systems are not isolated and they become cyber-physical. That implies security has to be part of the centre
of interest. To overcome security issues, SAE J3061 is available to provide guidance for the development of
cyber-physical vehicle systems. Its structure is analogous to the process framework from ISO 26262 but SAE
J3061 introduces equivalent cybersecurity activities.

The existing safety-related processes have to be expanded with methods like threat analysis and risk
assessment and attack tree analysis. The overall management of functional safety has to be extended with
the management of cybersecurity.

An important aspect is the identification of the relationship between cybersecurity and safety. In some
cases, cybersecurity influences only non-safety areas like privacy or financial impact. Our intention is to
identify all possible ways how functional safety may be violated in the different development lifecycle
phases. The concept phase intends to perform a risk analysis. In a combined process cybersecurity and
safety risks will be identified jointly. In this context we have to consider that we have still risks which are
only related to safety issues (e.g. hardware failure) and risks which are only related to cybersecurity (e.g.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 84

attackers want to capture personal data). Cybersecurity risks without safety relation will be possibly
identified but they are out of scope from our perspective.

Based on analogies between safety and cybersecurity it is useful to define processes, which are integrating
both topics. An integrated point of view is necessary because safety and security analysis will lead to
measures, which have the task to mitigate identified risks, which can be caused by both disciplines.

Co-engineering in our approach means to create integrated processes regarding safety and security.
SiSoPLE is an appropriate method to bring activities from different domains together. It manages the
handling of commonalities, variabilities and provides the opportunity to add optional activities. It improves
the essential communication between the disciplines (see Figure 8). Furthermore, to tackle the co-
engineering demands the approach has to cover hazards, which arise due to the combination of safety and
security risks. We need to perform a safety and security co-analysis. This type of analysis should guarantee
that we identify potential hazards, which would stay undiscovered if only one discipline is examined in an
isolated way. The measures from competitive disciplines must not influence each other in a not admissible
way (“freedom of interference”). To make sure that is true, we have to perform a trade-off consideration.
Initially we had a trade-off between performance and safety, now we have to add cybersecurity as a further
attribute. To find a tolerable balance between measures, we have to rate them with a “trade-off metric”. In
other words, developers have to decide how much impact is allowed for each of the safety and security
measures. The metric is provided as an aid to find out the balance and as an argument why a specific safety
security constellation has been chosen. Finally, all these arguments have to be collected in the assurance
case, which covers the integrated safety and security case.

The following paragraph describes the process development in EPF-C and the process execution with
WEFACT based on an example. To illustrate the approach an exemplary process concerning verification of
system design has been created in EPF-Composer. The process is based on ISO 26262 and SAE J3061. It
considers "Product development at the system level", "Supporting processes" and “Cybersecurity
activities”. Figure 9 shows the activities of the process in detail.

Figure 9. Work Breakdown structure of process related to verification of system design

The process is available in the work breakdown structure, which allows activity structuring. It is based on a
verification pattern, which includes the general main activities related to verification. EPF-C stores patterns
in the process folder “Capability Patterns”. The verification pattern is extended by specific activities for
system design, verification, and cybersecurity verification. The extension of activities is a feature of EPF-C.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 84

To use this feature additional tasks are defined and added to the pattern using the "Content Variability"
function of EPF-C. This function allows the extension of tasks with input from other tasks.

The example shows how cybersecurity is added to a process, which is mainly designed for functional safety
consideration. Performing co-engineering is important because functional safety and cybersecurity issues
are highly interactive. Cybersecurity can be taken into consideration by adding a safety and security co-
engineering loop [71]. In this loop, the developers make sure that the added cybersecurity measures do not
influence the safety measures in an unintentional manner. It is important that interactive activities are
considered jointly and not separately. The cycle stops when the system fulfils the demanded requirements.

Once the process has been defined, it is ready for execution with WEFACT. Before an EPF-C model can be
executed, it has to be exported from EPF-C to an XML file and subsequently imported to WEFACT.

Figure 10. Process related to verification of system design in WEFACT

Figure 10 shows the process model imported to WEFACT. It appears in the "Process Explorer" in the lower
left corner. All activities of the process have to be on one level because the current version allows no
structured processes. The next step is to connect requirements, input- and output files to the process.
Requirements can be defined in WEFACT or they can be imported from a DOORS database, or the process
model is created in EPF-C and imported into WEFACT in UMA format.

Before the execution can be performed, workflow tools have to be defined and associated with the
process. These tools use the available input files and produce output files according to the process
specification. The lightning symbol in the upper right section of the process tab starts the tool. The button
is enabled if the process is ready for execution. This is the case if the predecessor has been fulfilled and a
tool has been linked. WEFACT provides the opportunity to fulfil processes manually by using the assigned
button. The resulting output files are stored in a folder, which is under revision control by SVN. The
appearance of a new file indicates that the process was executed successfully. The status changes to
"successfully".

WEFACT supports process execution activities, makes sure that requirements are fulfilled, related
processes are executed properly and all work products are available. The generated work product files are
used as evidence in the assurance case. The deliverables D1.5 to D1.7 demonstrate the methodology, by
applying it in automotive case studies.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 84

The question, how can we define a metric to evaluate trade-offs, needs further investigation; in particular
the following two aspects need to be taken into consideration:

• Risk reduction (e.g. overall risk decreases, even though safety or security risk may increase)

• Lifecycle costs (e.g. engineering and production costs may increase)

The idea of safety and security interaction is at the moment discussed in standard committees and should
appear in the next release of ISO 26262.

2.1.4 Co-assessment for Safety and Security Assurance (*)

Parallel to process-related assurance assessment, product-related co-assessment is to determine the
effectiveness of functional safety measures and functional security measures with respect to their safety
and security objectives. The safety and security objectives can be specified by the requirements.
Assessment methods include verification, validation, and testing. The results of the assessment can be used
for safety and security argumentation in assurance cases [67].

Industries such as nuclear, aviation, railways, and their regulatory agencies have over the years developed
standards, analytical techniques for safety assessment with interdisciplinary applications. Different lifecycle
phases have to be covered for the safety assessment during the design and development of dependable
systems. This starts with a description of functional hazard assessment (FHA), followed by the preliminary
system safety assessment (PSSA) and system safety assessment (SSA). The aerospace industry has amongst
the most rigorous standards. An important guiding document for safety in the development of new aircraft
is ARP 4761 [20]. The methods employed are qualitative, quantitative, or both. The development process is
iterative in nature with system safety being an inherent part of the process. The process begins with
concept design and derives an initial set of safety requirements for it. During design development, changes
are made to it and the modified design must be reassessed to meet safety objectives. This may create new
design requirements. These, in turn, necessitate further design changes. The safety assessment process
ends with verification that the design meets safety requirements and regulatory standards [20]. These
techniques are applied iteratively. Once FHA is performed, PSSA is performed to evaluate the proposed
design or system architecture. The SSA is performed to evaluate whether the final design meets
requirements.

The Functional Hazard Assessment (FHA) is performed at the beginning of system development. Its main
objective is to “identify and classify failure conditions associated with the system by their severity”. The
identification of these failure conditions is vital to establish the safety objectives. This is usually performed
at two levels, for the example of aircraft industry—at the completed aircraft level and at the individual
system level. The aircraft level FHA identifies failure conditions of the aircraft. The system level FHA is an
iterative qualitative assessment which identifies the effects of single and combined system failures on
aircraft function. The results of the aircraft and system level FHA are the starting point for the generation of
safety requirements. Based on this data, fault trees, FMEA can be performed for the identified failure
conditions which are studied later. ARP 4761 provides guidelines on how an FHA should be conducted.

The Preliminary System Safety Assessment (PSSA) is a systematic examination of the proposed system
architecture to examine how failures can lead to the functional hazards identified by the FHA and how
safety requirements can be met. The PSSA addresses each failure condition identified by the FHA in
qualitative or quantitative terms. It involves the use of tools such as FTA, Dependence Diagram (DD), and
Markov Analysis (MA) to identify possible faults. The use of these is discussed later. The identification of
hardware and software faults and their possible contributions to various failure conditions identified in the
FHA provides the data for deriving the appropriate Development Assurance Levels (DAL) for individual
systems. The process is iterative being performed at the aircraft level (for the case of airplanes) followed by
individual system levels.

The System Safety Assessment (SSA) is a systematic, comprehensive evaluation of the implemented
system to show that qualitative (system development assurance levels, item development assurance levels,

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 84

hardware design assurance levels and software levels) and quantitative (safety-related reliability targets)
safety requirements, defined in the FHA and PSSA have been met. The SSA integrates the results of the
various analyses to verify the overall safety of the system and to cover all the specific safety considerations
identified in the PSSA. The SSA process documentation includes results of the relevant analyses and their
substantiations as needed. The output of the SSA is used as an input for the Safety Case.

Co-verification and validation has been extensively discussed in D4.1 [1] Section 4.1.3. Regarding security
testing, it is the process of exercising one or more assessment objectives under specified conditions to
compare actual and expected behaviour.

Security assessment is domain-specific. In the following, we use an example in the automotive domain to
explain the principles and common methods in security assessment.

Security assessment can generally be divided into two parts [31]: a theoretical security assessment and a
practical security assessment. The theoretical security analysis identifies and understands the security
weakness of an automotive CPS system based on a paper-based evaluation of the corresponding system
specifications and documentations, for example, Threat Analysis and Risk Assessment (TARA) as described
in SAE J3061. Methods such as architecture review, threat modelling, and attack tree can be used to
identify attack surface, entry point, weakness in cryptographic algorithms, and potential attacks. However,
the theoretical security analysis does not identify implementation flaws or the deviation of the
implementation from the specification. Moreover, it cannot detect vulnerabilities that are part of
insufficiently documented specification or flaws hidden in components from a third-party from the supply
chain.

The practical security assessment can discover implementation errors that might be exploited by an
attacker. It can also find unspecified functionality and deviation to the specification. Practical security
assessment includes functional security testing for testing security-related functions for correct behaviour
and robustness, vulnerability scanning to test the system for known-vulnerabilities, fuzzing to find new
vulnerabilities of an implementation by sending malformed input to the target system to check for
unknown, potential security-critical system behaviour, and penetration testing to mimic an intelligent
human attacker to identify and exploit all vulnerabilities in a sophisticated way based on hacking
experiences. However, practical security testing cannot give assentation on completeness of the test.
Hence, it should always be complemented by a theoretical security testing to identify possible security
flaws.

In the Industrial Automation and Control System (IACS) domain, security assessment often involved various
security test methods, including stress test, port scan, vulnerability scan, protocol fuzzing. In stress test, a
Denial of Service attack is launched on all TCP/IP protocols to ensure that the product can provide
appropriate resistance against the attack. In port scan available ports (e.g. FTP TCP port 21) are targeted
with malicious software which may lead to malfunction of system. In vulnerability scan, a software scanner
is used to detect known vulnerabilities of the used and documented TCP/UDP ports and services, e.g.
HTTPS port 443. In protocol fuzzing, a software fuzzer is used to cause a denial of service attack or a
targeted system crash, by exploiting access violation or untreated program state. Variables in protocol
fuzzing include features and constraints, forbidden or reserved values, linked parameters, and filed sizes.

To implement fuzz testing method, a test platform (Figure 11) can be tailored for security testing of IEC
61850, using a fuzzing simulator, IEDs, a remote-controlled power strip, and a switch [32].

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 84

Figure 11. A testbed for fuzz testing of IEC 61850

2.1.4.1 System dependability co-analysis via ConcertoFLA (*)

ConcertoFLA [73] enables users (system architects and dependability engineers) to decorate component-
based architectural models (specified using CHESSML) with dependability-related information, execute
Failure Logic Analysis (FLA) techniques, and get the results back-propagated onto the original model.
CHESSML is an extension of SysML [79] used in CHESS toolset to enable component-based systems design.
The dependability modelling is supported by SafeConcert [63], a subset of CHESSML, which allows the
modelling of the failure behaviour for system components and so model-based dependability analysis, like
failure propagation or state-based analysis.

Different FLA techniques are available in the literature [74], and can be used at the early stages of the
design phase to achieve a robust architecture with respect to linear relationships. ConcertoFLA builds on
top of Failure Propagation Transform Logic (FPTC) [75]. Similar to FPTC, ConcertoFLA is a compositional
technique to qualitatively assess the dependability of component-based systems. In ConcertoFLA terms, a
component can act in four different possible ways:

1. Source of the failure thus generating a failure due to an internal fault.

2. Sink of the failure thus avoiding the propagation of the external fault (failure in input) through fault
tolerance.

3. Propagator of the failure.

4. Transformer of the failure into a different type.

ConcertoFLA rules are logical expressions, which specify the component’s behaviour by describing the
input/output relationship. ConcertoFLA rule is a combination of the port (input/output) and the guide word
referring to the failure mode; supporting standard failure modes i.e., timing, value and provision. Each of
these failure modes has two specializations, which are early & late, ValueSubtle & ValueCoarse, and
Omission & Commission corresponding to timing, value and provision respectively.

