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Executive Summary 

This deliverable is the final result of Task 4.2 Conceptual approach for Multiconcern Assurance. As an 
update of the intermediate deliverable D4.2 Design of the AMASS tools and methods for multiconcern 
assurance (a) [2], it provides extensions to the multiconcern assurance features described there in order to 
cope with the full set of requirements identified in D2.1 Business cases and high-level requirements [4].  

This document presents the various considerations and a consistent approach to multiconcern assurance at 
both the concept level and the design level. On the concept level, our multiconcern assurance approach 
focuses on analysis and risk assessment for assurance, assurance case modelling, and the extension of 
contract-based approaches for realising safety and security assurance at the same time. On the design 
level, we focus on how to implement the concept in toolchains and models for seamless and efficient 
assurance in cyber-physical systems, considering existing work. The implementation details are further 
elaborated, taking into account existing tools of the AMASS partners.  

In this deliverable edition, enhanced methods for multiconcern assurance are presented and the scope is 
extended from the focus on safety and security in D4.2 towards a wider variety of dependability attributes, 
in particular in the sections on methods and tools for trade off analysis. The relations to the activities and 
results in other WPs are pointed out and the AMASS CACM metamodel parts relevant for multiconcern 
assurance are explained. Finally, a table depicts the coverage of the WP4 related requirements by the 
methods described here. 

In the next step, the results presented in this deliverable will guide the implementation of the third 
iteration of the AMASS prototype (Task 4.3 Implementation for Multi-Concern Assurance), and the resulting 
implementation will be delivered as D4.6 Prototype for multiconcern assurance (b) [5] at the end of month 
29. 

Finally, Task 4.4 Methodological Guidance for Multi-Concern Assurance will build on the results identified 
here and on the experience in the case studies in order to provide methodological guidance to the AMASS 
end-users for the application of the multiconcern assurance approaches; this will be documented in D4.8 
Methodological guide for multiconcern assurance (b) [7] in month 31. 

This deliverable represents an update of the AMASS D4.2 [2] deliverable released at M15; the sections 
modified with respect to D4.2 have been marked with (*), then the details about the differences and 
modifications are provided in Appendix A. 
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1. Introduction (*) 

The AMASS project builds on concepts and tools developed in former projects, in particular in OPENCOSS 
[51] and SafeCer [85]. With respect to including security, ideas and approaches from EMC2 [87], SESAMO 
[86], MERgE [84] and CONCERTO [83] influence AMASS. More details on which concepts from previous 
projects were re-used or extended in AMASS can be found in D4.1 Baseline and requirements for 
multiconcern assurance [1]. 

1.1 From Monoconcern to Multiconcern (*) 

In a broad sense, multiconcern assurance is taking a holistic approach to achieve and balance the assurance 
goals set by different quality attributes such as safety, security, performance, and reliability. 

In AMASS, multiconcern assurance is focused on facing five challenges, which, if overcome, will enable 
multiconcern assurance: 

• Dependability Assurance Modelling: Extending the OPENCOSS CCL metamodel and vocabulary to 
include additional dependability related concerns besides safety, and also supporting mappings 
between concerns (presented in Section 3.1.2).  

• Contract-Based Multi-Concern Assurance: Using contracts to support compositional assurance and 
trade-offs (presented in Section 3.1.3). 

• System Dependability Co-Analysis / Co-Assessment: Addressing security issues, which may affect 
safety, and interrelations between safety and security, considering architecture related issues 
(presented in Section 3.1.4) 

• Looking at the interplay between safety and security in terms of process requirements. 

• Investigate security-informed safety-oriented process lines (SiSoPLEs). 

For the dependability assurance modelling and, in a narrow sense, multiconcern assurance, the goal is to 
specify a unified assurance case in which all various quality attributes such as safety and security and their 
interactions and interplay are clearly specified, such that all presented claims, argumentation, and 
decisions are connected and traceable. 

In a wider sense, it also relates to analysis/assessment and compositional approaches. The safety of a 
component may depend on a secure environment or a certain level of security. There are, thus, inter-
dependencies between different quality attributes in a reusable component and its environment. Such 
concerns need to be addressed and solved. In order to identify the need for security and safety and to 
support trade-off analysis, co-analysis and co-assessments need to be used. 

1.2 Scope and Objectives of this Deliverable (*) 

This deliverable presents the final design of the multiconcern assurance features: Dependability Assurance 
Modelling, Contract-Based Multiconcern Assurance, and System Dependability Co-Analysis and Co-
Assessment. It builds on the state of the art with respect to multiconcern assurance and the applicable 
standards presented in D4.1 [1], elaborating the way forward identified there and covering the respective 
requirements identified in D2.1 Business cases and high-level requirements [4]. It must be noted that the 
result of multiconcern assurance influences model instances which belong to other technical work 
packages. 

Relations to other WPs are pointed out and the AMASS CACM metamodel parts relevant for multiconcern 
assurance are explained. This deliverable is the final edition of the Design of the AMASS tools and methods 
for multiconcern assurance; it builds on D4.2 [2] and presents extensions to the multiconcern features 
described there.  
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1.3 Relation to other AMASS Deliverables (*) 

This deliverable is related to other deliverables: deliverables within WP4 as well as deliverables within 
other work packages. 

Within WP4, this deliverable is related to the following deliverables: 

It builds on the state of the art in the area of multiconcern assurance and the applicable standards 
presented in D4.1 [1] and on D4.2 [2], which contains the first iteration of the multiconcern assurance 
concepts and designs.  

The output of the deliverable represents the basis for the iteration (c) of the Integrated AMASS Platform 
with respect to multiconcern assurance, which will be delivered as D4.6 Prototype for multiconcern 
assurance (c) [5] in August 2018.  

Together with D4.1, and with the experience in the implementation gathered in Task 4.3, D4.3 also forms a 
basis for the guidelines to be developed in Task 4.4, which will be delivered as an updated version D4.8 [7] 
in October 2018. 

(Remark: The deliverable D4.4 [8] for the iteration (a) of the Integrated AMASS Platform was submitted 
earlier than D4.2, in m10, and contained only the basic building block Assurance Case editor. It was 
influenced by early conceptual considerations on multiconcern assurance in Task T4.2, but neither D4.2 nor 
D4.3 was a basis for this early implementation step). 

There are moreover relations to deliverables of other technical work packages: 

D4.3 receives the WP4-relevant high-level requirements described in D2.1 [2]. It contains the concepts and 
designs for the implementation of the remaining requirements after some had been implemented in D4.4 
and the major part in D4.5 (based on D4.2 concepts and designs). 

The evidence as results of individual assurance processes represents the instantiation of the evidence 
metamodel, which is part of WP5. The result of a trade-off analysis can be used as annotations of the 
assurance case, which is within the scope of WP4, but they also represent the basis for multiconcern-aware 
design decisions, which influence the architectural metamodel instantiation in WP3. 
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2. Conceptual Level 

In systems engineering, dependability is a measure of a system's availability, reliability, maintainability, and 
other attributes such as safety and security. Figure 1 gives an overview about attributes usually associated 
with dependability, typical threats to dependability, and means for increasing a system’s dependability. It 
shall be noted that AMASS also deals with performance as an additional attribute, which is not included in 
dependability. 

Figure 1. Relationship between Dependability & Security and Attributes, Threats and Means (after [14]) 

Multiconcern assurance is based on the consideration of dependability attribute during the whole system 
lifecycle. One of the challenges is that we cannot consider dependability attributes in isolation. Attributes 
interact and depend on each other. Therefore, co-engineering is necessary for reaching a sufficient level of 
dependability and balance between different dependability attributes. Co-engineering refers to the 
interactions between system engineering and the engineering of safety, security and other attributes.  

In this chapter, co-engineering is explored and designed. More specifically, system dependability co-
analysis and co-assessment are considered in Section 2.1, which provides subsections on co-analysis and 
risk assessment, on trade-off analysis, on further development of SiSoPLE for enabling process-related co-
assessment, and, finally, on co-assessment for safety and security assurance. Then follows section 2.2 
dependability assurance case modelling with, after an introduction, sections on the safety and security 
assurance case and on multiconcern argumentation. Section 2.3 provides information on multiconcern 
contracts. 

2.1 System Dependability Co-Analysis / Assessment 

Co-analysis and co-assessment are integral parts of multiconcern assurance.In this last iteration of the 
“Design of the AMASS tools and methods for multiconcern assurance” document [3], we extend the 
viewpoint of the predecessor version [2] to more quality attributes than merely safety and security. 

In D4.1 [1] Section 4.2.2, we reviewed the state of the art concerning safety & security co-analysis, focusing 
on model-based approaches. In D4.1 Section 4.2.4, we briefly reviewed safety & security co-assessment in 
the context of safety & security co-engineering and assurance, focusing on the process of assessment 
framework.  

Within the AMASS project, we distinguish between co-analysis and co-assessment: 
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• Co-analysis and risk assessment refers to the methods, techniques, and activities to identify safety 
hazards and security threats. For example, Hazard Analysis and Risk Assessment (HARA) and Threat 
analysis and Risk Assessment (TARA) are established methods enabling co-analysis.   