ConcertoFLA allows users to calculate the behaviour at system-level, based on the specification of the
behaviour of individual components. During the analysis, ConcertoFLA calculates the failure propagation
paths and produces their representation according to the specifications of FlaMM meta model (see [76] for
FlaMM structure and corresponding XML Schema). These failure propagation paths are utilized to generate
a fault tree. In fault tree terminology, the failure at system level is referred to as top event and the

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 84

contributing failures are classified as intermediate and basic events. In safety context, the top event refers
to a safety hazard which may cause accidents. In the security context, the top event is a breach of security
properties i.e., confidentiality, integrity and availability. The intermediate and basic events contributing to
the top event could also be due to the compromise of any of the concerns. For example, a cyber-security
attack, which makes a component to halt its services, may cause a safety hazard, which, in turn, may cause
an accident. Therefore, a fault tree integrating the security threat events contributing to the safety hazard
could enable security-informed safety. To support the generation of such rich fault tree, a further
elaboration is introduced to the input/output failure behaviour of the components. Before discussing
modelling of the elaborated failure behaviour of components, first, security threat process and security
related terms are introduced in what follows.

The causality-chain that leads to the violation of the security-related properties is illustrated in Figure 12. A
threat event, initiated by a threat source agent, able to exploit a vulnerability of an asset (e.g. a
component/system) may result in a loss to the confidentiality, integrity and/or availability (often, together
referred to as CIA) of the asset [77] [78]. Threat refers to the event or capability to breach security and
cause harm. Where the vulnerability is a weakness or internal flaw in the design, architecture or
implementation of a service/application. A threat source could be a malicious cyber-security attack, non-
malicious human errors, natural/human made disasters, etc. It is also worth noting that the accidents
caused by safety hazards can also be a threat source enabling a situation, where a threat may exploit a
vulnerability and cause a security breach. However, to this end, the focus is on cyber-security attacks as
threat source; hence attacker as a threat source agent. The loss to CIA of a component or system, which is a
consequence of an attack, could be as following:

• Unauthorized access of the system (loss of confidentiality)

• Halting services of the system (loss of availability)

• Corrupting the services of the system (loss of integrity)

For instance, a cyber-security attack on a component, where a data corruption threat exploits the missing
data integrity schemes vulnerability, may result in corrupting the services of the component.

Figure 12. Process of Security breach [77] [78]

The further elaboration of the input/output failure behaviour of components could be modelled using state
machine diagram. Safeconcert, which is the CHESS dependability profile, allows to tag the state machine
with <<ErrorModel>> stereotype. The error model provides support for modelling state transitions,
erroneous state and the effect of this on a property of the component and its nominal behaviour. The state
transition in the error model are specialized and could be tagged with <<Failure>> and <<InternalFault>>
stereotype.

To model the security, using an <<ErrorModel>>-tagged state machine, the failure, internal fault and effect
are extended to include security threats, vulnerability and consequences respectively. The security threats
could be represented by a pre-loadable vocabulary (through exploitation of the connection with EPF
Composer, where the requirements mandated by the standards are modeled), which refers to the specific
threats used within a specific domain/standard. The inclusion of different types of threat could be collected
from the catalogues of the domain and standard. For example, in the space domain, when engineering a
space mission, the vocabulary provides a pre-defined enumeration of common/discovered security threats
collected from CCSDS 350.1-G-2 [77] and NIST 800-30 [78] as well as by the personal competences (e.g.,
respective system engineer, security analyst, etc.). In a similar fashion, the vulnerabilities could be

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 84

represented as a pre-defined enumeration collected through different sources (for example personal
competence, standards and results of previous threat analysis, etc.). Finally, the consequences could also
be modelled using pre-defined effects, which refers to the loss of CIA. Figure 13 illustrates the error model,
where a cyber-security attack initiates data corruption threat and exploiting the value check function is
false vulnerability thus causing a transition to erroneous state.

Figure 13. Error Model showing erroneous state transition due to security threat event and vulnerability

A component could have multiple instances of <<ErrorModel>>-tagged state machines, attached to it. Each
instance would provide the elaboration of input/output failure behaviour addressing a specific concern.

2.1.4.2 WEFACT Tool Concept (*)

WEFACT has been delivered in D4.5 [6] and the executable as well as a user manual are available. The
extensions described in the following refer to functionalities for which the necessary capabilities are
already available in WEFACT. It is in this sense rather about using the tool appropriately or in an extended
manner. Exploiting the existing WEFACT features in this extended manner fulfils a couple of additional
requirements beyond those cited when releasing the first tool in D4.5. The following sections explain which
requirement is fulfilled by the extension and how WEFACT must be used in order to exploit the capability.

Quantitative confidence metrics about an assurance case in a report.

This refers to the “Could” requirement WP4_ACS_013: Provide quantitative confidence metrics about an
assurance case in a report. “The system could produce a status report indicating a quantitative confidence
metric for assurance case.”

This requirement is partially fulfilled by WEFACT. Instead of a written, printable report, however, WEFACT
displays the percentage of fulfilled evidences continuously on the screen.

The following Figure 14 shows the WEFACT user interface.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 84

Figure 14. WEFACT user interface

The different parts of the screen marked with Roman numbers in black cycles contain information w.r.t
requirements and processes as well as subprocesses:

I. Project specific requirements
II. Predefined engineering processes

III. Requirement content
IV. Process definition
V. Child processes

On top of the list of child processes (in the red ellipse), the percentage of fulfilled subprocesses is displayed
and continuously maintained (e.g. during process executions). Figure 15 shows this part of the screen with
higher resolution.

Figure 15. Sub processes in WEFACT and the share of those fulfilled

Extension to Assurance case status report

This refers to the “Could” requirement WP4_ACS_011: Assurance case status report = “The system could
provide the capability for querying the assurance case in order to detect: 1) undeveloped goals, 2) fallacies.

WEFACT is able to fulfill part of this requirement in the sense described in the previous section
“Quantitative confidence metrics about an assurance case in a report”, namely by continuous information
about fulfilled and not fulfilled requirements as it can be seen in the list box in Figure 15.

I

II

I
III

IV

V

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 84

Undeveloped goals would probably already be identified when no (sub)process is defined for creating the
evidence (GSN solution) for a certain requirement. This uncovers that the respective goal is not fully
developed.

Also, certain fallacies can be revealed by WEFACT like for instance technically invalid argumentation
strategies, namely when a solution is intended and used in the argumentation which – under the given
conditions – cannot be proven because it exceeds the capabilities of the system.

Deficiencies in the GSN argumentation tree itself, however, would be an issue to be detected by the
Assurance Case editor or an associated completeness checker tool.

System dependability co-verification and co-validation with WEFACT

This functionality fulfils the “Must” requirement WP4_SDCA_002 System dependability co-verification and
co-validation - “The system shall support efficient system or component co-verification and co-validation
with respect to multiple quality attributes”.

With the existing features of WEFACT it is possible to enable System dependability co-verification and co-
validation. For processes in WEFACT, predecessor and successor processes can be defined. It is, thus,
possible to combine verification (or validation) processes related to different quality attributes in a way
that they form an efficient combined process which can be automated in the WEFACT workflow. Figure 16
shows an example.

Figure 16. Example for an automated safety-, security- and performance-verification process.

WEFACT instantiated for safety and security analysis processes

This feature implements the “Must” requirement WP4_SDCA_003 - “The system shall allow combinations
of safety and security analysis”.

There are two ways to achieve co-analysis:

(1) Using a combined safety and security analysis tool like FMVEA, or

(2) Combining separate tools by a WEFACT workflow.

The concept for case (1) is described in the following section 2.1.4.3.

Here, with WEFACT, case (2) is meant. The safety and security co-analysis is achieved by combining
separate tools like e.g. Microsoft’s STRIDE-method-based Threat Analysis tool and a commercial Hazard
analysis tool, for instance APIS FMEA or some HAZOP tool in a common WEFACT workflow. Figure 17 shows
how this conceptually works.

Safety verification

Security verification

Performance verification

Work-
flow
start

Co-verification
process

Work-
flow
end

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 84

Figure 17. Concept for safety and security co-analysis by combined process inn WEFACT

The part that is not covered in the two separate tools is the interaction point, as it is known from several
standards, e.g. SAE-J3061 [24]. This is an analysis by experts to find out whether the results of both analysis
processes (safety and security requirements) are compatible, if they are then the result of the co-analysis
process is PASS, otherwise the result of the process is FAIL and the analyses must be adapted.

2.1.4.3 FMVEA Tool Concept (*)

Chapter 2.1.1.2 explains the basic principles of the FMVEA method as a combination of the security analysis
method of Threat Modelling with the safety-related model-based FMEA (Failure Modes and Effects
Analysis). The outcome comprises Threats and Hazards with a risk evaluation. In the following, an outline of
the tool currently under constructions is given.

Figure 18. FMVEA tool architecture.

Figure 18 shows the basic architecture of the FMVEA Tool, which consists of three parts:

• the Modelling Environment

o It is planned to support SysML and Dataflow Diagrams,

• the Analysis Engine

o It parses the model and matches defined Threats and Failures to the system model,

• the Threat & Failure Database

o It stores known threats and enables applying them to a system model

The Threat & Failure Database is customer-specific and embedded into the application, i.e. not accessible
from outside of the tool. The tool will include an update functionality or the database which avoids
overwriting the current database.

The tool applies the known threats and failures from the database to the model, which is for instance
imported as SysML model elements. The result are the threats and hazards for the individual system and a
risk evaluation.

In the assurance lifecycle, FMVEA can be used in the initial risk assessment for defining:

• the required SIL (safety integrity level) of the safety function needed for risk mitigation, and

• the target security level (SL-T in e.g. IEC 62443 terminology) to be implemented.

In later lifecycle phases, FMVEA is helpful for the repeated safety and security assessments necessary for
safety and security validation, when the appropriateness of the implemented concepts has to be validated.

Safety analysis

Security analysis

Work-
flow
start

Co-analysis process

Interaction point:
Analyze mutual

influences

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 84

2.2 Dependability Assurance Case Modelling

The main focus of this section is to present an approach to create multiconcern assurance cases. Note that
how to address various dependability attributes (i.e. multiconcern) in the system development lifecycle is
outside the scope of this section. The focus is how to structure multiconcern assurance argumentation in a
way which allows to easily understand interactions and support the maintainability of the assurance case
and the system.

2.2.1 Introduction

Assurance cases use a structured set of arguments and a corresponding body of evidence to justify that a
system satisfies specific claims with respect to its properties (i.e. safety, security, reliability, etc.).

Basically, an assurance case serves two groups of stakeholders in the assurance process: the one that
creates the assurance case in order to claim that a product or system satisfies certain properties; and the
one that reviews the claims and evaluates the completeness and soundness of the product or system
against the claims. Hence an assurance case provides a structured and reviewable set of artefacts that
make it possible to demonstrate to interested parties that the system’s requirements have been met to a
reasonable degree of confidence. However, a key difference between arguing security and arguing other
dependability attributes of a system is the presence of an intelligent adversary.

In addition to that, there is an increasing need to consider the maintainability of a system in the assurance
case. Security relies on frequent updates to close newly detected vulnerabilities or adapt security measures
to the increased capabilities of an attacker. With a monolithic assurance case, such maintenance requires
the complete repetition of the evaluation of the assurance case. In order to ease this burden,
compositional assurance will play an important role.

In this section, we investigate how we can create a safety and security assurance case, as the first step
towards the concept of multiconcern assurance.

2.2.2 Safety and Security Assurance Case (*)

2.2.2.1 Safety & Security Assurance Case Structure

In D4.1 [1] Section 4.1.4, we surveyed the existing work and proposals for assurance case structure. This is
especially important in the cases where the assurance case of the different suppliers combine in order to
create a greater assurance case of the system. In D1.1 Case studies description and business impact [9], the
case study 3 presents a scenario, cooperative autonomous driving, where the assurance case of one vehicle
is not enough and we need to assure the combination of the assurance cases of the vehicles involved in the
driving action. This case study CS3 has been used as the scenario in which we have made our analysis,
research and where we are applying our proposals.

Many existing works suggest to combine the dependability attributes in a unified GSN structure, including
safety, security, availability, reliability, etc. However, there are so far no detailed specifications on how to
go beyond the top-level split as illustrated in Figure 19. Furthermore, there is no agreed way to combine
safety and security assurance cases that are currently accepted by safety and security standards.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 84

Figure 19. An Assurance Case Fragment

The vision of the AMASS project is to arrive at a unified safety & security GSN structure to specify a
combined safety and security assurance caseWe propose several views on safety and security assurance
case, with different proposals on how to combine them. These proposals can be further refined and
discussed to aim at a consensus.

One first attempt is to create a structure of argumentation modules in order to explicitly show the relations
of the assurance cases with the components that form the system. We have taken the scenario of
cooperative driving to work the possible assurance case architecture specification. In Figure 20 the first
attempt of arguments allocation into different arguments modules is shown.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 84

Figure 20. Assurance Case Structure, argument modules decomposition for Cooperative driving scenario

Figure 21 shows a proposal of the multiconcern assurance case structure. The system is assured for
multiple concerns such that a set of system goals is developed for all the different concerns. The concern
specific goals are the basis for the concern-specific assurance informed of other concerns, e.g., security-
informed safety assurance. The system goals are supported by the system requirements developed for all
the different concerns. The concern-specific system goals are supported by the safety requirements specific
to different concerns. For example, a safety goal may be supported by both safety and security
requirements. The system requirements are supported by the assurance case of different components,
where each component assurance case includes assurance of that component for the different concerns.
The different component concern specific modules support each other. For example, a safety module of
one component may be supported by the security module of that or some other component. Interplay of
the concerns on all the levels where cross concern trade-off occurs (goals, requirement and components) is
handled in the trade-off module.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 84

Figure 21. Multiconcern assurance case structure

If we look at the “Trade-Off” argument module, the content will be aligned to the argument pattern
presented in D4.1 [1] for making multi-attribute trade-offs and published in [59] and shown in Figure 22.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 84

Figure 22. GSN Argument Pattern for making multiconcern trade-offs

2.2.3 Multiconcern Argumentation

When integrating different quality attributes in a unified assurance case, we identify the following generic
relationships:

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 84

• Dependency relationship: The claim A of one attribute depends on the fulfilment of claim B of
another attribute. For example, a fail-safe claim of attribute safety depends on the claim that the
safety instrumentation system is not tampered of attribute security.

o There is also a weaker connection, independency, meaning an element does not interfere /
depend with other elements, e.g. is patchable /changeable without changing the rest of the
assurance case. This relation is probably weaker than dependency, e.g. two goals do not
depend on each other.

• Conflicting relationship: The assurance measure of attribute A is in conflict with the assurance
measure of attribute B. For example, a strong password or blocking a terminal after several failed
login attempts for security conflicts with the emergency shutdown for safety. Resolution of such a
conflict need to be noted in the Assurance Case.

• Supporting relationship. The assurance measure of attribute A is also applicable to assurance of
attribute B, such that one assurance measure can be used to replace two separate ones if the
attributes are considered and addressed individually. For example, encryption can be used for both
security for confidentiality and to check data integrity for safety instead of checksum. This means
two goals can be addressed by one argumentation.

These relationships can appear at all levels of an assurance case structure, from safety and security goals to
evidence and justifications. Therefore, a relatively simplified approach to multiconcern assurance is to
adapt the existing GSN structure to cover the aforementioned three relationships.

We propose the use of an impact relationship concept to address the different relationships mentioned
above head. The impact concept is an abstract relationship which takes advantages of proposals made by
research groups working in this area.

The dependency relationship between a claim A and a claim B, so that claim A will only be true if claim B is
also true can be explicitly specified using “in the context of” notation with a closed white arrow (see Figure
23). Usually this type of relationship in GSN is used connecting a claim within a context; however, here we
use it connecting two claims which both need to be supported by evidences.

Figure 23. The dependency – impact relationship

Lately, the Object Management Group (OMG) has been working on a standard for Structured Assurance
Case Metamodel (SACM) in order to provide a common and structured way for assurance case
composition. One of the concepts included in the standard is the AssertedChallenge. “The
AssertedChallenge association class records the challenge (i.e. counter-argument) that a user declares to
exist between one or more Claims and another Claim”. In the OPENCOSS project [51] Deliverable D5.3, it
was proposed to have a graphical notation for this concept, a red arrow with a cross in the middle (see

Claim A Claim B
in the context of

Evidence
A

Evidence
B

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 84

Figure 24). The target of the arrow is a Claim D which is conflicting and will become false if the source of
the arrow, Claim C, becomes true.

Figure 24. The conflicting-impact relationship

Finally, the supporting relationship mentioned before can be noted using already accepted notation to be
used in argumentation patterns. There is a GSN option symbol, which is used to represent choices between
lines of argumentation used to support a particular claim [83], for example, Claim E is supported either if
Claim F is true or Claim G is true (see Figure 25). It is highly recommended to provide an annotation
denoting the nature of the choice made.

Figure 25. The supporting-impact relationship

In this context, since multiple quality attributes are considered in one picture, more specific questions arise
such as:

• Safety is usually non-degradable. What if a non-safety assurance measure has the potential to
lower the SIL level?

• Is it possible to reduce 100% availability in order to allow an emergency shutdown when safety
issues occur?

• Security update is a solution to the changing threat landscape. But should a security update be
delayed because it will compromise availability?

• Can we justify a decision for less expensive component as a trade-off for reliability?
• Security threats evolve in time, as attacks improve, will the security mechanism be effective after

some time?

Claim C Claim D

Evidence
C

Claim E

Claim F Claim G

1out of n

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 84

It is important to mention that when dealing with security, effectiveness is valid just for a period of time,
for that reason, assurance cases should be checked periodically. We propose to re-create the evidences to
ensure they are still supporting the claims and if not, provide an impact analysis and modify the system to
ensure the vulnerabilities are well mitigated and/or avoided.

2.2.4 Support for variability management at the argumentation level (*)

As known [72], an assurance case is constituted of claims, contextual information, evidence, and reasoning
structures aimed at explaining why the claims are sufficiently supported by the evidence.

As documented in D6.2 [12], these elements may vary (e.g., based on the criticality) and thus, it becomes
clear that a single assurance case model does not fit all assurance needs. One size does not fit all. An entire
family of assurance cases is embraced.

Thus, additional concepts are needed to enable the systematization of reusable assurance-case-related
modelling elements between family members.

• Assurance case-related commonality: indicates the assurance case elements that do not vary and
that characterize the family of assurance cases.

• Assurance case-related variability: indicates the assurance case elements that vary and that
characterize the individuals within a family of assurance cases.

• Assurance case-related variation point: indicates points of variation where a product element may
represent:

o Assurance case-related options, when for instance an additional branch aimed at
developing the argument is not always needed due to optional requirements.

o Assurance case-related alternatives, when for instance alternative branches aimed at
developing the argument can be chosen, due to requirements that can be met in different
ways.

• Variability: Two kinds of variability might be identified within a set of assurance cases:

o Intrinsic: whenever there is more than one argumentation style to support the claims of a
particular product-line instance (see, for instance, alternative).

o Extrinsic: whenever reusable assets (referenced in the assurance case and bound to
concrete assets within product-line models such as the feature and reference architectural
models) vary.

To enable the systematization of reuse when engineering families of arguments, within AMASS, an
orthogonal solution based on the BVR Tool was proposed. The BVR-Tool-based solution permits users to
reason about variability in a unified way regarding process, product, and assurance cases. The BVR-Tool-
based solution is currently under development in the context of WP6, more specifically in D6.3, final and
public version of D6.2.

2.3 Multiconcern Contracts

Contract-Based Design provides the mechanisms to formalise assumptions and guarantees of components
and to formally verify that structural decomposition of a system into components is correct, i.e., that the
guarantees of the system is assured by the subcomponents provided that the system assumptions hold and
that the assumptions of subcomponents are assured by the sibling subcomponents, again provided that the
system assumptions hold. If the contracts involved in the contract refinement are related to different
concerns, we can talk of a multiconcern contract refinement. This information is typically however hidden
and not exploited. It is instead important to highlight the concerns of the contracts to make explicit in the
argumentation how they interact, how the proof of the contract refinement guarantees their compatibility,
how a mechanism (e.g., a monitor or an encoding function) is used for both safety and security, or how a
safety mechanism (e.g., a redundancy) has been introduced to make a security mechanism fault tolerant.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 84

Employment in the AMASS Platform

The AMASS platform will allow to tag requirements, properties, and contracts with concerns (i.e., safety,
security, performance, etc.). When the contract refinement involves multi concerns, the related argument
fragment will be enriched with a rational explaining how they interact and/or interfere.

The tool functionality supporting this multiconcern contract-based assurance will extend the contract-
based assurance described in D3.2 [10].

Usage of multiconcern contracts in assurance via argument-fragment generation

In D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a) [10], we have
presented how contracts traced with assurance information can be used to automate instantiation of
argument patterns stating that the corresponding requirements are sufficiently satisfied. Extending CACM
with concern tags for requirements allows us to distinguish to which concern belongs the particular
requirement and also the associated contracts and the assurance assets. The concern tags then allow us to
generate concern-specific argument-fragments that represent a skeleton of the concern assurance case.
The safety engineers are envisaged to continue building upon the generated skeleton. This idea is depicted
in Figure 26 for the case of safety and security concerns. Knowing to which concern is a particular
argument-fragment related allows us to either build concern-specific viewpoints of the assurance case, or
even to build a unified dependability case where the different fragments would support different concern-
specific goals.

Figure 26. Assuring different concerns via multiconcern contracts, taken from [65]

2.3.1 Abstract functions in the contracts specification (*)

Supports WP4_CMA_002 and WP4_SDCA_002.

Security-related requirements sometimes refer to confidential data or high-level security data or similar
attributes associated with data. The semantics of such attributes is often not clear and the actual
implementation of the system must give them a meaning, for example saying that data coming from the
hospital records are always confidential. Sometimes it is possible that specific component attributes always
contain either high-level or low-level security data. More often, this depends on the actual data values so
that we can represent it as a function of data (e.g. “is_confidential(record)”). When dealing with
architectural design, it is sometimes impossible to give a specific semantics to these functions and it is
useful to use “uninterpreted functions” to formalize security-related requirements and analyze their
interaction with other concerns. For example, in the work proposed in [68], OCRA has been used to analyze

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 84

the contract refinement of a security-related requirement and how monitoring mechanisms can be used to
ensure the security in case of component failure.

More specifically, the system-level requirement specified that “no high-level data shall be sent to the
external world” formalized as “never is_high(output_data)”. This was structured into a contract assuming
that “The user shall switch the dispatcher to high before entering high-level data” formalized as “always
((is_high(cmd_data)) implies ((not switch_to_low) since switch_to_high))”. The contract refinement was
proved correct. Moreover, fault-tree analysis confirmed that no single failure of the dispatcher or the
monitor could cause the system security failure (to be precise, single point of failures could be the user not
respecting the assumption or the component inventing high level data).

2.3.2 Contract-based trade-off analysis in parameterized architectures (*)

Supports WP4_CAC_010.

Parametrized architectures, as defined and developed in WP3, provide the means to analyze the system
architecture in different configurations. Each configuration may enable/disable some components, ports,
connections, and contracts. Different configurations can be analyzed and compared with respect to
different aspects: contract refinement, satisfaction of formal properties, fault tolerance, minimal cut sets,
reliability measures. Such an approach was for example followed in the analysis of different configuration
of the next generation of air traffic control design [68].

Comparing the different configurations allows the designer to perform trade-off analysis and design space
exploration. Architectural choices are supported by the mentioned analysis results. In particular, the choice
whether adding or removing a function (represented by a block or by a contract), enabling or disabling a
redundancy, or other similar changes is supported by checking which functional and non-functional
properties hold in the different configurations. This trade-off analysis is enhanced by the information about
the concern addressed by the different properties and contracts: the analysis provides a direct way to
evaluate the impact of the trading-off architectural elements on the multiconcern represented by
properties and contracts.

2.3.3 General extensions to contract based multi-concern assurance (*)

OPENCOSS proposed a methodology for structuring argumentation in component-based systems and
integrating it to form system-level ssuring the interfaces with other components. From the safety
perspective, safety is a whole system properargumentation. In component based design, components are
assumed to have a correct functionality just by aty and assuring the correct function of components does
not mean that the (composed, integrated) system will remain safe. The context in which the component is
going to be integrated is important, and as Ruiz [69] indicated for the SEooC (Safety Element out of
Context) perspective, the assumptions of the item can be understood as the context characterization. In
addition, to support safety assessment, failure behaviours of components, and their behaviour in the
presence of failures, must be defined.

Similarly, to reconcile the bottom up component-based approach with top-down hazard and safety
analyses, SafeCer proposed that generic evidence about components properties is linked with specific top-
down safety requirements of one or more systems in which the component is used [81]. One method for
presenting a safety case is via a safety argument (a logical decomposition arguing about the safety of the
system) which is supported by evidence (e.g. software testing results or static analysis). The generic
evidence about the component properties are captured in the component argument fragments.

In AMASS we propose to merge both approaches to take advantage of both OPENCOSS and SafeCer
contributions to compositional assurance. In particular, we build upon the compositional assurance
methodology proposed by OPENCOSS and use it as the basis for structuring the assurance case.
Furthermore, for ensuring the validity of the component context, we take advantage of the formal

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 84

validation of multi-concern contracts envisaged in SafeCer and improved in AMASS, in the context of WP3.
This supports conceptually WP4_CMA_003.