• Co-assessment refers to processes, methods, and techniques to evaluate whether a component of 
a system fulfils its claims that safety and security risks are effectively addressed, such that one can 
obtain confidence that a system will achieve its dependability objectives (see also section 2.2). We 
distinguish two inter-related types of assessments: 

o Process-related co-assessment for standard compliance, e.g. the assessment of compliance 
to IEC 62443-4-1 [52] focuses on the secure development process (see also sections 2.1.3, 

3.1.4, and 4.1.4, and D4.1 [1] for other domains).  

o Product-related co-assessment for product-specific safety and security measures, e.g. the 
assessment of compliance to IEC 62443-4-2 [52] focuses on the product-specific security 
requirements. 

In the AMASS project, we adapt and extend existing co-analysis and co-assessment approaches which 
contribute to co- or multiconcern assurance. Note that safety & security co-engineering is currently under 
active development in research, industry, and the standards. Several AMASS partners play an active role on 
this topic. Some of the methods are mentioned in D4.1 [1]. In this deliverable, we focus on the methods 
that we deem to be the most promising within the AMASS project.   

2.1.1 Co-Analysis and Risk Assessment   

Co-analysis covers a wide range of methods and techniques to identify safety hazards and security threats, 
which are often the activities in the early stage of a product/system development lifecycle, e.g. in the 
requirements engineering as well as the design phase. These analyses are also regarded as approaches to 
risk assessment, because the goal of the analyses is often to identify safety and security risks. In the 
following, this document focuses on methods for those domains which are applied in the AMASS use cases. 

In a recent work [23], the authors evaluate several best practice engineering approaches to safety and 
security, including the methods for systematic risk management and for system validation (risk 
management, Security-aware Hazard Analysis and Risk Assessment (SAHARA), FMVEA, and Attack Tree 
Analysis (ATA)) and for comprehensive dependability evidence provisioning (assurance case), especially in 
the context of ISO 26262 process landscape. While in the context of automotive functional safety the 
hazard analysis and risk assessment (HARA) method is standardised and mandated by the ISO 26262 
standard, several candidates for a cybersecurity threat analysis and risk assessment (TARA) method exist. 
Some of these methods are mentioned in the SAE J3061 cybersecurity guidebook but there are more of 
such methods published.  

SAE J3061 states on the collection of cybersecurity analysis techniques. “Appendix A - Description of 
cybersecurity analysis techniques” is provided as a reference to further research and to facilitate design 
and process improvements. Appendix A is not a comprehensive listing of “Cybersecurity analysis 
techniques” [24]. An overview and review of available threat analysis methods and their automotive 
applicability is given in [25]. In particular, this review also includes an analysis of the development phases in 
which these methods can be sensibly applied. While only a few are suited as TARA for early concept stages, 
some others have properties which are highly desirable at later development stages. Based on this analysis 
we selected the sequel of methods described in detail in the following. Notable methods are: 

• TARA methods listed in SAE J3061: 

o E-Safety Vehicle Intrusion Protected Applications (EVITA) method [35] 

o Threat, Vulnerabilities, and implementation Risks Analysis (TVRA) [36] 

o Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) [34] 

o HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS) model [37] 
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o Attack Tree Analysis (ATA) [30]  

o Software Vulnerability Analysis [38] 

• TARA methods beyond SAE J3061: 

o Failure mode and Vulnerability Effect Analysis (FMVEA) - Failure mode and failure effect 
model for safety and security cause-effect analysis [39] 

o Security Aware Hazard Analysis and Risk Assessment (SAHARA) [40] 

o SHIELD method giving guidance for security, privacy and dependability assessment of 

embedded systems, developed in the European SHIELD project1  

o Combined Harm Assessment of Safety and Security for Information Systems (CHASSIS) [41] 

o Boolean Logic Driven Markov Processes (BDMP) [42] 

o Threat Matrix [43] 

o Binary Risk Analysis (BRA) [44] 

o STAMP (Systems- Theoretic Accident Model and Processes) Based Process Analysis (STPA-
SEC) [45] 

D4.1 [1] already outlined a set of safety and security analysis techniques. Some of those methods are 
further explained in [24] and Table 1 which provides an overview of the TARA methods mentioned and not 
mentioned in SAE J3061. Also in this case, the overview is taken from Macher et al. 2016 and gives an 
overview of the different TARA methods mentioned in J3061 (Appendices A-C) [25]. 

Table 1. TARA Method mentioned in SAE J3061 

 Method 
Name 

Applicable 
Phase 

Key facts 

SA
E 

J3
06

1
 r

ec
o

m
m

en
d

ed
 

EVITA 
method 

Concept 
phase 

Outcome of a research project; classification separates different 
aspects of the consequences of security threats (operational, safety, 
privacy, and financial). 

Classification of severity is adopted and thus not conforming to the ISO 
26262 standard; classification of safety-related and non-safety-related 
threats differs and could thus lead to in-balances; accuracy of attack 
potential measures and expression as probabilities is still an open issue. 

TVRA --- Models the likelihood and impact of attacks; complex 10 steps 
approach; developed for data - and telecommunication networks; 
hardly applicable for cyber physical systems in vehicles. 

OCTAVE --- This approach is best suited for enterprise information security risk 
assessments; hardly applicable for cyber physical systems in vehicles; 
brings together stakeholders thru series of workshops. 

HEAVENS 
model 

System 
phase 

Based on Microsoft's STRIDE approach; determination of threat level 
(TL), impact level (IL), and security level (SL) for classification of threats; 
requires a high amount of work to analyse and determine the SL of 
individual threats; implies lots of discussion potential for each individual 
factor of each single threat. 

                                                             
 
 
1 https://www.shield-h2020.eu  

https://www.shield-h2020.eu/
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ATA System 
phase  

Analogous to fault tree analysis (FTA); identification of threats in a 
hierarchical manner; adequate for exploiting combinations of threats 
(attack patterns); requires more details of the system design to be more 
accurate, requires as prerequisite input identified attack goals. 

SW 
vulnerability 

analysis 

SW phase Examines software code to prevent occurrence of potential 
vulnerabilities; focuses on SW development level. 

Table 2 gives an overview of the TARA methods not mentioned in SAE J3061. Also in this case, the overview 
is borrowed from Macher et al. 2016 [25]. 

Table 2. Evaluation of TARA method by [25] 

 Method 
Name 

Applicable 
Phase 

Key facts 

n
o

t 
in

 S
A

E 
J3

0
6

1
 

FMVEA System 
phase 

Based on the FMEA; identify threat modes (via e.g. STRIDE model) for 
each component/function of the system, identify system level effects 
and risks, categorise risks via quantification of attacker effort, system 
properties for attack likelihood and threat effects. 

SAHARA Concept 
phase 

Threat analysis via STRIDE model; security and safety analysis possible 
in a combined and independent manner; easy quantification scheme; 
no adaptation of standardised quantification scheme for safety; 
requires less analysis efforts and details of the analysed system. 

SHIELD System 
phase 

Evaluates multiple system configurations; only evaluates system's 
security, privacy and dependability level; implies a high discussion 
potential for each classification, due to the lack of guidance on how to 
estimate the security, privacy, and dependability values. 

CHASSIS Concept 
phase 

Combined safety and security assessments; relies on modelling of 
misuse cases and misuse sequence diagrams; implies additional 
modelling expenses for the early development phase; structures the 
harm information in the form of HAZOP tables and in combination with 
the BDMP technique. 

BDMP System 
phase 

Based on ATA and FTA; fault tree and attack tree analysis are combined 
and extended with temporal connections. 

Threat 
Matrix 

System 
phase 

Proposed by US Department of Transportation; used to consolidate 
threat data; threat matrix is spreadsheet based; variation of the FMEA 
approach; geared towards the establishment of a threat database; not 
a preferable approach for concept analysis. 

BRA Concept 
phase 

Threat impact determination via 10 yes/no questions; quick risk 
conversations to enable discussion of a specific risk; not a full risk 
management methodology; quantitative analysis not based on statistics 
or monetary values; not a threat discovery or threat risk assessment 
technique on its own. 

STPA-SEC --- Control model based analysis, originally developed for safety and later 
extended for security. A mixture of a system engineering approach and 
analysis technique, compatibility with ISO 26262 lifecycle still in 
discussion, modelling based on control loops which can mask security 
relevant issues. 
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2.1.1.1 SAHARA as co-analysis method 

In the context of the AMASS project, the following methods represent a reference for co-analysis. 

The SAHARA method [40] combines the automotive hazard analysis and risk assessment (HARA) with the 
security domain STRIDE approach to quantify impacts of security threats and safety hazards on system 
concepts at initial concept phase. STRIDE is a threat modelling approach and an acronym for Spoofing, 
Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privileges. The key 
concept of the STRIDE approach is the systematic analysis of system components for susceptibility to 
threats and mitigation of all threats to enable argumentation of a certain security of the system. 
 

 

Figure 2. Conceptual Overview of the SAHARA method 

Figure 2 shows the conceptual overview of the SAHARA method and coupling of the safety and security 
analysis methods involved. For the initial stage, ISO 26262 confirms HARA analysis (see the right side of 
Figure 2) can be performed in a conventional manner. This means that the functions provided by the 
system are analysed for their possible malfunction (hazards) and the worst possible situation in which this 
malfunction may happen. The hazard and situation combinations (hazardous event) are analysed and 
quantified according to the ISO 26262 standard regarding their severity (S) and controllability (C) by the 
driver in the event of an occurrence. Further, the frequency and duration of exposure (E) in which this 
hazardous situation may occur is quantified. These factors (S, C, and E) determine the automotive safety 
integrity level (ASIL), the central metric for determination of development efforts required for the rest of 
the development process.  