Building upon the OPENCOSS and SafeCer usage of the argument contracts for compositional assurance, we
integrate the argument contracts within the AMASS multiconcern assurance case structure proposed in
Figure 21. We use argument contracts to capture the interplay between the concerns by creating argument
contracts between concern specific modules. In particular, we make the argument contracts both between
the hierarchical levels (e.g., between goal and requirement modules) and between the different concern
modules on the same level (e.g., between different concern specific modules about requirements), as
depicted in Figure 27.

To capture the interplay of concerns in argument contracts, we should capture and describe the generic
relationships for multiconcern assurance identified in Section 2.2.3. Capturing the supporting relationships
across concerns can be done via the existing contract argumentation pattern proposed by IAWG and
presented in D4.1 [1]. For capturing the dependency and conflicting relationships in argument contracts,
we adapt the existing pattern to capture the information relevant for the new relationships.

Figure 27. Capturing interplay of concerns in argument contracts

Figure 28 presents the safety case contract argument pattern for capturing the conflicting relationships
across concern-specific modules. We relate the affected goal with all the conflicting goals, and for both
include the inherited contexts, so that the conflicting relationship can be better understood. Furthermore,
for each conflict, there is a choice to either resolve it and point to the trade-off argument discussing its
resolution, or justify why the conflict does not require resolution. Since the resolution of the conflicts may
imply the revision of the initial goals, the versioning of the goals can be used to indicate which versions
were in conflict and needed resolution.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 84

Figure 28. Safety case contract argumentation pattern for capturing the conflicting relationships across concern-
specific modules

The dependency relationship follows a similar pattern as the supporting relationship where all
dependencies are identified and explained via contexts of the related goals. The adapted safety case
contract argument pattern for dependency relationship is shown in Figure 29.

The initial argument contracts for some generic relationships can be derived from the results of formal
verification via component contracts. For example, the supporting relationships between different safety
case goals can be identified when the same formal property or a component contract is used to formalize
two different requirements of two different concerns. The conflicting relationships can be identified in case
of identified inconsistency between different component contracts or formal properties related to different
concerns. Finally, the dependencies can be identified between different component contracts when
guarantees of a particular concern-specific component contract are needed to satisfy assumptions of
another concern-specific component contract. By analysing the results of component contract refinement
and property consistency checking we can automatically identify and generate skeleton argument contracts
for some of the relationships relevant for multiconcern argumentation. Since not all relationships can be
identified based on the results of component contract checking, the remaining multiconcern relationships
need to be identified and captured in the argumentation contracts.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 84

2.3.4 Contract-based trade-off analysis with the Analytical Network Process (*)

Supports WP4_CAC_010.

As discussed in conceptual section the ANP allows to evaluate the impact of factors on the bottom of the
hierarchy to the top dependability attributes which are set by our desired goal. This gives a design feedback
that changes in design of which component or sub-system will enable us to achieve our desired goal. It also
tells us the relative impact of all factors that are affecting that component or subsystem such as failure
causes or vulnerabilities, so we know which security strategy or component with increased reliability (may
be redundancy) can help us to achieve this goal, which will be verified by analysis for the impact on
dependability attributes. All the appropriate design possibilities can be evaluated to find if the safety
critical system requirements meet and for their impact on other non- safety attributes for tradeoff analysis.

Since ANP represents information in such a way that the impact of factors at bottom (say level 0) will be
shown at all upper levels e.g. level 1, level 2, and dependability attributes at top, this makes contract
based analysis easier.

Figure 29. Safety case contract argument pattern for dependency relationship

A: Dependant goal
Goal in Module {A}

related to Concern {X}
 Module {A}, Concern {X}

DependencyContext
The ’Dependant goal’ depends on the
fulfilment of the ’Dependency goal’

Module {A}Module {A}Module {B}+

Inherited Context
{All inherited context,

assumptions, justifications,
or other argument which
this claim is made in the

context of}

Module {A}Module {A}Module {A}

Inherited Context

{All inherited context for
Dependant goal}

B: Dependency goal
Goal in Module {B}

related to Concern {Y}
 Module {B}, Concern {Y}

1...n

Strategy
Decomposition over all

dependencies

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 84

3. Design Level

3.1 Functional Architecture for AMASS Multiconcern Assurance

3.1.1 Overview

Multiconcern assurance is the way assurance must be done if more than one quality attribute of a critical
system has to be taken care of. As nowadays systems become more networked and are therefore more
vulnerable to cybersecurity attacks, the discipline of safety-critical system engineering is learning that, in
particular, security plays an essential role in order to assure safety. Other quality attributes (e.g., reliability,
maintainability, etc.) play a significant role.

The essential goal of the multiconcern assurance process is to demonstrate in a credible manner that the
requirements associated with the different quality attributes are fulfilled. This includes the argumentation
with all assumptions and contexts, and finally the evidences for the arguments. From this perspective,
multiconcern assurance is the linear superposition of the argumentations for all quality attributes.

One might argue that there are interdependencies between these multiple quality attributes. This is
correct, but the final design contains all decisions related to these attributes, and the final assurance
provides separate, distinct evidences for the individual quality attributes. It shall be noted, however, that
sometimes one evidence can support more than one quality attribute, for instance, following the MISRA
standard guarantees a good level of safety as well as security from the code quality perspective.

Figure 30 shows the multiconcern assurance process. As will be explained below, it includes product as well
as process assurance.

In Figure 2, also a combined security and safety process is presented. While the classical HARA is used for
safety-related hazard analysis, for security analysis the STRIDE approach is applied, and the SAHARA
method is used to assess the safety hazards induced by security threats. As a whole, the approach of Figure
2 can be inserted in Figure 30 as a combined analysis method, i.e. instead of the FMVEA.

It shall be mentioned that Figure 30 contains also the multiconcern assurance activities for process
assurance. The path splits between product and processes in the safety & security requirements: They are
made up from system and process requirements. And there are also trade-offs between process
requirements. E.g. the security-related process requirement “frequent updates” contradicts the safety
requirement of “safety validated system in continuous operation”. To solve the entire problem, a solution
in the product may be necessary (e.g. a cold-standby system to use during system software update and
subsequent safety validation). Similarly, the mitigation measure for a system safety risk may be a process
(e.g. a preventive maintenance process if useful lifetime of components is shorter than system lifetime).

Summarizing we may state that product and process assurance have to be done in parallel, there are
equally trade-offs between quality attributes for both the product and the processes, and they are even
interlinked when it comes to mitigation measures.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 84

Figure 30. The multiconcern assurance process

There are mainly three points in the system development and assurance case development lifecycle, at
which multiconcern-aware methods can provide an advantage compared to single concern assurance:

• the initial hazard and risk analyses,

• the architecture and design process where multiconcern-aware design decisions can help avoiding
corrections afterwards, and

• the redesign process when multiconcern validation reveals insufficient achievement of the quality-
attribute-specific targets.

Assurance is always based on a defined design and defined processes. This means that, when the evidences
for the arguments are created, there is no negotiable trade-off anymore which could influence the
argumentation. Arguments supporting the different quality attributes are treated separately on the basis of

Analyses

or

or

System concept

Safety & security
requirements

Architecture
& design

Other functional
and non-functional

requirements

Analysis,
formal proof,

tests, contracts, evaluation:
Requirements w.r.t. all

quality attributes
fulfilled?

Insert evidences
in assurance case

Trade-off
analysis

Plan Assurance
case structure

Model arguments
in Assurance case

Plan
argumentation

strategy

no yes

Assurance case
established for a

period of time

iter-
ations

Start system
development

Separate, e.g.
HARA + TARA

Combined,
e.g. FMVEA

Trade-off
analysis

[annotate]

[annotate]

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 84

the chosen architecture and design. As mentioned above, it is nevertheless possible that one proof delivers
the evidence for more than one quality attribute.

Process Assurance

It shall be noted that also high-quality processes (during development as well as operation and
maintenance) are indispensable in order to guarantee sufficient safety and security. Here we have trade-
offs between attributes, too. As an example, safety requires restrictions w.r.t. updates of the system
because, according to functional safety standards, any change in the system requires safety re-validation.
On the other hand, security demands to install updates whenever one is available. At the end, we need a
similar assurance process model as depicted above for the product. We just analyse processes instead of
products and consider requirements to processes instead of product requirements. Process design takes
the role of product architecture and design, and the decision whether the process implementation meets
the various requirements is also analogous to the product assurance lifecycle. As already mentioned above,
the multiconcern assurance process depicted in Figure 30 comprises, therefore, product as well as process
assurance.

Design for Multiconcern Assurance

Multiconcern assurance is basically covered by methods which are used as well for single concern
assurance. No additional design block needs to be introduced to cover the needs of multiconcern
assurance. The following subsections discuss the three main functions assigned to WP4, as depicted in
Figure 31 in more detail.

Figure 31. The three WP4 functionalities with explanations

Dependability Assurance
Modelling

Contract-Based
Multi-concern Assurance

System Dependability
Co-Analysis/Assessment

AMASS WP4 Functions

Variants

(1) Separate analysis of
>1 quality attributes

(2) Combined analysis of
>1 quality attributes

Traditional state of the
practice = (1) separate.

AMASS proposes combined
methods (2)

Contracts play a role in AMASS in
two contexts:

(1) Component contracts
(2) Assurance case contracts

Component contract (1)
• Entity assures certain

guarantees if the assumptions
are fulfilled

Assurance contract (2)
• Integrates different arguments

of the assurance case

This function means modelling an
Assurance case with classes:

• Approach taken from the
OPENCOSS project

• Support of SACM (Structured
Assurance Case Metamodel)
of OMG

• Extend tool to include impact
relationships between various
attributes

• Extend tool to display model in
GSN

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 84

Figure 32 shows the “Assurance Case Specification” basic building block, responsible for the assurance case
creation and management which has evolved from the previous one defined in D2.2 [11] .

Figure 32. Assurance Case Specification

3.1.2 Dependability Assurance Modelling (*)

The Assurance case in AMASS is modelled in SACM (Structured Assurance Case Metamodel) (cf. Figure 33).
The implementation of the respective tool, the OpenCert Assurance Case Editor has been done in the first
iteration of the AMASS platform, i.e. it is a Basic Building Block. Details can be read in D4.4 [8] and the
respective user documentation. The tool has been derived from the OpenCert safety case editor, originally
called Prossurance, and enhanced with an extended vocabulary for multiple concerns and a graphical
presentation of the assurance case in GSN notation. A specific extension to support impact was needed in
order to cover multiconcern aspects. It can, however, make sense to include annotations related to
multiple concerns treated in the arguments in order to make certain argumentations or design decisions
better understandable.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 84

Figure 33. Dependability Assurance Modelling block

3.1.2.1 Support specification of variability at the argumentation level (*)

As mentioned in section 2.2.4, a solution based on the BVR Tool was proposed and is currently under
development in the context of WP6, so details on the design can be found in D6.3.

3.1.3 Contract-Based Multiconcern Assurance (*)

As explained in Figure 31, we have to cover two aspects of multiconcern contracts.

Assurance contracts help bundling two or more argument modules of the Assurance case with inter-
dependence between them. This is supported by OpenCert. When a claim about a specific concern in one
argument module needs to reference an argument, which is being explained and supported in another
argument module (which in turns deals with another concern), this dependency is collected in the
assurance contract.

Component contracts enable assume-guarantee relations of components with their environment. Formal
contract reasoning allows the re-use of the assurance case fragment of the component in its new
application context and, thus, enables cost savings. Basically, if multiple concerns shall be treated, they
mean just some more properties in the contract. OpenCert supports Assurance case fragments, and it is
planned to use the CHESS modelling environment for component contracts. It is, however, questionable
whether one modelling language is equally adequate for presenting safety and security properties within
one contract (for instance, temporal logic is good for safety contracts but less for security contracts). It
may, therefore, be necessary to use safety and security contracts in different notations in parallel. The
concrete application in use cases is expected to bring clarification.

3.1.3.1 Abstract functions in the contracts specification (*)

Supports WP4_CMA_002 and WP4_SDCA_002.

Abstract uninterpreted functions will be represented in CHESS as UML FunctionBehaviors, which are
functions that do not modify any objects or external data, and can be used also to represent primitive
functions such as arithmetic operations. FunctionBehaviors declared in the CHESS model will be used to
enrich the constraints such as FormalProperties with uninterpreted functions. The CHESS components for

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 84

editing FormalProperties and for importing/exporting OCRA models will be extended to support such
functions.

3.1.3.2 Contract-based trade-off analysis in parameterized architectures (*)

Supports WP4_CAC_010.

The support for the Contract-based trade-off analysis requires the possibility to configure the system
designing a parametrized architecture, i.e. a set of architectures specified using parameters so that static
architectures can be instantiated by specifying the values of the parameters. With such parameters, it is
possible to vary the number of components, the number of ports, the connections, and the static attributes
of components to instantiate. In CHESS, this information can be mapped to the SysML multiplicity attribute,
without the need to extend the CHESS model. The variables used to describe the multiplicity (e.g. the
variable N of 1..N that may express the boundary of the elements to instantiate) can be represented by a
static FlowPort and can be assigned using the Constraint element. To interpret the multiplicity and the
involved parameters, CHESS will require some updates. The formal language used to edit the formal
properties/contracts/constraints will be extended and the OSS importer/exporter will be enhanced to map
the information about the multiplicity in the CHESS model with its corresponding imported/exported
textual specification. Finally, the backend tool OCRA will be also updated to support the V&V of
parametrized architectures.