The security-focused analysis of possible attack vectors of the system can be done independently by 
specialists of the security domain (see the left side of Figure 2). For this analysis, the STRIDE threat model 
approach is used to expose security design flaws of the system design by methodically reviewing the 
system design. This is done in five steps: 1) the identification of security objectives; 2) a survey of the 
application; 3) the decomposition of the application; 4) the identification of threats; and 5) the 
identification of vulnerabilities. This threat modelling approach does not prove a given design secure but 
helps to learn from mistakes and avoid repeating them. The two loosely coupled analysis steps (security 
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analysis and safety analysis) can either be performed by individual teams or in cooperation with safety and 
security experts.  

Table 3. Classification Examples of Knowledge 'K', Resources 'R', and Threat 'T' Value of Security Threats 

Level Required Knowledge (K) 
Classification 

Required Resources (R) 
Classification 

Threat Criticality (T) 
Classification 

0 Unknown internals (black-box 
approach) 

No tools required No impact 

1 Basic understanding of internals 
(grey-box approach) 

Standard tools Annoying, partial reduced service 

2 Internals disclosed (white-box 
approach) 

Non-standard tools Damage of goods, privacy 
intrusion 

3  Advanced tools Life-threatening possible, 
maximum security impact 

After this identification of possible security threats and safety hazards, the SAHARA method combines the 
outcomes of the security analysis with the outcomes of the safety analysis. The ASIL concept of the safety 
analysis is thus adopted and applied to the security analysis outcomes. In order to quantify the security 
level (SecL) of a threat, the required knowledge (K) and resources (R) to pose the threat, as well as the 
impact of the successful attack (T), are estimated (cf. Table 3). The factor T also implies impacts on human 
life (quality of life) as well as possible impacts on safety features. This information on security threats that 
may lead to a violation of safety goals is passed on for further safety analysis (depicted as SAHARA part 2 in 
Figure 2). 

The required know-how - 'K' - is classified as: Level 0 - no prior knowledge required (the equivalent of 
black-box approach). Level 1 - covers persons with technical skills and basic understanding of internals 
(representing the equivalent of grey-box approaches). Level 2 – represents white-box approaches, persons 
with focused interests and domain knowledge. 

Required resources - 'R' - to threaten the system's security are classified as: Level 0 - threats not requiring 
any tools at all or an everyday commodity, available even in unprepared situations. Level 1 - tools that can 
be found in any average household. Level 2 - availability of these tools is more limited (such as special 
workshops). Level 3 - are advanced tools whose accessibility is very limited and are not widespread.   

The criticality of the successful attack - 'T' - is classified as: Level 0 – indicates a security irrelevant impact. 
Level 1 - is limited to annoying, possibly reduced availability of services. Level 2 - implying damage of goods 
or manipulation of data or services. Level 3 – represents the highest criticality (affecting car fleets) and also 
implies impacts on human life (quality of life) as well as possible impacts on safety features. 

In general, the SAHARA quantification scheme is less complex and requires fewer analysis efforts and 
details of the analysed system than other available approaches. The quantification of required know-how 
and tools can also be seen as equivalent to a likelihood estimation of an attack to be carried out. 
Nevertheless, this quantification provides the possibility to determine limits on the resources spent in 
preventing the system from being vulnerable to a specific threat (risk management for security threats) and 
the quantification of the threat impact on safety goals (threat level 3) or its non-impact on them (all 
others). Moreover, a combined review of the safety analysis by security and safety experts can also help to 
improve the completeness of security analysis. Bringing together and combining the different mind-sets 
and engineering approaches of safety engineers and security engineers, who are able to work 
independently from one another and also mutually benefit from each other’s findings, is a fruitful approach 
that is likely to achieve higher analysis maturity standards. 
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2.1.1.2 FMVEA as co-analysis method 

The FMVEA Method [27] was developed in the context of the ARROWHEAD project and extends the 
established Failure Mode and Effect Analysis with security related threat modes.  

 
Figure 3. Main steps of FMEA 

Figure 3 gives an overview of the main steps for the standard FMEA. A system is modelled and divided into 
parts and all the potential failure modes are identified for each part. Depending on the detail level, parts 
can be process steps, functions, system architecture elements or software/hardware parts. All system 
effects are identified for each potential failure mode and the severity is evaluated. For all failure modes 
with a critical severity, potential failure causes and their likelihood are evaluated and the criticality is 
calculated. 

 

Figure 4. Depiction of the relation of cause and effect model for failures and threats 

Figure 4 gives an overview of the cause and effect model for the Failure Modes, Vulnerabilities and Effects 
Analysis. The failure part consists, as before, of failure cause, failure mode, and effect. Security related 
parts are added here, including vulnerability, threat agent, threat mode and effect. Depending on the level 
of analysis a vulnerability can be an architectural weakness or a known software vulnerability. Compared to 
safety, security requires not only a weakness but also an element, which is exploiting this weakness. This 
can be a software or a human attacker. Different threat modelling concepts can be used for the 
identification of threat modes such as CIA (confidentiality, integrity, availability), summarizing security 
properties an attack could exploit, or also STRIDE. Based on the severity of the effect, measured in terms of 
financial damage, loss of confidentiality or privacy and operational or safety impact and the likelihood of 
the failure or threat the criticality is measured. In the likelihood context, the system properties and attacker 
properties should be investigated. 

Identification 
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Existing databases and domain knowledge can be used for identifying potential failure modes. Since the 
challenge of security for the automotive domain has emerged relatively recently, there is less knowledge 
about the threat modes than is the case in some other fields and domains. The analysis is based on a 
system model, depicting network architecture and data flows. In the practice, we currently use threat 
modelling to identify and analyse threat modes for each element of the system model. The main steps 
involved in a threat modelling process include: 

1. Model a system by drawing the system architecture in data-flow diagram (DFD), adding system 
details to the elements in the DFD, and draw the trust boundaries.  

2. Identify threats stemming from data flows by using a threat identification methodology such as the 
STRIDE or CIA method [28]. An assessment of the severity of the threats can be added.  

3. Address each threat by redesigning the system, adding mitigation, or ignoring it if the risk is 
acceptable.  

4. Validate the threat modelling diagram against actual system and all identified threats are 
addressed.  

A DFD diagram consists of five types of elements: process, data store, data flow, external interactor, and 
trust boundary. A process is a software component that takes input and performs actions and/or generates 
output. In a DFD, a process can be modelled in different levels of granularity. If necessary, a high-level 
process can be decomposed into more detailed low-level processes in a hierarchical manner. For example, 
if we start to model all software components of a “Head Unit” at Level 0, we can further decompose it into 
processes of “Communication Gateway”, “Linux OS”, “Applications”, and “HMI” at a lower level for Level 1. 
Depending on the available system details and threat identification needs, a process can be further 
decomposed into lower-level components such as specific Linux kernel modules.  

Further to this, a data store in the DFD represents a firmware, file system, or memory. A data flow in the 
DFD is a directed arrow, representing the flow of data between two elements. For example, a data flow can 
be a protocol specific communication link such as CAN Bus, FlexRay, or HTTPs. An external interactor is 
either a human user or a user agent that interacts with a process from the outside. Trust boundaries divide 
the elements in the diagram into different trust zones, e.g. elements reside in the in-car systems and 
external hosts communicated from untrusted open networks. The assumptions on the trust boundary 
greatly influence the result of threat identification. A data flow originated outside the trust boundary is 
assumed to be untrustworthy by default such that additional verification or security controls should be 
applied.  

When identifying threats, different methodologies can be applied. STRIDE is a popular methodology due to 
its easy-for-developer origin and extensive documentation of applications. However, depending on the 
granularity of the system information available and the timing of the threat modelling in the development 
lifecycle, alternative methodologies can also be used for optimal cost-benefit results. For example, the 
enumeration of potential attacks on each of the elements in a brainstorming session by domain experts will 
already improve the security posture of the design at the concept phase. Mitigations are technical or 
organizational countermeasures corresponding to the identified threats. The linking of mitigations to the 
threats ensures that all identified threats will be considered and addressed, and puts mitigations into 
perspective with the overall security architecture. Threat modelling is essentially a theoretical model of 
perceived threats to a system. Validating the theoretical model against the actual system will ensure the 
correctness of the results from the threat modelling. Validating that all identified threats are addressed 
provides additional layer of quality control on the security activities in the development process. 
Depending on the level of details for the failure modes either data from past events or generic failure 
modes can be used.  

For the rating of severity, the FMVEA can either determine the severity directly or use information from 
previously conducted analysis such as e.g. SAHARA. Since FMVEA requires at least a basic system 
architecture more information for the rating of likelihood are available, like more detailed potential attack 
surfaces and weaknesses. 
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Table 4. CARE Attack Likelihood Parameter 
 

Parameter Values 

Capabilities Amateur (3) Mechanic, Repair shop 
(2) 

Hacker, Automotive 
expert (1) 

Expert team from 
multiple domains  
(0) 

Availability 
of 
Information 

Information 
publicly available 
(3) 

Information available 
for maintenance of for 
customer / operator (2) 

Information available 
for production, OEM, 
system integrator (1) 

Information 
available in 
company of ECU 
supplier (0) 

Reachability Always accessible 
via untrusted 
networks (3) 

Accessible via private 
networks or part time 
accessible via untrusted 
networks(2) 

Part time accessible 
via private networks 
or easily accessible 
via physical (1) 

Only accessible via 
physical (0) 

Required 
Equipment 

Publically 
available 
standard IT 

devices / SW2 (3) 

Publically available 
specialised IT devices / 

SW3 (2) 

Tailor-made / 
proprietary IT devices 

/ SW4 (1) 

Multiple Tailor-
made / 
proprietary IT 
devices / SW (0) 

Table 4 shows a likelihood rating system, which differs between the four factors: 

• necessary capabilities of the attacker 

• availability of information about the attacked systems 

• reachability of the attacked systems 

• required equipment for the easiest identified attack. 

Ratings for all categories are added up and assigned to one of five Likelihood categories (Table 5). 

Table 5. Likelihood categories 

Range 0-2 3-5 6-8 9-11 >11 

Category Improbable Remote Occasional Probable Frequent 

Values 0 1 2 3 4 5 6 7 8 9 10 11 >11 

This was done to be consistent with the five likelihood categories presented in IEC 60812, Analysis 
techniques for system reliability – Procedure for failure mode and effects analysis (FMEA). The result is a 
Likelihood Rating from Improbable to Frequent. 

2.1.1.3 ATA used in co-analysis 

The Fault Tree Analysis (FTA) is widely known as a state of the art methodology to analyse systems and 
subsystems in the context of the functional safety of systems. It is a deductive failure analysis, meaning that 
a known failure mode or undesired state is decomposed into a quantity of lower level events. By doing so, a 
tree of events and their logical combinations is constructed, giving in-depth information about the 
occurrence of the investigated top-level failure mode.  

                                                             
 
 
2 Readily available equipment, as example simple OBD diagnostics devices, common IT devices such as notebooks. 
3 Equipment that is obtainable with little effort, as for example computing power from a cloud provider, in-vehicle 

communication devices (e.g., CAN cards), or costly workshop diagnosis devices. 
4 Equipment that is not readily available, because it is either proprietary or custom made. 
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The fault tree analysis is a quantitative analysis, as each event or logical gate may be assigned a statistical 
probability. Subsystem failures occur at a failure rate λ and the logical combination with other subsystem 
failures leads to a quantified occurrence of the top level failure mode. This further leads to a better 
understanding of the system under investigation, especially when this system is integrated into a larger 
system-of-systems or is part of a distributed cyber-physical system. In the automotive domain, where 
complex multi-level integrator-supplier relationships exist, the FTA is requested by many standards 
(ISO 26262, IEC 61508) and is therefore state-of-the-art. 

As tackled in D4.1 [1] Section 4.2.2.3, the concept of the FTA in the field of functional safety is also 
applicable to the field of security. This allows capturing malicious risks on an extended fault tree. In this 
case, the top level event expresses the occurrence of a security related incident of the system under 
investigation. At the lower levels potential attacks are logically combined aggregating information about 
the top level event. 

Since the late 1990s a methodology evolved which uses structured data to identify threats to computer 
systems. While the so called attack tree analysis (ATA) was first applied within the domain of computer 
networks [30], it constantly evolved and was applied to other system categories, e.g. Supervisory Control 
and Data Acquisition (SCADA) systems. Conducting an ATA provides several advantages, compared to 
different methods. The ATA helps to understand what potential attack goals are, who the attackers are, 
what attacks are most likely to occur, which security assumptions apply to a given system, and finally, 
which investments regarding countermeasures are considered most effective.  

Attackers may have different motivations, and opportunity crimes typically require less effort than well-
planned operations. The kind of access to the system available to the attacker also plays a large role. 
Different unique skills may also be required by an attacker. The risk aversion of the attacker may heavily 
influence the attack execution. Acceptance of certain risks (e.g. publicity, jail time, death) leads to totally 
different attacks. Finally, a lack of all of these points may be compensated through the availability of 
appropriate funding. Attack trees help to describe the security of systems under investigation by building 
kind of knowledge databases. They are also a way to capture expertise, and make this knowledge available 
for future re-use, speeding up decisions and increasing their transparency. 

Attack trees are basically data trees, where the root node represents an attack goal. An attack goal 
represents the violation of a security property, such as confidentiality or authenticity. The subordinate leaf-
nodes represent attacks, targeting their linked attack goal. Multiple attack trees aiming at different attack 
goals may exist in parallel for complex systems. In this case, common attacks, which are relevant to 
multiple attack goals, are of special interest. When developing an attack tree, logical expressions are used 
to relate different applicable attacks to each other. A logical OR gate represents alternatives for attacking a 
system, whereas an AND gate determines attacks which are only successful in combination with each 
other. 

Each leaf node of an attack tree may be assigned Boolean properties, e.g. to indicate the feasibility of an 
attack. The options in this case are “possible” and “impossible”. Depending on the tree data structure, 
known system properties, or implemented security measures, certain tree branches may become irrelevant 
during analysis, as these properties are propagated up the tree. In contrast to Boolean properties, 
continuous node values may be assigned to leaf nodes. Typical examples are cost, time, or resource 
estimations, as these help to quantify the probability of occurrence of attack scenarios. 

Attack trees provide valuable information to safety- and security-engineers. The consideration of Boolean 
properties and continuous node values within a single analysis allows complex tree evaluations, e.g. to 
“determine the best possible attack which costs €1000 or less”. To determine if and which dedicated 
countermeasures against certain threats are taken, thresholds and guidelines are necessary to evaluate the 
selected metrics. From the automotive integrator’s perspective, assumptions are also subject to inclusion 
within an attack tree. A comprehensive list of assumptions, resulting from e.g. requirements, may influence 
security decisions based on attack trees. 

An attack tree is built in three steps: 
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1. Identify the attack goals. 

2. Identify attacks against each goal, repeat as necessary. 

3. Re-use patterns of attacks for re-usable components. 

If attack trees for a given system have reached a mature state, impact analyses give information on how a 
system modification affects the selected metrics. The value of an attack goal thus needs to be calculated as 
described. Following on from this first step, changes are applied to the system and new leaf nodes or even 
a new attack must be introduced. The tree is subject to upward modification as necessary. Finally, the new 
attack goal values are calculated and compared to the previous ones. This approach may also be used to 
compare and rank different attacks to the system under investigation. 

2.1.2 Trade-off Analysis  

Trade-off analysis deals with the attempt to satisfy requirements with respect to different competing 
quality attributes with the goal of finding a balanced set of mitigation measures for the design resulting in a 
“multiconcern-aware” architecture. 

Several publications of Despotou et al. ([57], [58] and [59]) draft approaches called FANDA and TOM for 
assessing design alternatives and facilitating trade-offs in critical systems; they were discussed in D4.1 [1]. 
While FANDA and TOM aim at facilitating the dependability (or assurance) case, the approach presented 
here focuses on satisfying non-functional system requirements with respect to different quality attributes 
by modelling both security-related attacks and safety-related failures in a common scheme in order to find 
an optimised architecture and design.  

The basic idea for Trade-off-Analysis presented in this subsection is to use Analytical Network Process (ANP) 
[66] to analyse the impact of failures and cyber-attacks on overall safety and security of the given system, 
and use this information as basis for system modification. ANP basically helps in integrating and analysing 
information obtained from several sources.  

As for system architecture, we propose an application of the ANP which results in something similar to 
FMEA, where we divide the system into components and for each component we analyse failure and threat 
modes. Next, we need to analyse how these components interact at subsystem level i.e. derive the sub 
system failure / attack rate and how these failures / attacks affect the system safety and security. A 
hierarchical structure of the system (with networks because of cross domain or intra domain dependability) 
can be obtained.  
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Figure 5. Example for hierarchical network structure 

The above Figure 5 is a simple example (just for a rough idea) of a safety-security hierarchical network 
structure for analysis. For understanding, in safety domain (right side of Figure 5), “failure cause 1” causes 
failure of “component 1” with a rate λ1, failure of Subsystem 2 is a disjunction of failure1, failure2 and 
failure3 (if any of these failures occurs at component level, subsystem 2 will fail). Subsystem 1 is 
compromised by sequential conjunction, at first step, component 1 fails, which makes it possible for 
attacker who already exploited vulnerability 2 to attack subsystem 1 with rate ʎ6 to get access and control.  

Based on the failure rate/attack rate and effect of these subsystem failures/compromises on system safety, 
their criticality is evaluated. All this information is provided in a matrix form which is called SUPERMATRIX, 
see Figure 6. This Supermatrix includes all the information from several sources such as the impacts of 
component failure on subsystem, of subsystem failure on system safety, of any attack mode on system, or 
of any attack mode on subsystem failure and vice versa for security.  
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Figure 6. Unweighted supermatrix of mutual effects between safety and security 

 
I. Red circle 2 entries show what is the impact of subsystem compromise / failure on overall safety. 

To calculate this part we suggest using Logical Markov Continuous Time Models as explained later. 
Impact values are based on severity and rate of failure/ compromise of subsystem. The overall rate 
is obtained by combining failure attack rates appropriately according to logical operator present. 

II. Green circle 1 entries show the attack rate with which the component vulnerabilities are exploited; 
this finally leads to compromising the subsystems, which has failure effect. Red circle 1 entries 
show how component failures interact to cause subsystem failure. These entries are based on 
relative comparison of failure/attack rates of components w.r.t. to subsystem.  

 
The ANP approach is based on steady state concept, which means after some powers, raised to the matrix 
it will become constant, and the matrix obtained is called LIMIT SUPERMATRIX as shown below in Figure 7. 
From this matrix, we know the impact of failure causes and attacks on the overall safety and security.   