3.1.3.3 Contract-based trade-off analysis with the Analytical Network Process (*)

Supports WP4_CAC_010.

Threat and failure propagation state machine models from CHESS will be used for generation of failure-
maintenance and attack-recovery state transition model appropriate to the ANP tool. The tool will provide
analysis of this model for evaluation of dependability attributes in concern such as safety, security,
reliability and availability. For analysis we will use Markov and Simulation (Monte-Carlo). The results from
this analysis will be input to final Analytical Network Process metric for evaluation.

3.1.4 System Dependability Co-Analysis/Assessment (*)

These are the promising novel combined methods which lead to potential improvements w.r.t. quality, cost
and development time. As depicted in Figure 30, two combined methods are in scope - Co-Analysis and
Trade-off Analysis. They are marked as light brown rectangles in Figure 34.

Co-Analysis is the combined analysis of more than one quality attribute, taking into account the inter-
dependencies between them. Most prominent and already understood in the standardization scene is
safety and security co-analysis. Here, the application of merely single-concern oriented analysis may pose
the risk to overlook safety-related hazards which are caused by security breaches. An example for this
method is FMVEA (Failure Modes, Vulnerabilities and Effect Analysis), which is shortly described further
below in chapter 4.

Trade-off Analysis is a way to analyse the impact of failures and cyberattacks on overall safety and security
of a given system, and to use this information as a decision support in the architecture and design phases.
A respective novel approach using the Analytical Network Process (ANP) is described in detail in section
2.1.2. The expectation is to strongly reduce the number of iterations (see Figure 30) needed until an
appropriate design that sufficiently satisfies safety and security requirements is found by applying matrices-
based computations. The method is currently under development and more information is expected for the
second iteration of this concept deliverable.

As it was explained in Section 2.1.3, process-related co-assessment is conceptually conducted via SiSoPLE.
Figure 34 depicts the designed solution. SiSoPLE is supported by the integration of two tools: EPF-C and
BVR tool [54]. The details regarding EPF-C & BVR Tool integration are expected to be given in D6.2 [12] and
D6.5 [13]. Once a SiSoPL (regarding the planning processes) is modelled in EPF-C&BVR Tool, properly

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 84

tailored multi-concern single processes can be derived and used to feed the argument fragment generator
(which implements MDSafeCer [49][48]). The generation might be needed in case an explicit argument is
required to explain why the tailored process is compliant to the standards pertaining to the different
concerns. The generated argument can then be visualized via the Assurance Case Editor.

MDSafeCer is also expected to be implemented in the context of WP6. The multiconcern knowledge base in
terms of multiconcern method content as well as cross-concern commonality identification is being
developed within WP4 and is being modelled within EPF-C & BVR Tool.

A properly tailored process plan obtained by configuring the SiSoPL can also be used to feed WEFACT in
order to execute the plan.

Figure 34. Process-related Co-assessment

3.1.4.1 System dependability co-analysis via ConcertoFLA (*)

Figure 35 shows the basic building block of the system dependability co-analysis, responsible for generation
of security informed safety fault tree. To perform system dependability co-analysis, the component-based
architecture of a system as well as the input/output failure behaviour for each component is modelled
using CHESSML. The failure behaviour is further elaborated, to address different concerns, using the error
model state machine, as explained in Section 2.1.4.1. The analysis engine (ConcertoFLA) generates the
failure propagation paths, which are then utilized by the fault tree generator to generate fault trees.
Finally, the fault tree editor is utilized for visualizing the fault trees.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 84

Figure 35. System Dependability co-analysis

3.1.4.2 WEFACT Tool Concept (*)

As mentioned in section 2.1.3.2, WEFACT V2, as delivered in D4.5 [6], contained all features which allow
using the conceptual extensions described here in section 2.1.3.2. A description of the tool WEFACT can be
found in D4.5 and – with details about the handling – in the user manual provided with the executable. For
details like directory and file names see D4.5.

3.1.4.3 FMVEA Tool Concept (*)

This chapter gives first information on how the FMVEA tool will be implemented in the form of user
interface mock-ups. A detailed description will be delivered with the executable itself with D4.6 [5].

As described in section 2.1.4.3, the FMVEA tool consists mainly of three components, the Modelling

Environment, the Analysis Engine, and the Threat & Failure Database. Figure 36 shows the tool architecture

in more detail.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 84

Figure 36. The FMVEA architecture

Figure 37 shows a mock-up of the designed user interface for the model editor.

Figure 37. Mockup of the FMVEA model editor including properties definition

The model editor allows defining the nodes, here called objects, and connections. Additionally, properties
can be specified.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 84

The threat database is collected based on knowledge and experience over time using the threat editor, and
the threats are stored in the form of rules.

The analysis engine is started from the respective menu item, applies these collected threats to the system
model and yields the system-specific individual threats and failures including a risk assessment as outcome.

The result is displayed on the screen, as shown in Figure 38 below.

Figure 38. The FMVEA results

Additionally, a function for exporting reports is planned.

The final implementation will be described in D4.6 (due in August 2018).

3.2 AMASS Multiconcern Assurance Metamodel

The metamodel is a review of the Argumentation metamodel from OPENCOSS project [51] and it is an
extension of the SACM metamodel of OMG.

This metamodel is used to store argumentation patterns and assurance cases referring a specific system in
a certain context. The concepts available in the Assurance Case Metamodel are compatible with the SACM
metamodel version 2 which at the time of writing this deliverable is still a draft.

The Assurance Case metamodel provides the assurance case specification capabilities, connects to
contracts elicitation, both argumentation contracts and connections to system architecture design
contract. It identifies the links between argumentation-related entities and the other parts of the CACM, so
to support the multi concern co-assurance approach.

3.2.1 Elaborations

This section addresses the modifications that have been addressed in the Assurance Case metamodel with
respect to the version presented in AMASS D2.2 [11]; the modifications have been applied to cover the
conceptual approaches discussed in chapter 2.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 84

Some of the changes made in the Assurance Case metamodel have been due to feedback from the first
prototype, and proposals made in chapter 2.

On one hand, some of the notations made about the impact relationship were available before. However,
there were some constrains (OCL) such as AssertedContext which was only accepted for connecting claims
objects with informationElement objects (contexts). Now the AssertedContext entity can link any
ArgumentationElement class. This way it is allowed to connect claims together, so the dependency
relationship mentioned in section 2.2.3 is possible, but also to connect ArgumentPackage together, which
is especially useful when specifying the Argument Case structure in form of argument modules.

In this update, we have specially focused on changes due to connection with other metamodels and how
we have extended the metamodel in relation with multi concern, compositional assurance and use of
assurance patterns.

Relations with other metamodels from AMASS CACM

The argumentation metamodel is connected with the evidence model through the class
“ArtefactElementCitation” whose cited artefact is the “Artefact” class from the evidence metamodel, see
Figure 39.

Figure 39. Relation with other metamodels

System Component Metamodel for Architecture-driven Assurance

The SystemComponentMetamodel developed in WP3 (see D3.2 [10]) is extended in order to support the
notion of concern. In particular, according to what has been elaborated in chapter 3.1.3, there is the need
to know the concern addressed by a given requirement and contract. The extensions, shown in Figure 40,
are the following:

• ConcerEnum: new enumeration entity, representing the possible concerns.

• Requirement: the attribute concern typed with ConcerEnum has been added to represent the
concern addressed by the requirement.

• FormalExpression: the attribute concern typed with ConcerEnum has been added to represent the
concern addressed by the FormalExpression, which can play the role of weak/strong assumption or
guarantee property of a Contract entity. The value for the concern attribute can be derived starting
from the Requirement formalised by the FormalExpression.

• Contract: the attribute concern typed with ConcerEnum has been added to represent the concern
addressed by the Contract. The value for the concern attribute is derived starting from the concern
attributes specified for the guarantee FormalExpression. A “contract” from the system component
metamodel refers to arguments which are encapsulated in the “ArgumentPackageInterface” in the
SACM metamodel.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 84

• BlockInstance: A component in the system model references to an argument. This connection is the
one that links the “Blockinstance” class from the system component metamodel with the
“ArgumentationElement”.

Figure 40. Contract concern

We have identified more areas to be improved with respect to the metamodels connection. One to
mention is the one related to dependability modelling and possible needs to extend system component
specification in order to support modelling certain concerns at the system component specification level.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 84

4. Way Forward to the Implementation

4.1 Potential Tool support

This section provides an overview of the tools that are expected to play a key role in enabling the
achievement of WP4 scientific and technological objectives.

4.1.1 OpenCert – supports “Dependability Assurance Modelling”

OpenCert is an open source tool which started as a result of OPENCOSS project and now is being updated
and improved in the context of the AMASS project. OpenCert deals with product and process
assurance/certification management to support the compliance assessment and certification of safety-
critical systems in sectors such as aerospace, railway and automotive. Figure 41 shows a general view of the
functional decomposition of OpenCert conceptual platform which are:

• Prescriptive Knowledge Management: Functionality related to the management of standards
information as well as any other information derived from them, such as interpretations about intents,
mapping between standards, etc. This functional group maintains a knowledge database about
“standards & understandings”.

• Assurance Project Lifecycle Management: This functionality factorizes aspects such as the creation of
safety assurance projects. This module manages a “project repository”, which can be accessed by the
other modules.

• Safety Argumentation Management: This group manages argumentation information in a modular
fashion. It also includes mechanisms to support compositional safety assurance, and assurance patterns
management.

• Evidence Management: This module manages the full life-cycle of evidences and evidence chains. This
includes evidence traceability management and impact analysis. In addition, this module is in charge of
communicating with external engineering tools (requirements management, implementation, V&V, etc.).

Figure 41. Functional decomposition of the OpenCert platform

• Assurance Configuration Management: This is an infrastructure functional module. This includes
functionality for traceability management.

• System Management: It includes generic functionality for reports creation and data storage.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 84

• Measurement: This module contains functionality related to indicators.

For multi concern assurance, we have used mainly the safety argumentation management functionality
block. The first prototype implementations and changes made in this area are described in document D4.4
[8].

4.1.2 CHESS - supports “Contract-Based Multiconcern Assurance”

CHESS modelling language (CHESSML), based on UML/SysML/MARTE, and toolset, the latter available on
Polarsys and based upon Papyrus, has been adopted in AMASS as basic building block for system
component specification with contract-based design. Beside the aforementioned modelling support,
CHESSML allows the modelling of timing concerns too, by reusing and extending what is available in the
MARTE profile for real time system, to then enable model-based timing analysis. Moreover, CHESS comes
with a dedicated profile for dependability, called SafeConcert, presented in AMASS D3.2 [10] and accepted
for publication [63]. SafeConcert allows modelling of the failure behaviour for system components and so
model-based dependability analysis, like failure propagation or state-based analysis. Regarding specific
support for multiconcerns at modelling language level, the part of the CHESS profile related to contract-
based design is enriched with the new features elaborated in section 3.2.1.

As it was documented in D4.5 [6] and as recalled within this document (see Section 2.1.4.1), the CHESS
toolset also includes ConcertoFLA.

4.1.3 FMVEA - supports “System Dependability Co-Analysis/Assessment”

Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) [27] is a holistic safety and security analysis
methodology based on Failure Mode and Effect Analysis (FMEA) and STRIDE threat modelling. Figure 42
shows the basic concept of the method. Semi-quantitative assessment of threats and failures allows a
combined impact evaluation and the combined definition of respective mitigation measures.

Figure 42. Basic concept of FMVEA

The methodology is supported by a tool developed by AIT (see section 4.1.3), which allows the user to
specify the system model and perform a partially automated analysis, based on a dataflow model of a
system architecture and a fault / threat model for the system components.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 84

4.1.4 EPF-Composer - supports “System Dependability Co-analysis and
assessment”

The Eclipse Process Framework (EPF) project5 has developed an approach for supporting customisable
(software) process engineering frameworks. This approach, depicted in Figure 43 and called the EPF
approach, consists in enabling the separation of method content definition (i.e., definition or reusable
process element such as units of work, roles, guidelines, work products) from method content usage, i.e.,
creation of process models via reuse of pre-defined reusable process elements.

The EPF approach contributes to addressing the following needs:

• Development teams need easy and centralized access to the information

• Ensure compliance to standardised practices
• Teams need support for right-sizing their processes

The EPF approach is tool-supported via the EPF Composer, shortened EPF-C6, which is based on a
metamodel, called UMA (Unified Method Architecture), which almost fully supports SPEM2.0 (the OMG

standard for specification of systems and software processes7).