However, to take into account multistage, multiple failure causes / attacks, and their interaction at 
different levels, we can use logical operators  𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 (∩),  𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 (∪),
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (↔). Combining these operators analytically is however a great challenge 
mathematically.  Continuous Time Markov Models (CTMM) however, provide a great advantage analytically 
in combining these operators for the analysis, and are being used in both safety and security domain. To 
analyse RAMS and Security, one approach can be to combine failure/maintenance tree with attack-defence 
tree using Logic driven CTMM. A state based transition model can be used to combine RAMS and security 
aspects. Such as if we consider ETRMS level 3 railway system, the GSM-R communication system for 
communication between RBC’s (trackside system) and trains, consists of many units such as BTS (Base 
Transceiver Station), RIU (Radio Interface Units), Euro Radio, GPRS infrastructure, Base Controller Station 
etc., failure of one or more of these units can cause failure of GSM-R communication system failure, which 
has effect on safety and availability of the railway system.  

Similarly, cyber-attacks such as malware, access to communication network, unauthorised interception, 
cryptanalysis, and man-in-the-middle attack can cause a compromise on integrity of communicated 
messages or service denial which has effect on safety and availability. Combining these failures and attacks 
can be done using logical operators and continuous time Markov models which will help us analyse RAMS 
impact on the railway system due to compromise on GSM-R communication system caused due to 
propagation of failures/attacks/ their combination.  Similarly, the impact on security of the system can be 
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analysed. This information obtained from CTMM analysis can be adequately provided in the ANP’s 
Supermatrix for extending ANP analysis to other attributes than only safety and security. In context with 
the Swedish Railway Signalling System, Morant et al. [60] apply Continuous Time Markov Models for failure 
and availability analysis using combined failure/maintenance trees. Similarly, Jhawar et al. [61] also apply 
Continuous Time Markov Models using logical operators for security analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Limit supermatrix of mutual effects between safety and security 

Red circle entries show the impact of corresponding component failures (failure cause) on safety and 
security. Blue circle entries show the impact of corresponding component (vulnerability) exploit on safety 
and security. 

One of the key aspect on using Logical Markov Models for integrating security concerns as above is the use 
attack rates. Attack rates, similar to failure rates provide a basis for combining cross domain multistage 
attacks/failures rate and impact (severity + rate of occurrence). However, in the current state of art for 
considering security concerns for safety as used in FMVEA, the likelihood of successful attack is based on 
semi-quantitative explicit analysis of susceptibility and threat property of system. The attack rate cannot be 
determined using empirical data and statistics as such due to constantly changing threat and defence 
scenario. Therefore, we need a comprehensive approach for calibrating empirical data with semi-
qualitative analysis approach to arrive at an appropriate attack rate ʎ.  

In addition to current parameters i.e. susceptibility and threat property, we may need to consider some 
other factors (with a scale as we have for susceptibility and threat property) which helps in taking into 
account the dynamics of threat and remediation technique, these factors may possibly include factors as 
mentioned in “Temporal Metrics” of Common Vulnerability Scoring System (CVSS). The three factors are 
Exploitability, Remediation Level and Report Confidence. Exploitability factor measures the current state of 
exploit techniques or code availability for exploiting a vulnerability. Current states of exploit in ascending 
order of their values possibly be Unproven (No exploit code, only theoretical), Proof-of-Concept, Functional 
(code available, works in most situations), and High. Similarly, Remediation Levels (RL) of vulnerability in 
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ascending order of their values can be Official Fix (when official patch is available), Temporary fix, Work 
around, and Unavailable. Report confidence is about the official status of acknowledgement of 
vulnerability. We should also include the impact of attack on several attributes, such as if the impact is 
safety critical and catastrophic then we should consider a higher attack rate and also patching rate should 
be less because a SIL 4 requirement needs more time for assurance of efficiency of patch, to be on safer 
side. 

2.1.3 Further development of SiSoPLE for enabling process-related co-assessment 

(*) 

This subsection first recalls basic information on SiSoPLE (Security-informed Safety-oriented Process Line 
Engineering), which is the extension of SoPLE (Safety-oriented Process Line Engineering), developed in the 
framework of the SafeCer project. The recalled information is mainly borrowed from [15]. Then, this 
subsection recalls a couple of normative spaces, where the need for SiSoPLE is evident and emerging.  

Finally, this subsection sets the conceptual underpinning for a more in-depth development of SiSoPLE. 

2.1.3.1 SiSoPLE and SiS-related terminological framework 

SiSoPLE was initially introduced by Gallina et al. 2015 [15]. SiSoPLE builds on top of the dependability-
related terminological framework and its expansion. 

More specifically, as recalled by Gallina et al. 2015 [15], Aviezienis et al. 2004 [16] introduced a 
terminological framework aimed at characterizing dependability in terms of its attributes, threats (faults, 
errors, and failures) and means. Dependability is usually indicated as an umbrella term, which embraces 
various aspects (attributes) related to trustworthiness. Safety and security are two dependability attributes. 

Safety is defined as absence of catastrophic consequences on the user(s) and the environment. Security is 
defined as composite attribute constituted of availability, integrity, and confidentiality. Availability is 
defined as readiness for correct service. Integrity is defined as absence of improper system alterations. 
Finally, confidentiality is defined as absence of unauthorised disclosure of information. 

Security-informed safety is an expression that has been recently introduced [17] to indicate an old truth: 
“For a system to be safe, it also has to be secure”. To guarantee an agreed level of safety/security, besides 
knowing what can go wrong, a risk assessment is needed. 

Despite the existence of the dependability terminological frameworks and despite the awareness related to 
the above-stated truth, the security and safety communities have progressed by following different 
development paths. For instance, they define risk in a slightly different way. The safety community defines 
risk as the evaluation of the effect of a failure condition. This assessment takes into consideration the 
probability and severity and thus enables the judgment with respect to acceptability. 

The security community defines risk [18] as threat x vulnerability x consequence, where consequence takes 
into consideration the attacker capability, the asset (i.e., aircraft if the risk is assessed at aircraft level) 
exposure and thus enables the judgment with respect to acceptability. 

Further to terminological differences, process differences exist between the security and the safety 
domains. However, there are strong reasons to align the safety and the security processes. Four main 
reasons were identified to motivate the introduction of SiSoPLE: (1) security assessment should be mostly 
focused on safety-critical and safety-related functions. If security assessment is performed without the 
knowledge of failure conditions, it may be performed inadequately and potentially not completely. 
Therefore, safety assessment should feed inputs to the security risk assessment process to highlight 
functions of importance to the security analysis; (2) safety decisions regarding requirements and 
architecture should ideally not interfere with similar security decisions. In the worst case, safety measures 
could conflict with security measures or one domain could limit technical solutions for the other domain. 
Architecture or equipment decision rather than being taken unilaterally should be taken in a collaborative 
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manner between safety and security; (3) once security threats are identified, they may need to be fed back 
into the safety process to show the relationship between threat conditions and failure conditions; and (4) 
finally, a common picture of risk assessment encompassing security and safety will likely be preferred by 
certification authorities. Certification authorities may accept separate system assessments for safety and 
security. However, the certification authorities will expect to see a global understanding of these risks and 
their influence on system design. 

SiSoPLE is a process lines engineering method that, similarly to SoPLE, is constituted of a scoping phase, a 
domain engineering phase, and finally a process engineering phase.  

During the domain engineering phase, commonalities and variabilities are identified. To do that, for each 
standard, the following actions are taken: 

• identification of certification-relevant process elements (e.g., activities and tasks) 
• identification of the order in which activities and tasks should be performed 
• identification of the way in which tasks are grouped to form activities 
• identification of the way in which activities are grouped to form phases 

Then, activities are compared with activities, tasks with tasks, etc. We also compare the order of execution. 
To ease this comparison, several aspects such as: irrelevant terminological differences; irrelevant ordering 
differences; and irrelevant grouping differences have to be overcome. More specifically, to overcome 
irrelevant terminological differences, the dependability-related terminological framework constitutes the 
starting point. 

Overcoming irrelevant terminological differences or identifying significant points of variations is crucial 
since it permits (process) engineers to reduce the complexity of the systems to be engineered as well as the 
complexity of the certification process. 

Once the commonalities and variabilities are known, a SiSoPLE model should be provided. To engineer 
single processes, aimed at satisfying a single certification body, process elements are expected to be 
selected and composed: all the commonalities are expected to be selected, jointly with the required 
variants, selected at corresponding variation points.  

A security informed safety process line is expected to enable the alignment of security and safety 
standards. As discussed in the background, there are strong reasons to enable such alignment since, if the 
alignment is not performed, the resulting safety assessment conclusions may be incomplete, the technical 
solution might be less than ideal and more engineering effort might be required to harmonise both security 
requirements and architecture with the safety requirements late in the design phase. 

While there is also potential for re-use between the security and the safety processes, these aspects mostly 
highlight that without some level of synergy between the security and the safety processes, an organization 
may not produce a safe system or encounter resource and/or technical challenges.  

Technical aspects related to in-depth SiSoPLE modelling and single SiSoProcess engineering are given in 
AMASS D6.2 [12]. Some initial results were published in [21]. Additional work regarding compliance 
checking in the context of co-assessment is under development. The direction is the one currently 
pioneered by Castellanos et al. 2017 [47] consisting of combining SiSoPLE with defeasible logics, and an 
approach for compliance by design specifically created for business processes. 

Moreover, continuation of SafeCer work on generation of process-based argument fragments is also in 
focus. MDSafeCer [49][48] and THRUST-related [50] solutions are being adopted and extended to argue 
about compliance in the context of safety and security standards’ interplay.  

2.1.3.2 Normative spaces ready for SiSoPLE (*) 

In this subsection, examples of normative spaces are given. In particular, the attention is focused on those 
domains (avionics and automotive) where multiconcern normative spaces seem to be defined and 
awareness regarding the need for co-assessment is spreading. 
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Avionics: RTCA DO-326A/ED-202A  

RTCA DO-326A/ED-202A [19] is a joint product of two industry committees: the EUROCAE Working Group 
WG-72, titled “Aeronautical Systems Security” and the RTCA Special Committee SC216, also titled 
“Aeronautical Systems Security”. DO-326A is a document that provides guidance to handle the threat of 
intentional unauthorised electronic interaction to aircraft safety. More specifically, it defines a set of 
partially ordered activities that need to be performed in support of the airworthiness process to handle 
such threat. This set of partially ordered activities is known as Airworthiness Security Process. This process 
is constituted of a set of activities: Plan for Security Aspects of Certification (PSecAC), Security Scope 
Definition, Preliminary Aircraft Security Risk Assessment, Security Risk Assessment, Security Development 
related activities, Security effectiveness assurance, and Communication of evidence (via PSecAC Summary). 
These activities are in turn composed of various tasks.  

In this section, we focus on a single activity, called Preliminary Aircraft Security Risk Assessment (PASRA), 
which belongs to the risk assessment set of activities. PASRA is aimed at identifying threat conditions and 
threat scenarios and assessing all security risks at aircraft level. PASRA takes as input the architecture under 
consideration, failure conditions and severity (which are established during the execution of the system 
development process described in ARP4761) and the information related to the security environment and 
perimeter, defined during the Security Scope Definition. Based on the input received, the following set of 
tasks is performed within the PASRA task: Threat Condition Identification and Evaluation, Threat Scenario 
Identification, Security Measure Characterization, and Level of Threat Evaluation. The final outcome of 
PASRA is the Preliminary Security Effectiveness Objectives, based on identified & evaluated threat 
conditions. DO-326A describes what security-related activities need to be performed but does not provide 
much guidance about how to perform these activities. DO-326A is expected to be used in conjunction with 
its companion document DO-356, which provides guidance and methods for accomplishing the activities 
identified in DO-326A in the areas of Security Risk Assessment and Effectiveness Assurance. 
 
Avionics: ARP4761 Including its Expected Evolution 

ARP4761 [20] Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne 
Systems and Equipment is an Aerospace Recommended Practice from SAE International. ARP4761 is a 
document that provides guidance to perform safety assessment. More specifically, defines a set of partially 
ordered activities that need to be performed in support of the airworthiness process to handle hazardous 
events (system and equipment failure or malfunction that may lead to hazard). This set of partially ordered 
tasks is known as Airworthiness Safety Assessment Process. This process, as newly stated in ARP4754A, is 
constituted of: Functional Hazard Assessment (FHA), performed at aircraft and system level, Preliminary 
Aircraft Safety Assessment (PASA), Preliminary System Safety Assessment (PSSA), System Safety 
Assessment (SSA) and, Aircraft Safety Assessment (ASA). Let us focus on Aircraft-level FHA. Aircraft-level 
FHA is aimed at identifying failure conditions and assessing all safety risks at aircraft level. Aircraft-level FHA 
takes in input the list of top-level functions plus the initial design decisions (architecture), the aircraft 
objectives and requirements. Based on the input received, the following set of steps is performed within 
the Aircraft-level FHA task: identification of all functions and corresponding failure conditions, 
determination of effects of the failure conditions, and classification of the determined effects. The final 
outcome of Aircraft-level FHA is the safety objectives and the derived safety requirements, based on 
identified & evaluated failure conditions. 
 
Avionics: RTCA DO-326A/ED-202A and ARP4761 comparison 

The Preliminary Aircraft Security Risk Assessment (PASRA) and the Aircraft-level Functional Hazard 
Assessment (AFHA), which are respectively defined in the above standards are further considered. By 
comparing PASRA and AFHA, commonalities and variabilities can be identified. PASRA and AFHA are both 
characterised by similar steps. PASRA and AFHA are both expected to produce in output a work product 
indicating the identified and evaluated conditions; such output can be seen as a partial commonality. 
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Commonality identification is not only useful for the purpose of reuse of cross-concern process 
information. It is also useful to enable in-depth co-assessment. As it was discussed by Gallina et al. [15], 
commonality identification and more in general SiSoPLE modelling would increase effectiveness since 
conflicts between safety and security will be dealt with early in the lifecycle and the risk of re-work later in 
the development cycle is reduced. SiSoPLE enables the alignment of multiple standards within a single 
model and thus it offers a means for the introduction of synergies between safety and security experts, 
avoiding potential conflicts. 

Automotive: ISO 26262 

ISO 26262 [62] regulates all phases of the entire lifecycle of the product (item), starting from the 

management and requirements specification phases up to the production release. The standard 

recommends the usage of a V-model at item level as well as at element (software and hardware) level. ISO 

26262 consists of 9 normative parts, each of which is structured into clauses. All the clauses state the 

objectives, inputs for the clause, recommendations and requirements to be fulfilled and finally the work 

products that are to be generated. Notes are also included. Notes are not normative and are expected to 

help the applicant in understanding and interpreting the requirements. Additionally, obligations on the 

corresponding methods are also imposed based on the assigned ASIL (Automotive Safety Integrity Level).  

Within this deliverable, the attention is limited to clause 8 of Part 6, which is related to the left-hand side of 

the software V-model, more specifically to Software Unit Design and Implementation. The first objective of 

this clause (Software Unit Design and Implementation) is to specify the software units in accordance with 

the software architectural design and the associated software safety requirements. A single activity (A1) 

can be identified for this purpose: A1-Specify the software units. The outcome for this activity is the work 

product Software unit design specification, which is the result of the application of the following 

requirements: 

• The requirements of this clause shall be complied with if the software unit is safety-related 
("Safety- related" means that the unit implements safety requirements).  

• Software units are designed by using a notation that depends on the ASIL and the recommendation 
level.  

• The specification of the software units shall describe the functional behaviour and the internal 
design to the level of detail necessary for their implementation.  

• Design principles for software unit design shall be applied depending on the ASIL and the 
recommendation levels to reach properties like consistency of the interfaces, correct order of 
execution of subprograms and functions, etc. 

 
Automotive: SAE J3061 

SAE J3061 [24] is a recently published Cybersecurity Guidebook, that provides a process framework for a 
security lifecycle for cyber- physical vehicle systems. SAE J3061 methods and procedures are very similar to 
the ones described in ISO 26262. This similarity allows the process to be applied in three different ways: a) 
separately from a system safety engineering process with integrated communication points, b) the two 
processes can be tightly integrated, or c) develop shared process and steps that are shared with safety, and 
then add the unique Cybersecurity process and steps. Options b) and c) have in common that they allow for 
cross-concern reuse. This reuse is specifically mentioned in part 8 Process Implementation of SAE J3061: "if 
a Cybersecurity process is tailored from an organization existing safety process and the processes are 
analogous to each other (share a common framework), then the Cybersecurity process can be developed 
by leveraging work that has already been done in the safety process development". However, in system 
safety the focus is on safety-critical systems, whereas in system Cybersecurity, both safety and non-safety-
critical systems are considered, since a Cybersecurity-critical system is a system which may lead to financial, 
operational, privacy or safety losses.  
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Within this deliverable, also in the case of SAE J3061, the attention is limited to a small portion related to 
clause 8, Part 6 of ISO 26262. 

Section 8.6.5 of SAE J3061 describes the Software Unit Design and Implementation phase in which one of 
the activities is the Design of the software units. The result of this activity is the Software unit design and it 
is related to two guiding principles on Cybersecurity for Cyber-physical systems. These principles are: 

• Design the feature with Cybersecurity in mind, starting in the concept phase of the development 
lifecycle. Engineers should consider Cybersecurity when defining the requirements that are to be 
met for the system and features.  

• Have status reviews to assess whether design work is on track to meet the Cybersecurity 
requirements.  

 
Automotive: Interplay and comparison between ISO 26262 and SAE J3061 

By comparing ISO 26262, clause 8 of Part 6 and Section 8.6.5 of SAE J3061, commonalities and variabilities 
can be identified. Thus, similar observation as for the avionics domain can be formulated. 

Moreover, it should be also observed that ISO 26262 is used to create a safety case where developers show 
that a system achieves a reasonable level of functional safety and is free of unreasonable risk. Functional 
safety concerns failures in electrical/electronic (E/E) components, which may lead to a hazard. 
Identification of hazards is performed with methods like hazard analysis and risk assessment and fault tree 
analysis. The ISO 26262-2011 concerning automotive functional safety does not mention any cybersecurity 
relation. This means that safety processes based on the first edition of the ISO standard did not cover any 
security aspects. 
 

 

Figure 8. Interaction between safety and security engineering 

However, the trend is towards implementing highly interconnected system functions in software, the 
systems are not isolated and they become cyber-physical. That implies security has to be part of the centre 
of interest. To overcome security issues, SAE J3061 is available to provide guidance for the development of 
cyber-physical vehicle systems. Its structure is analogous to the process framework from ISO 26262 but SAE 
J3061 introduces equivalent cybersecurity activities. 