In AMASS, the EPF approach and its tool support have been integrated as core building block. Within WP6,
D6.2 [12], EPF-C is currently being strengthened via integration with the BVR tool [54], outcome of the EU
ARTEMIS VARIES (VARiability In safety-critical Embedded Systems) Project [55]. This integration will be
beneficial not only for general reuse but more specifically for co-assessment and cross-concern reuse,
focusing on the interplay of safety and security in line with WP4 objectives.

Figure 43. The EPF approach, adapted from [64].

5 http://www.eclipse.org/epf
6 https://eclipse.org/epf/downloads/tool/tool_downloads.php
7 http://www.omg.org/spec/SPEM/2.0

http://www.eclipse.org/epf
https://eclipse.org/epf/downloads/tool/tool_downloads.php
http://www.omg.org/spec/SPEM/2.0/

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 84

4.1.5 WEFACT - supports the assurance process workflow

The tool WEFACT (Workflow Engine For Analysis, Certification and Test) originated from the DECOS8 Test
Bench, which was a Web-based distributed platform for requirements-based testing with continuous
impact-assessment in order to support the safety case with evidences. In SafeCer9, the test workflow was
extended to a workflow for safety certification, and in EMC210 the quality attribute of security was
integrated.

The WEFACT Version1 was based on the requirements management tool DOORS®.

Now, a new Eclipse-based WEFACT Version2 (see Figure 44) is available, see D4.5 [6]. This new tool version
has been extended towards multiconcern assurance cases in the AMASS project.

AIT provides WEFACT as an external workflow tool and, provides interfaces to the AMASS platform.

Figure 44. Screenshot WEFACT Version2

8 FP6 Integrated Project DECOS (Dependable Embedded COmponents and Systems)
9 Artemis project SafeCer (Safety Certification of Software-Intensive Systems with Reusable Components)
10 Artemis project EMC2 (Embedded multi-core systems for mixed criticality applications in dynamic and changeable

real-time environments)

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 84

4.1.6 Medini Analyze - supports the assurance process workflow (*)

The medini analyze11 tool-set supports the safety analysis and design for software-controlled safety related
functions in various domains, following well known safety standards as ISO 26262, DO-178B and IEC 61508.
The tool integrates system architecture design (based on SysML) and software functional design (for
example MATLAB®/Simulink®/Stateflow®) with risk and hazard analysis methods - Hazard List, Risk Graph,
Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA).

Being built on top of Eclipse technologies like EMF (Eclipse Modelling Framework), medini analyze can trace
and track all safety - or more generally assurance case - relevant information and decisions throughout the
whole development process. Moreover, it provides numerous tool interfaces for example to central
ALM/PLM system and system architecture tools, automatic generation of work products and assurance of
their consistency, reuse support by library concepts, as well as catalogues and templates mechanisms, and
support of assessments and reviews.

Figure 45. medini analyze overview

The tool has been extended in the SESAMO12 project towards cybersecurity (see SESAMO deliverables D3.3
for details on the conceptual part). Methodology wise the tool supports Attack Trees, TARA (Threat analysis
and Risk Assessment), as well as Security FMEA in analogy to system safety FTA, HARA and FMEA. Basically,
all concept phase activities of the SAE J3061 Guidebook are supported as a prototype implementation.

Phase / Activity Supported By

Project Setup / Preparation Project templates for different guidelines
● JASO TP-15002
● EVITA/SESAMO
● SAE J3061 (in preparation)

Definition of Target of
Evaluation

● Form-based target (item) definition
● Graphical SysML editor

11 medini™ analyze is a registered trademark of ANSYS medini Technologies AG
12 Security and Safety Modelling, Artemis JU Grant Agreement no.: 295354

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 70 of 84

● Function list editor

Threat Analysis ● Attack Tree Modelling
● Attack Path Computation
● Propagation to TARA

Risk Assessment ● TARA with Customizable Risk Graph
● Out-of-the Box Support for CVSS/CRSS and Common

Criteria/EVITA
● Traces to Security Objectives

Definition of Security Objectives
and Requirements

● GSN-based graphical editor
● Table-based DOORS-like editor
● Export to DOORS, PTC Integrity, JAMA
● Report Generation

As a result of having system safety as well as cyber security analysis methods in the same tool and being
executed on the same architecture model enables cross-references from security analysis results to safety
analysis results, which leads to potential synergies in implementing the mitigation/prevention functions
and countermeasures.

Figure 46. Cyber security analysis with medini analyze

4.1.7 AMASS Farkle - supports product assurance

The AMASS Farkle tool is a learning-based approach on model-based software testing. The AMASS Farkle
tool is based on the Farkle tool for model-based certification that has evolved over the last years.

At this stage, we propose to include it in AMASS to prove the inter-operability of the tools when
interworking with model-based tools of the AMASS platform. The tests will give proof point that the
AMASS-tools support the flow towards the design for multiconcern systems.

The Farkle tool has previously been tested with an automotive use case EAST-ADL Brake-by-wire model
[56], also known as model-based test case generation. The AMASS version includes machine-learning as
concept.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 84

The idea of LBT is to automatically generate many test cases by combining incremental automata learning
algorithm or a model inference algorithm with a model checking algorithm. This results in incremental
learning-based testing for reactive systems.

The three steps fundamental to LBT are:

1. Automated model checking algorithm
2. Execution of tests generated in step 1.
3. Assigning a verdict on a test outcome (the oracle step).

There is an iterative feed-back loop: This optimizes test case generation based on previously observed
outcomes of test cases.

The interpreter subsystems of AMASS Farkle is interfacing the Linx library, which makes it possible to do
tests on any platform on any location. The tool is a combination of Learning- and Model Based Testing.

With the growth of CPS there is a need for verification and certification in an automated way. The models
are in some cases poor and not in sync with design which is a common problem in the industry. A tool chain
that combines model learning and model checking offers a solution to this problem.

NuSMV model is sent to the model checker for convergence checking. This model is a full representation of
the learned states and has more similarities to the Abstract Test Case, used as input for Extended Farkle.
Assuming a generated model, the next step is running Extended Farkle. When Extended Farkle is done,
LBTest needs to be provided with the output of the counter example to continue learning of the model. As
Model Based Testing relies on comparison of In- & Output from the model and the SUT, Extended Farkle
should output those sequences somewhere. Instead of just logging these, the tool chain can pass them
back to the wrapper for processing. The wrapper could then select which results are relevant for LBTest
and return those back to the learning algorithm.

In the overview Figure 47 the Learning Based Test (LBTest) and the Extended Farkle is interworking. The
Extended Farkle connects the system under test (SUT) in the target and the complementing dummy under
test (DUT).

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 84

Figure 47. System Overview AMASS Farkle tool

4.1.8 Safety Architect – supports “System Dependability Co-Analysis/Assessment”

Safety Architect is ALL4TEC tool, initially dedicated to perform classical safety analyses: local Failures
Modes, Effects and Analysis (FMEA), and automatic deduction of Fault Tree Analysis (FTA) of the identified
Feared Events (FE). It is extended during the MERgE ITEA project and French Clarity Project to support
Safety and Security Co-Analysis. As described in D4.1 [1] Section 4.2.2.3, Safety engineers and Security
engineers can work within Safety Architect, either using separated views or a merged view, to describe the
way failures and security threats propagate inside the system architecture. Then, dysfunctional analysis
techniques already available in Safety Architect can be applied, such as the automatic generation of fault
trees or attack trees. Safety Architect has different interfaces with many system engineering tools, such as
Capella, System Architect, Papyrus, etc. One of ALL4TEC objectives in the AMASS project is to provide
Safety Architect as an external tool-chain and to develop interfaces to the AMASS platform.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 84

4.1.9 AMT2.0 – supports “Contract-Based Multiconcern Assurance”

AMT2.0 shall deploy methods for monitoring and diagnosing Cyber-Physical System (CPS) models in the
Simulink. The monitoring activities would include translating informal system specifications into formal
specification expressed in the extended Signal Temporal Logic (STL) declarative language. The tool would be
integrated with the existing monitoring techniques at AIT to the Simulink environment. Novel methods
shall be developed for system diagnosis and error localization in the Simulink models upon the detection of
the specification violations.

4.1.10 Extensions (*)

The conceptual and design extensions described here in addition to what was already contained in D4.2 [2]
are mostly implemented in existing tools (e.g. CHESS/OCRA, the OpenCert Assurance Case Editor or
WEFACT, which were provided in D4.5 [6] or even in D4.4 [8]). Part of them are rather conceptual
extensions, i.e. an extended usage of existing tool capabilities (in particular w.r.t. WEFACT and CHESS).

Only few new developments are ongoing and planned to be delivered as new tools in D4.6 [5]. This set of
new tools comprises the FMVEA tool and the planned tool for trade-off analysis using an ANP (Analytical
Network Process).

4.1.11 Implemented Multiconcern Assurance Related Requirements (*)

The following table gives an overview on the requirements covered by the concepts and designs described
in this document, and partly in other documents: The assurance case editor was used from the Core
prototype, which is described in D4.4 [8].

Table 6. WP4 requirements coverage

ID Short Description Description
Proto-

type Nº
Priority

Elaborated
in section

WP4_ACS_
001

Assurance case
edition

The system shall be able to edit an assurance
case in a scalable way.

P1 Must see D4.4

WP4_ACS_
002

Argumentation
architecture

The system shall be able to edit a modular
structure (argument architecture) associated
with a system and/or component.

P2 Must see D4.4

WP4_ACS_
003

Drag and drop
argumentation
patterns

The system shall be able to instantiate in the
actual assurance case an argument pattern
(concerning safety and security) selected from
the list of patterns stored.

P1 Must see D4.4

WP4_ACS_
004

Provide
guidelines for
argumentation
patterns

The system should be able to provide
guidelines to use and instantiate argument
pattern (concerning safety and security)
presented in the actual assurance case.

 Should

WP4_ACS_
005

Provide a
structured
language to the
text inside the
claims

The system could be able to provide support
for language formalization inside argument
claims.

P1 Could see D4.4

WP4_ACS_
006

Provide
guidelines for
argumentation

The system could be able to provide guidelines
about the assurance case edition based on the
system/component development phase status.

P1 Could see D4.4

WP4_ACS_
007

Argumentation
import/export

The system could be able to import/export
argumentations to SACM.

P2 Could see D4.4

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 84

ID Short Description Description
Proto-

type Nº
Priority

Elaborated
in section

WP4_ACS_
008

Traceability of the
dependability
case

The system should provide the dependability
case reviewers the ability of tracing an overall
dependability case (GSN) goal to the
requirement within the dependability profile
for a given system element and the attribute of
interest with which goal is associated.

P1 Should see D4.4

WP4_ACS_
009

Find high level
claims

The system shall be able to find high level
claims, which are sufficiently cohesive to be
supported by extremely diverse strands of
argument, supported by diverse types of
evidence.

 Must

WP4_ACS_
010

Composition of
the overall
argument

The system should provide the capability of
generating a compositional assurance case
argument.

P2 Should see D4.4

WP4_ACS_
011

Assurance case
status report

The system could provide the capability for
querying the assurance case in order to detect:
1) undeveloped goals, 2) fallacies.

P2 Could 2.1.4

WP4_ACS_
012

Formal validation
of assumptions
and context when
arguments
modules are
connected

The system could be able to indicate the
validation of assumptions contained in
argument modules every time the modules are
connected and/or modified

 Could

WP4_ACS_
013

Provide
quantitative
confidence
metrics about an
assurance case in
a report

The system could produce a status report
indicating a quantitative confidence metric for
assurance case.

P2 Could 2.1.4

WP4_CAC_
010

Contract-based
trade-off analysis

The system could provide the capability to
evaluate safety and security requirements on
different system architectures to perform
trade-off analysis based on the contract
specification.

P2 Could

2.3.2,
2.3.4,
3.1.3.2,
3.1.3.3

WP4_DAM
_001

Capability to
model
relationships
between
concerns

The system shall be able to provide an
assurance case which records the relationships
between dependability attributes and how
they are affected because of design decisions.

P2 Must

WP4_DAM
_002

Capability to
capture conflicts
occurring during
system
development and
the trade-off
process

The system shall provide the capability for
modelling a dependability case which captures
the conflicts that occur during system
development and the trade-off process to
justify why the taken design decisions are the
most optimal ones.

P2 Must

WP4_CMA
_001

The AMASS tools
must support
specification of
variability at the
argumentation
level

The system shall provide the capability for
modelling arguments in the assurance case
about multi-concern and multi-context.
The multi-concern and multi-context
argumentation could follow a variability
modelling a solution. If GSN-like modelling

P2 Must 2.2.4

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 84

ID Short Description Description
Proto-

type Nº
Priority

Elaborated
in section

elements are considered, the diamond for
representing alternatives as well as the
octagon for extrinsic variability could be
considered.

WP4_CMA
_002

Component
contracts must
support multiple
concerns

The system shall provide a contract
specification language that supports the
formalization of both safety and security
requirements.

P2 Must
2.3.1,
3.1.3.1

WP4_CMA
_003

Contract based
multi-concern
assurance

The system must support features that support
contract-based assurance with respect to
multiple concerns; i.e. it must be possible to
specify relations between safety contracts,
security contracts and other-concerns-related
contracts in order to take care of the
influence of system modifications for
mitigating the risks associated with one quality
attribute on the contract belonging to another
quality attribute.

concep
tually

develo
pped

Must 2.3.3

WP4_SDCA
_001

System
dependability co-
architecturing
and co-design

The system shall provide features, which allow
architecture modelling collaboration and co-
designing a system or component with a
balanced combination of different goals
addressing various quality attributes.

P2 Must

WP3 13;

2.1.2,
2.3.2,
2.3.4,

4.1.9 14.

WP4_SDCA
_002

System
dependability co-
verification and
co-validation

The system shall support efficient system or
component co-verification and co-validation
with respect to multiple quality attributes.

P2 Must
2.1.4,
2.3.1,
3.1.3.1

WP4_SDCA
_003

The system shall
allow
combinations of
safety and
security analysis

The system shall allow combinations of safety
and security analysis.

P2 Must 2.1.4

13 This refers to the 1st sentence of the requirement; collaboration at architectural level is under development and

expected in P2.
14 This refers to the 2nd sentence; first prototypes for trade-off analysis are expected in P2.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 84

5. Conclusions (*)

In this deliverable, the conceptual approach for multiconcern assurance has been elaborated in two
iterations, the confidential intermediate edition D4.2 [2] and the public final edition D4.3 – the document
at hand. After an introduction which explained the scope, the relation to other tasks and deliverables
within and beyond WP4, chapter 2 presents several approaches for the main features of multiconcern
assurance including extensions added in the second iteration, namely “System Dependability Co-Analysis
and Assessment”, “Dependability Assurance Case Modelling”, and “Contract-Based Multiconcern
Assurance”, building on and explaining relations to the state of the art described in D4.1 [1].

In chapter 3, the design of the approaches described in the previous chapter is been presented, first on a
conceptual design level and then on the level of Multiconcern Assurance Metamodel extensions. This
design will guide the implementation of the third iteration of the AMASS platform implementation, which
will be described in D4.6 [5].

Chapter 4 presents a set of identified tools for realizing the aforementioned features in the second
iteration. The set comprises internal tools for the basic building block Assurance Case Modelling as well as
external tools for the other features. In this edition D4.3, a table has been added describing the coverage of
requirements by the realized multiconcern assurance features.

The relation between the implemented functionalities for Multiconcern Assurance and their realization and

evaluation in the case studies is described in D1.5 [82], wherein Table 76 gives an overview, showing that,

already in Prototype P1, 7 out of 11 case studies apply WP4 functionalities, in most cases more than one.

Contract-based Multiconcern Assurance as described here in D4.3 is not yet covered there but prototypic

implementations are planned for P2. Moreover, Contract-based Multiconcern Assurance at runtime

according to section 4.1.9 is mainly described in D3.3 [88] and realized in CS3.

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 84

Abreviations and Definitions (*)

Definitions are common to the whole AMASS project and are given in the AMASS glossary (deliverable D2.2
[11]). Following abbreviations are used in this document:

Abbreviation Explanation

AFHA Aircraft-level Functional Hazard Assessment

ALM Application Lifecycle Management

ANP Analytical Network Process

ARP Aerospace Recommended Practice

ARTEMIS
ARTEMIS Industry Association is the association for actors in Embedded Intelligent
Systems within Europe

ASA Aircraft Safety Assessment

ASIC Application Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

ATA Attack Tree Analysis

BDMP Boolean Logic Driven Markov Processes

BRA Binary Risk Analysis

BVR
Base Variability Resolution - a domain-specific language designed specifically to
enable software product-line engineering (SPLE)

CACM Common Assurance and Certification Metamodel

CAN Controller Area Network

CCL Common Certification Language

CENELEC
Comité Européen de Normalisation Électrotechnique (European Committee for
Electrotechnical Standardization)

CHASSIS Combined Harm Assessment of Safety and Security for Information Systems

CHESSML CHESS Modelling Language

CIA Confidentiality, Integrity, Availability

CPS Cyber-Physical Systems

CS Case Study

CTMM Continuous Time Markov Models

CVSS Common Vulnerability Scoring System

DD Dependence Diagram

DAL Development Assurance Levels

DFD Data-Flow Diagram

DUT Dummy Under Test

EAST-ADL
Electronics Architecture and Software Technology - Architecture Description Language
(AUTOSAR-compliant modelling language for the Automotive industry)

ECSEL Electronic Components and Systems for European Leadership

EMC2
Embedded multi-core systems for mixed criticality applications in dynamic and
changeable real-time environments

EN European Norm

EPF/C Eclipse Process Framework-Composer

EVITA E-Safety Vehicle Intrusion Protected Applications

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 84

FANDA
Tool supplied by Fairmount Automation, used together with TOM for assessing design
alternatives and facilitating trade-offs in critical systems

FHA Functional Hazard Assessment

FMEA Failure Modes and Effects Analysis

F(I)MEA Failure (Intrusion) Modes and Effects Analysis

FMVEA Failure Modes, Vulnerabilities and Effect Analysis

FTA Fault Tree Analysis

FTP File Transfer Protocol

GSM-R Global System for Mobile Communications – Railway

GSN Goal Structuring Notation

HARA Hazard Analysis and Risk Assessment

HAZOP HAZard and OPerability study

HEAVENS
HEAling Vulnerabilities to ENhance Software Security and Safety (Swedish Vinnova funded
research project)

HMI Human Machine Interface

HTTPS Hypertext Transfer Protocol Secure

IACS Industrial Automation and Control System

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IL Impact Level

ISO International Organization for Standardization

IT Information Technology

JU Joint Undertaking

LBTest Learning Based Test

MA Markov Analysis

MILS Multiple Independent Levels of Security

MISRA Motor Industry Software Reliability Association

NuSMV New Symbolic Model Verifier (a symbolic model checker tool for finite state systems)

OBD On-Board Diagnosis

OCL Object Constraint Language

OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation

OSS Ocra System Specification

PASA Preliminary Aircraft Safety Assessment

PASRA Preliminary Aircraft Security Risk Assessment

PLM Product Lifecycle Management

PSecAC Plan for Security Aspects of Certification

PSSA Preliminary System Safety Assessment

RAMS Reliability, Availability, Maintainability, Safety (and Security)

RL Remediation Levels

RTCA Radio Technical Commission for Aeronautics

SACM Structured Assurance Case Metamodel

SAE Society of Automotive Engineers

SAHARA Security-aware Hazard Analysis and Risk Assessment

SCADA Supervisory Control And Data Acquisition

SEooC Safety Element out of Context

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 84

SIL Safety Integrity Level

SL Security Level

SiSoPLE Security-informed Safety-oriented Process Line Engineering

SoPLE Safety-oriented Process Line Engineering

SPEM Software & Systems Process Engineering Metamodel

SSA System Safety Assessment

STL Signal Temporal Logic

STPA-SEC STAMP (Systems- Theoretic Accident Model and Processes) Based Process Analysis

STRIDE
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation of
privilege

SUT System Under Test

SW Software

SysML System Modelling Language

S&S Safety and Security

TARA Threat Analysis and Risk Assessment

TOM
Tool supplied by Fairmount Automation, used together with FANDA for assessing design
alternatives and facilitating trade-offs in critical systems

TVRA Threat, Vulnerability and Risk Analysis

TCP/IP Transmission Control Protocol/Internet Protocol

TL threat level

UDP User Datagram Protocol

UMA Unified Method Architecture

UML Unified Modelling Language

V&V Verification and Validation

WP Work Package

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 84

References (*)

[1] AMASS D4.1 Baseline and requirements for multiconcern assurance, 30th September 2016.

[2] AMASS D4.2 Design of the AMASS tools and methods for multiconcern assurance (a), 30th June 2017.

[3] AMASS D4.3 Design of the AMASS tools and methods for multiconcern assurance (b), April 2018.

[4] AMASS D2.1 Business cases and high-level requirements, 28th February 2017.

[5] AMASS D4.6 Prototype for multiconcern assurance (c), August 2018.

[6] AMASS D4.5 Prototype for multiconcern assurance (b), October 2017.

[7] AMASS D4.8 Methodological guide for multiconcern assurance (b), August 2018.

[8] AMASS D4.4 Prototype for multiconcern assurance (a), 31st January 2017.

[9] AMASS D1.1 Case studies description and business impact, 30th November 2016.

[10] AMASS D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a), 31st March
2017.

[11] AMASS D2.2 AMASS reference architecture (a), 30th November 2016.

[12] AMASS D6.2 Design of the AMASS tools and methods for cross/intra-domain reuse (a), October 2017.

[13] AMASS D6.5 Prototype for cross/intra-domain reuse (b), December 2017.

[14] Jean-Claude Laprie - Dependability: Basic Concepts and Terminology [Book]. - Vienna: Springer, 1992. -
Vol. 5.

[15] B. Gallina, L. Fabre. Benefits of Security-informed Safety-oriented Process Line Engineering. IEEE 34th
Digital Avionics Systems Conference (DASC-34), Prague, Czech Republic, September 13-17, ISBN 978-1-
4799-8939-3, 2015.

[16] Avizienis, A., J.-C., Laprie, B., Randell, C., Landwehr, 2004, Basic concepts and taxonomy of dependable
and secure computing. In: IEEE Trans. Dependable Sec. Comput. 1(1): 11-33.

[17] Bloomfield, R., R. Stroud, 2013, Security-Informed Safety ”If it’s not secure, it’s not safe”. Marc-Olivier
Killijian. Proceedings of the International Conference on. Computer Safety, Reliability and Security
(SafeComp) FastAbstract, Toulouse, France. pp.NC. <hal- 00926459>.

[18] Gil-Casals, S., P., Owezarski, G., Descargues, 2012, Risk Assessment for Airworthiness Security.
Proceedings of the International Conference on. Computer Safety, Reliability and Security (SafeComp),
Magdeburg, Germany. pp.8, <hal-00698523>

[19] RTCA DO-326A, 2014, Airworthiness Security Process Specification, RTCA.

[20] ARP-4761, 1996, Guidelines and Methods for Conducting the Safety Assessment process on Civil
Airborne Systems and Equipment.  

[21] I. Ayala, B. Gallina. Towards Tool-based Security-informed Safety Oriented Process Line Engineering.
1st ACM International workshop on Interplay of Security, Safety and System/Software Architecture
(ISSA), Copenhagen, Denmark, November 28th, 2016.

[22] M.Steger, M.Karner, J.Hillebrand, W.Rom and K.Romer. 2016. A security metric for structured
security analysis of cyber-physical systems supporting SAE J3061. In 2016 2nd International Workshop
on Modelling, Analysis, and Control of Complex CPS, CPS Data 2016. IEEE, 6.

[23] G.Macher, E.Armengaud, C.Kreiner, B.Brenner, C.Schmittner, Z.Ma, H.Martin, L. Krammer,
“Integration of Security in the Development Lifecycle of Dependable Automotive CPS”, Handbook of
research for cyber-physical systems Ubiquity, IGI Global, 2017

[24] SAE J3061- Cybersecurity Guidebook for Cyber-Physical Automotive Systems. SAE - Society of
Automotive Engineers.

[25] G. Macher, E. Armengaud, E. Brenner, C. Kreiner. A Review of Threat Analysis and Risk Assessment
Methods in the Automotive Context. International Conference on Computer Safety, Reliability, and
Security (SafeComp), LNCS, vol 9922, 2016

https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.1_Baseline-and-Requirements-for-Multi-Concern-Assurance_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.5_Prototype-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.5_Prototype-for-cross-intra-domain-reuse-%28b%29_AMASS_Final.pdf

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 84

[26] Macher, G., Hoeller, A., Sporer, H., Armengaud, E., & Kreiner, C. (2015). A Comprehensive Safety,
Security, and Serviceability Assessment Method. Delft, The Netherlands: 34th International
Conference on Computer Safety, Reliability, and Security - SAFECOMP 2015.

[27] Schmittner, C., Gruber, T., Puschner, P., & Schoitsch, E. (2014). Security application of failure mode and
effect analysis (FMEA). International Conference on Computer Safety, Reliability, and Security
(SafeComp 2014).

[28] Schmittner, Christoph, Zhendong Ma, Carolina Reyes, Oliver Dillinger, and Peter Puschner. "Using SAE
J3061 for Automotive Security Requirement Engineering." In International Conference on Computer
Safety, Reliability, and Security, pp. 157-170. Springer International Publishing, 2016.

[29] Tidwell, T., Larson, R., Fitch, K., Hale, J.: Modelling internet attacks. In: Proceedings of the Second
Annual IEEE SMC Information Assurance Workshop, pp. 54-59. IEEE Press, Los Alamitos 2001.