The existing safety-related processes have to be expanded with methods like threat analysis and risk 
assessment and attack tree analysis. The overall management of functional safety has to be extended with 
the management of cybersecurity.  

An important aspect is the identification of the relationship between cybersecurity and safety. In some 
cases, cybersecurity influences only non-safety areas like privacy or financial impact. Our intention is to 
identify all possible ways how functional safety may be violated in the different development lifecycle 
phases. The concept phase intends to perform a risk analysis. In a combined process cybersecurity and 
safety risks will be identified jointly. In this context we have to consider that we have still risks which are 
only related to safety issues (e.g. hardware failure) and risks which are only related to cybersecurity (e.g. 
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attackers want to capture personal data). Cybersecurity risks without safety relation will be possibly 
identified but they are out of scope from our perspective.  

Based on analogies between safety and cybersecurity it is useful to define processes, which are integrating 
both topics. An integrated point of view is necessary because safety and security analysis will lead to 
measures, which have the task to mitigate identified risks, which can be caused by both disciplines. 

Co-engineering in our approach means to create integrated processes regarding safety and security. 
SiSoPLE is an appropriate method to bring activities from different domains together. It manages the 
handling of commonalities, variabilities and provides the opportunity to add optional activities. It improves 
the essential communication between the disciplines (see Figure 8). Furthermore, to tackle the co-
engineering demands the approach has to cover hazards, which arise due to the combination of safety and 
security risks. We need to perform a safety and security co-analysis. This type of analysis should guarantee 
that we identify potential hazards, which would stay undiscovered if only one discipline is examined in an 
isolated way. The measures from competitive disciplines must not influence each other in a not admissible 
way (“freedom of interference”). To make sure that is true, we have to perform a trade-off consideration. 
Initially we had a trade-off between performance and safety, now we have to add cybersecurity as a further 
attribute. To find a tolerable balance between measures, we have to rate them with a “trade-off metric”. In 
other words, developers have to decide how much impact is allowed for each of the safety and security 
measures. The metric is provided as an aid to find out the balance and as an argument why a specific safety 
security constellation has been chosen. Finally, all these arguments have to be collected in the assurance 
case, which covers the integrated safety and security case. 

The following paragraph describes the process development in EPF-C and the process execution with 
WEFACT based on an example. To illustrate the approach an exemplary process concerning verification of 
system design has been created in EPF-Composer. The process is based on ISO 26262 and SAE J3061. It 
considers "Product development at the system level", "Supporting processes" and “Cybersecurity 
activities”. Figure 9 shows the activities of the process in detail. 

 

Figure 9. Work Breakdown structure of process related to verification of system design 

The process is available in the work breakdown structure, which allows activity structuring. It is based on a 
verification pattern, which includes the general main activities related to verification. EPF-C stores patterns 
in the process folder “Capability Patterns”. The verification pattern is extended by specific activities for 
system design, verification, and cybersecurity verification. The extension of activities is a feature of EPF-C. 
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To use this feature additional tasks are defined and added to the pattern using the "Content Variability" 
function of EPF-C. This function allows the extension of tasks with input from other tasks. 

The example shows how cybersecurity is added to a process, which is mainly designed for functional safety 
consideration. Performing co-engineering is important because functional safety and cybersecurity issues 
are highly interactive. Cybersecurity can be taken into consideration by adding a safety and security co-
engineering loop [71]. In this loop, the developers make sure that the added cybersecurity measures do not 
influence the safety measures in an unintentional manner. It is important that interactive activities are 
considered jointly and not separately. The cycle stops when the system fulfils the demanded requirements. 

Once the process has been defined, it is ready for execution with WEFACT. Before an EPF-C model can be 
executed, it has to be exported from EPF-C to an XML file and subsequently imported to WEFACT. 

 

Figure 10. Process related to verification of system design in WEFACT 

Figure 10 shows the process model imported to WEFACT. It appears in the "Process Explorer" in the lower 
left corner. All activities of the process have to be on one level because the current version allows no 
structured processes. The next step is to connect requirements, input- and output files to the process. 
Requirements can be defined in WEFACT or they can be imported from a DOORS database, or the process 
model is created in EPF-C and imported into WEFACT in UMA format. 

Before the execution can be performed, workflow tools have to be defined and associated with the 
process. These tools use the available input files and produce output files according to the process 
specification. The lightning symbol in the upper right section of the process tab starts the tool. The button 
is enabled if the process is ready for execution. This is the case if the predecessor has been fulfilled and a 
tool has been linked. WEFACT provides the opportunity to fulfil processes manually by using the assigned 
button. The resulting output files are stored in a folder, which is under revision control by SVN. The 
appearance of a new file indicates that the process was executed successfully. The status changes to 
"successfully". 

WEFACT supports process execution activities, makes sure that requirements are fulfilled, related 
processes are executed properly and all work products are available. The generated work product files are 
used as evidence in the assurance case. The deliverables D1.5 to D1.7 demonstrate the methodology, by 
applying it in automotive case studies. 
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The question, how can we define a metric to evaluate trade-offs, needs further investigation; in particular 
the following two aspects need to be taken into consideration: 

• Risk reduction (e.g. overall risk decreases, even though safety or security risk may increase) 

• Lifecycle costs (e.g. engineering and production costs may increase) 

The idea of safety and security interaction is at the moment discussed in standard committees and should 
appear in the next release of ISO 26262. 

2.1.4 Co-assessment for Safety and Security Assurance (*) 

Parallel to process-related assurance assessment, product-related co-assessment is to determine the 
effectiveness of functional safety measures and functional security measures with respect to their safety 
and security objectives. The safety and security objectives can be specified by the requirements. 
Assessment methods include verification, validation, and testing. The results of the assessment can be used 
for safety and security argumentation in assurance cases [67]. 

Industries such as nuclear, aviation, railways, and their regulatory agencies have over the years developed 
standards, analytical techniques for safety assessment with interdisciplinary applications. Different lifecycle 
phases have to be covered for the safety assessment during the design and development of dependable 
systems.  This starts with a description of functional hazard assessment (FHA), followed by the preliminary 
system safety assessment (PSSA) and system safety assessment (SSA).  The aerospace industry has amongst 
the most rigorous standards. An important guiding document for safety in the development of new aircraft 
is ARP 4761 [20]. The methods employed are qualitative, quantitative, or both. The development process is 
iterative in nature with system safety being an inherent part of the process. The process begins with 
concept design and derives an initial set of safety requirements for it. During design development, changes 
are made to it and the modified design must be reassessed to meet safety objectives. This may create new 
design requirements. These, in turn, necessitate further design changes. The safety assessment process 
ends with verification that the design meets safety requirements and regulatory standards [20]. These 
techniques are applied iteratively. Once FHA is performed, PSSA is performed to evaluate the proposed 
design or system architecture. The SSA is performed to evaluate whether the final design meets 
requirements. 

The Functional Hazard Assessment (FHA) is performed at the beginning of system development. Its main 
objective is to “identify and classify failure conditions associated with the system by their severity”. The 
identification of these failure conditions is vital to establish the safety objectives. This is usually performed 
at two levels, for the example of aircraft industry—at the completed aircraft level and at the individual 
system level. The aircraft level FHA identifies failure conditions of the aircraft. The system level FHA is an 
iterative qualitative assessment which identifies the effects of single and combined system failures on 
aircraft function. The results of the aircraft and system level FHA are the starting point for the generation of 
safety requirements. Based on this data, fault trees, FMEA can be performed for the identified failure 
conditions which are studied later. ARP 4761 provides guidelines on how an FHA should be conducted. 

The Preliminary System Safety Assessment (PSSA) is a systematic examination of the proposed system 
architecture to examine how failures can lead to the functional hazards identified by the FHA and how 
safety requirements can be met. The PSSA addresses each failure condition identified by the FHA in 
qualitative or quantitative terms. It involves the use of tools such as FTA, Dependence Diagram (DD), and 
Markov Analysis (MA) to identify possible faults. The use of these is discussed later. The identification of 
hardware and software faults and their possible contributions to various failure conditions identified in the 
FHA provides the data for deriving the appropriate Development Assurance Levels (DAL) for individual 
systems. The process is iterative being performed at the aircraft level (for the case of airplanes) followed by 
individual system levels. 

The System Safety Assessment (SSA) is a systematic, comprehensive evaluation of the implemented 
system to show that qualitative (system development assurance levels, item development assurance levels, 
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hardware design assurance levels and software levels) and quantitative (safety-related reliability targets) 
safety requirements, defined in the FHA and PSSA have been met. The SSA integrates the results of the 
various analyses to verify the overall safety of the system and to cover all the specific safety considerations 
identified in the PSSA.  The SSA process documentation includes results of the relevant analyses and their 
substantiations as needed.  The output of the SSA is used as an input for the Safety Case. 

Co-verification and validation has been extensively discussed in D4.1 [1] Section 4.1.3. Regarding security 
testing, it is the process of exercising one or more assessment objectives under specified conditions to 
compare actual and expected behaviour.  

Security assessment is domain-specific. In the following, we use an example in the automotive domain to 
explain the principles and common methods in security assessment.  