[30] Schneier, B., Attack Trees, Dr. Dobb's Journal of Software Tools 24, 12 (December 1999): 21-29.

[31] S. Byer, T. Enderle, D. Oka, and M. Wolf, “Automotive security testing – the digital crash test”, 3rd CESA
automotive electronics congress, 2014

[32] S. Basagiannis, R. Chabuckswar, Y, yang, K. McLaughlin, M. Boubekeur, “Smart Grid Security: Chapter
10 Real world Experiences from Smart Grid Security Application”, 2015

[33] Charles B. Weinstock Howard F. Lipson John Goodenough, “Arguing Security – Creating Security
Assurance Cases”, 2007, https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-
security-creating-security-assurance-cases

[34] Alberts, C. et al. "Introduction to the OCTAVE Approach." Pittsburgh, PA, Carnegie Mellon University
(2003).

[35] Kelling, E., Friedewald, M., Leimbach, T., Menzel, M., Säger, P., Seudié, H., and Weyl, B. (2009).
Specification and Evaluation of e-Security Relevant Use cases. Technical Report Deliverable D2.1, EVITA
Project.

[36] ITS, ETSI. Security: Threat, Vulnerability and Risk Analysis (TVRA). Technical report, ETSI, 2010.

[37] M. Islam, C. Sandberg, A. Bokesand, T. Olovsson, H. Broberg, P. Kleberger, A. Lautenbach, A. Hansson,
A. Söderberg-Rivkin, and S. P. Kadhirvelan. Deliverable D2 - Security Models. HEAVENS Project, Version
1.0 (Release 1), September 2014.

[38] Dowd, Mark, John McDonald, and Justin Schuh. The art of software security assessment: Identifying
and preventing software vulnerabilities. Pearson Education, 2006.

[39] Schmittner, Christoph, et al. "A case study of fmvea and chassis as safety and security co-analysis
method for automotive cyber-physical systems." Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security. ACM, 2015.

[40] Macher, G., Sporer, H., Berlach, R., Armengaud, E., & Kreiner, C. (2015). SAHARA: A security-aware
hazard and risk analysis method. Design, Automation Test in Europe Conference Exhibition (DATE
2015), (pp. 621-624).

[41] C. Raspotnig, P. Karpati, and V. Katta, “A combined process for elicitation and analysis of safety and
security requirements,” in Lecture Notes in Business Information Processing, 2012.

[42] Bouissou, Marc, and Jean-Louis Bon. "A new formalism that combines advantages of fault-trees and
Markov models: Boolean logic driven Markov processes." Reliability Engineering & System Safety 82.2
(2003): 149-163.

[43] National Highway Traffic Safety Administration. Characterization of Potential Security Threats in
Modern Automobiles - A Composite Modelling Approach, October 2014

[44] Sapiro, B.: Binary Risk Analysis. Creative Commons License. 1st edn.

[45] Young, W., & Leveson, N. (2013). Systems thinking for safety and security. In Proceedings of the 29th
Annual Computer Security Applications Conference (pp. 1-8). ACM.

[46] SAE. 2016. Surface Vehicle Recommended Practice. Technical Report. 128 pages

https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-assurance-cases
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-assurance-cases

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 84

[47] J. P. Castellanos Ardila and B. Gallina. Towards Increased Efficiency and Confidence in Process
Compliance. 24th European & Asian Systems, Software & Service Process Improvement & Innovation
(EuroSPI&Asia2), Ostrava, Czech Republic, 5.-8. Sept. 2017.

[48] B. Gallina, E. Gómez-Martínez, C. Benac Earle. Promoting MBA in the Rail Sector by Deriving Process-
related Evidence via MDSafeCer. Computer Standards & Interfaces -SPICE-2016 Special Issue (CSI
SPICE-2016), http://dx.doi.org/10.1016/j.csi.2016.11.007

[49] B. Gallina. A Model-driven Safety Certification Method for Process Compliance. 2nd IEEE International
Workshop on Assurance Cases for Software-intensive Systems (ASSURE), joint event of ISSRE, Naples,
Italy, doi: 10.1109/ISSREW.2014.30, pp. 204-209, November 3-6, 2014.

[50] B. Gallina, K. Lundqvist and K. Forsberg. THRUST: A Method for Speeding Up the Creation of Process-
related Deliverables. IEEE 33rd Digital Avionics Systems Conference (DASC-33),
doi:10.1109/DASC.2014.6979489, Colorado Springs, CO, USA, October 5-9, 2014.

[51] OPENCOSS Project http://www.opencoss-project.eu/

[52] IEC 62443: Security for industrial automation and control systems

[53] Ray, Arnab, and Rance Cleaveland. "Security Assurance Cases for Medical Cyber–Physical Systems."
IEEE Design & Test 32.5 (2015): 56-65.

[54] BVR tool,” http://modelbased.net/tools/bvr-tool/ , accessed: 2017-06-07.

[55] VARIES,” http://www.varies.eu/ , accessed: 2017-06-07.

[56] EAST-ADL Brake-by-wire model http://www.east-adl.info/repository/examples/BrakeByWireSystem.pdf

[57] Georgios Despotou, Managing the Evolution of Dependability Cases for Systems of Systems, PhD
Thesis, April 2007

[58] Georgios Despotou, John McDermid, Tim Kelly , “Using Scenarios to Identify and Trade-off
Dependability Objectives in Design”, January 2005

[59] G. Despotou and T. Kelly, “An Argument Based Approach for Assessing Design Alternatives and
Facilitating Trade-offs in Critical Systems”, Journal of System Safety, 2007

[60] Morant A., Gustafson A., Söderholm P. (2016) Safety and Availability Evaluation of Railway Signalling
Systems. In: Kumar U., Ahmadi A., Verma A., Varde P. (eds) Current Trends in Reliability, Availability,
Maintainability and Safety. Lecture Notes in Mechanical Engineering. Springer, Cham

[61] Jhawar, Ravi and Lounis, Karim and Mauw, Sjouke (2016) A Stochastic Framework for Quantitative
Analysis of Attack-Defense Trees. In: 12th International Workshop on Security and Trust Management,
STM 2016, 26-27 September 2016, Heraklion, Crete, Greece (pp. pp. 138-153)

[62] ISO 26262. Road Vehicles-Functional Safety. International Standard, 2011.

[63] L. Montecchi and B. Gallina. SafeConcert: a Metamodel for a Concerted Safety Modeling of Socio-
Technical Systems. 5th International Symposium on Model-Based Safety and Assessment (IMBSA),
Trento, Italy, September, 2017.

[64] P. Haumer. Eclipse Process Framework Composer, Part 1: Key Concepts, 2007.
https://eclipse.org/epf/general/EPFComposerOverviewPart1.pdf

[65] I. Sljivo, B. Gallina. Building Multiple-Viewpoint Assurance Cases Using Assumption/Guarantee
Contracts. 1st ACM International workshop on Interplay of Security, Safety and System/Software
Architecture (ISSA), Copenhagen, Denmark, November 28th, 2016.

[66] Saaty, Thomas L. The Analytic Hierarchy and Analytic Network Measurement Processes: Applications
to Decisions under Risk, EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, Vol.1, No. 1,
2008, (122-196)

[67] Balakrishnan, Nikhil. Dependability in Medicine and Neurology: Using Engineering and Management
Principles for Better Patient Care. Springer, 2015.

[68] Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta, Kristin Yvonne Rozier: Model
Checking at Scale: Automated Air Traffic Control Design Space Exploration. CAV (2) 2016: 3-22

http://dx.doi.org/10.1016/j.csi.2016.11.007
http://www.opencoss-project.eu/
http://modelbased.net/tools/bvr-tool/
http://www.varies.eu/
http://www.east-adl.info/repository/examples/BrakeByWireSystem.pdf
https://eclipse.org/epf/general/EPFComposerOverviewPart1.pdf

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 83 of 84

[69] Ruiz, Alejandra; Melzi, Alberto; Kelly, Tim / Systematic application of ISO 26262 on a SEooC: : Support
by applying a systematic reuse approach .DATE '15 Proceedings of the 2015 Design, Automation and
Test in Europe Conference & Exhibition. 2015. p. 393-396.

[70] Alessandro Cimatti, Rance DeLong, Davide Marcantonio, Stefano Tonetta: Combining MILS with
Contract-Based Design for Safety and Security Requirements. SAFECOMP Workshops 2015: 264-276

[71] Amorim, T., Martin, H., Ma, Z., Schmittner, C., Schneider, D., Macher, G., ... & Kreiner, C. (2017,
September). Systematic Pattern Approach for Safety and Security Co-engineering in the Automotive
Domain. In International Conference on Computer Safety, Reliability, and Security (pp. 329-342).
Springer, Cham.

[72] ISO/IEC 15026-2:2011 Systems and software engineering - Systems and software assurance - Part 2:
Assurance case

[73] B. Gallina, E. Sefer and A. Refsdal, "Towards Safety Risk Assessment of Socio-Technical Systems via
Failure Logic Analysis," 2014 IEEE International Symposium on Software Reliability Engineering
Workshops, Naples, 2014, pp. 287-292.

[74] L. Grunske, J. Han, “A Comparative Study into Architecture-Based Safety Evaluation Methodologies
using AADL’s Error Annex and Failure Propagation Models”, 11th IEEE High Assurance Systems
Engineering Symposium, pp. 283–292, Nanjing, China, 3-5 Dec., 2008.

[75] M. Wallace. Modular architectural representation and analysis of fault propagation and
transformation, vol. 141, no. 3, pp. 53–71, 2005.

[76] CONCERTO Deliverable D3.3 November 2015 Design and implementation of analysis methods for non-
functional properties – Final version.

[77] CCSDS 350.1-G-1, Report Concerning Space Data Systems Standards, Security Threats Against Space
Missions, December 2015.

[78] NIST SP 800-30, Guide for Conducting Risk assessments, September 2012.

[79] SysML v1.4 Specification Release, September, 2015. http://www.omgsysml.org/specifications.htm

[80] Origin Consulting (York) Limited, GSN Community Standard Version 1, Nov. 2011,
www.goalstructuringnotation.info/documents/GSN_Standard.pdf

[81] SafeCer Deliverable D2.3.1, July 2012, “Extension of techniques for modular safety arguments”

[82] AMASS D1.5 AMASS Demonstrators (b), April 2018

[83] CONCERTO ARTEMIS JU project - http://www.concerto-project.org/

[84] MERgE Project – http://www.merge-project.eu/

[85] SafeCer – consisting of Artemis JU projects pSafeCer https://artemis-ia.eu/project/30-psafecer.html
and nSafeCer - https://artemis-ia.eu/project/40-nsafecer.html

[86] SESAMO Artemis JU project - http://sesamo-project.eu/

[87] EMC2 Artemis JU project - https://www.artemis-emc2.eu/

[88] AMASS D3.3 Design of the AMASS tools and methods for architecture-driven assurance (b), 30th March
2018.

http://www.omgsysml.org/specifications.htm
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.5_AMASS-demonstrators-%28b%29_AMASS_Final.pdf
http://www.concerto-project.org/
http://www.merge-project.eu/
https://artemis-ia.eu/project/40-nsafecer.html
http://sesamo-project.eu/
https://www.artemis-emc2.eu/
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf

 AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 84 of 84

Appendix A: Changes since the Predecessor Version D4.2 (*)

New Sections:

Section Title

2.1.4.1 System dependability co-analysis via ConcertoFLA

2.1.4.2 WEFACT Tool Concept

2.1.4.3 FMVEA Tool Concept

2.2.4 Support for variability management at the argumentation level

2.3.1 Abstract functions in the contracts specification

2.3.2 Contract-based trade-off analysis in parameterized architectures

2.3.3 General extensions to contract based multi-concern assurance

2.3.4 Contract-based trade-off analysis with the Analytical Network Process

3.1.2.1 Support specification of variability at the argumentation level

3.1.3.1 Abstract functions in the contracts specification

3.1.3.2 Contract-based trade-off analysis in parameterized architectures

3.1.3.3 Contract-based trade-off analysis with the Analytical Network Process

3.1.4.1 System dependability co-analysis via ConcertoFLA

3.1.4.2 WEFACT Tool Concept

3.1.4.3 FMVEA Tool Concept

4.1.10 Extensions

4.1.11 Implemented Multiconcern Assurance Related Requirements

Appendix A Changes since the Predecessor Version D4.2

Modified Sections:

Section Title Changes

1. Introduction Updated

1.1 From Monoconcern to Multiconcern Updated

1.2 Scope and Objectives of this Deliverable Updated

1.2 Relation to other AMASS Deliverables Updated

2.1.3.2 Normative spaces ready for SiSoPLE
Added description of process development in
EPF-C and the process execution with WEFACT
based on an example

2.2.2 Safety and Security Assurance Case Updated

4.1.6
Medini Analyze - supports the assurance
process workflow

Description extended with more details about
the latest tool version

5 Conclusions Updated

 References Minor extensions

 Abbreviations and Definitions Minor extensions