Security assessment can generally be divided into two parts [31]: a theoretical security assessment and a 
practical security assessment. The theoretical security analysis identifies and understands the security 
weakness of an automotive CPS system based on a paper-based evaluation of the corresponding system 
specifications and documentations, for example, Threat Analysis and Risk Assessment (TARA) as described 
in SAE J3061.  Methods such as architecture review, threat modelling, and attack tree can be used to 
identify attack surface, entry point, weakness in cryptographic algorithms, and potential attacks. However, 
the theoretical security analysis does not identify implementation flaws or the deviation of the 
implementation from the specification. Moreover, it cannot detect vulnerabilities that are part of 
insufficiently documented specification or flaws hidden in components from a third-party from the supply 
chain.  

The practical security assessment can discover implementation errors that might be exploited by an 
attacker. It can also find unspecified functionality and deviation to the specification. Practical security 
assessment includes functional security testing for testing security-related functions for correct behaviour 
and robustness, vulnerability scanning to test the system for known-vulnerabilities, fuzzing to find new 
vulnerabilities of an implementation by sending malformed input to the target system to check for 
unknown, potential security-critical system behaviour, and penetration testing to mimic an intelligent 
human attacker to identify and exploit all vulnerabilities in a sophisticated way based on hacking 
experiences.  However, practical security testing cannot give assentation on completeness of the test. 
Hence, it should always be complemented by a theoretical security testing to identify possible security 
flaws. 

In the Industrial Automation and Control System (IACS) domain, security assessment often involved various 
security test methods, including stress test, port scan, vulnerability scan, protocol fuzzing. In stress test, a 
Denial of Service attack is launched on all TCP/IP protocols to ensure that the product can provide 
appropriate resistance against the attack. In port scan available ports (e.g. FTP TCP port 21) are targeted 
with malicious software which may lead to malfunction of system. In vulnerability scan, a software scanner 
is used to detect known vulnerabilities of the used and documented TCP/UDP ports and services, e.g. 
HTTPS port 443. In protocol fuzzing, a software fuzzer is used to cause a denial of service attack or a 
targeted system crash, by exploiting access violation or untreated program state. Variables in protocol 
fuzzing include features and constraints, forbidden or reserved values, linked parameters, and filed sizes.   

To implement fuzz testing method, a test platform (Figure 11) can be tailored for security testing of IEC 
61850, using a fuzzing simulator, IEDs, a remote-controlled power strip, and a switch [32]. 
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Figure 11. A testbed for fuzz testing of IEC 61850 

2.1.4.1 System dependability co-analysis via ConcertoFLA (*) 

ConcertoFLA [73] enables users (system architects and dependability engineers) to decorate component-
based architectural models (specified using CHESSML) with dependability-related information, execute 
Failure Logic Analysis (FLA) techniques, and get the results back-propagated onto the original model. 
CHESSML is an extension of SysML [79] used in CHESS toolset to enable component-based systems design. 
The dependability modelling is supported by SafeConcert [63], a subset of CHESSML, which allows the 
modelling of the failure behaviour for system components and so model-based dependability analysis, like 
failure propagation or state-based analysis. 

Different FLA techniques are available in the literature [74], and can be used at the early stages of the 
design phase to achieve a robust architecture with respect to linear relationships. ConcertoFLA builds on 
top of Failure Propagation Transform Logic (FPTC) [75]. Similar to FPTC, ConcertoFLA is a compositional 
technique to qualitatively assess the dependability of component-based systems. In ConcertoFLA terms, a 
component can act in four different possible ways: 

1. Source of the failure thus generating a failure due to an internal fault. 

2. Sink of the failure thus avoiding the propagation of the external fault (failure in input) through fault 
tolerance.  

3. Propagator of the failure.  

4. Transformer of the failure into a different type. 

ConcertoFLA rules are logical expressions, which specify the component’s behaviour by describing the 
input/output relationship. ConcertoFLA rule is a combination of the port (input/output) and the guide word 
referring to the failure mode; supporting standard failure modes i.e., timing, value and provision. Each of 
these failure modes has two specializations, which are early & late, ValueSubtle & ValueCoarse, and 
Omission & Commission corresponding to timing, value and provision respectively.  

ConcertoFLA allows users to calculate the behaviour at system-level, based on the specification of the 
behaviour of individual components. During the analysis, ConcertoFLA calculates the failure propagation 
paths and produces their representation according to the specifications of FlaMM meta model (see [76] for 
FlaMM structure and corresponding XML Schema). These failure propagation paths are utilized to generate 
a fault tree. In fault tree terminology, the failure at system level is referred to as top event and the 
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contributing failures are classified as intermediate and basic events. In safety context, the top event refers 
to a safety hazard which may cause accidents. In the security context, the top event is a breach of security 
properties i.e., confidentiality, integrity and availability. The intermediate and basic events contributing to 
the top event could also be due to the compromise of any of the concerns. For example, a cyber-security 
attack, which makes a component to halt its services, may cause a safety hazard, which, in turn, may cause 
an accident. Therefore, a fault tree integrating the security threat events contributing to the safety hazard 
could enable security-informed safety. To support the generation of such rich fault tree, a further 
elaboration is introduced to the input/output failure behaviour of the components. Before discussing 
modelling of the elaborated failure behaviour of components, first, security threat process and security 
related terms are introduced in what follows. 

The causality-chain that leads to the violation of the security-related properties is illustrated in Figure 12. A 
threat event, initiated by a threat source agent, able to exploit a vulnerability of an asset (e.g. a 
component/system) may result in a loss to the confidentiality, integrity and/or availability (often, together 
referred to as CIA) of the asset [77] [78]. Threat refers to the event or capability to breach security and 
cause harm. Where the vulnerability is a weakness or internal flaw in the design, architecture or 
implementation of a service/application. A threat source could be a malicious cyber-security attack, non-
malicious human errors, natural/human made disasters, etc. It is also worth noting that the accidents 
caused by safety hazards can also be a threat source enabling a situation, where a threat may exploit a 
vulnerability and cause a security breach.  However, to this end, the focus is on cyber-security attacks as 
threat source; hence attacker as a threat source agent. The loss to CIA of a component or system, which is a 
consequence of an attack, could be as following:  

• Unauthorized access of the system (loss of confidentiality)  

• Halting services of the system (loss of availability) 

• Corrupting the services of the system (loss of integrity) 

For instance, a cyber-security attack on a component, where a data corruption threat exploits the missing 
data integrity schemes vulnerability, may result in corrupting the services of the component. 

  

Figure 12. Process of Security breach [77] [78] 

The further elaboration of the input/output failure behaviour of components could be modelled using state 
machine diagram. Safeconcert, which is the CHESS dependability profile, allows to tag the state machine 
with <<ErrorModel>> stereotype. The error model provides support for modelling state transitions, 
erroneous state and the effect of this on a property of the component and its nominal behaviour. The state 
transition in the error model are specialized and could be tagged with <<Failure>> and <<InternalFault>> 
stereotype.  

To model the security, using an <<ErrorModel>>-tagged state machine, the failure, internal fault and effect 
are extended to include security threats, vulnerability and consequences respectively.  The security threats 
could be represented by a pre-loadable vocabulary (through exploitation of the connection with EPF 
Composer, where the requirements mandated by the standards are modeled), which refers to the specific 
threats used within a specific domain/standard. The inclusion of different types of threat could be collected 
from the catalogues of the domain and standard. For example, in the space domain, when engineering a 
space mission, the vocabulary provides a pre-defined enumeration of common/discovered security threats 
collected from CCSDS 350.1-G-2 [77] and NIST 800-30 [78] as well as by the personal competences (e.g., 
respective system engineer, security analyst, etc.). In a similar fashion, the vulnerabilities could be 
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represented as a pre-defined enumeration collected through different sources (for example personal 
competence, standards and results of previous threat analysis, etc.). Finally, the consequences could also 
be modelled using pre-defined effects, which refers to the loss of CIA. Figure 13 illustrates the error model, 
where a cyber-security attack initiates data corruption threat and exploiting the value check function is 
false vulnerability thus causing a transition to erroneous state.  

 

Figure 13. Error Model showing erroneous state transition due to security threat event and vulnerability 

A component could have multiple instances of <<ErrorModel>>-tagged state machines, attached to it. Each 
instance would provide the elaboration of input/output failure behaviour addressing a specific concern.  

2.1.4.2 WEFACT Tool Concept (*) 

WEFACT has been delivered in D4.5 [6] and the executable as well as a user manual are available. The 
extensions described in the following refer to functionalities for which the necessary capabilities are 
already available in WEFACT. It is in this sense rather about using the tool appropriately or in an extended 
manner. Exploiting the existing WEFACT features in this extended manner fulfils a couple of additional 
requirements beyond those cited when releasing the first tool in D4.5. The following sections explain which 
requirement is fulfilled by the extension and how WEFACT must be used in order to exploit the capability. 

Quantitative confidence metrics about an assurance case in a report. 

This refers to the “Could” requirement WP4_ACS_013: Provide quantitative confidence metrics about an 
assurance case in a report. “The system could produce a status report indicating a quantitative confidence 
metric for assurance case.” 

This requirement is partially fulfilled by WEFACT. Instead of a written, printable report, however, WEFACT 
displays the percentage of fulfilled evidences continuously on the screen. 

The following Figure 14 shows the WEFACT user interface. 
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Figure 14. WEFACT user interface 

The different parts of the screen marked with Roman numbers in black cycles contain information w.r.t 
requirements and processes as well as subprocesses: 

I. Project specific requirements 
II. Predefined engineering processes 

III. Requirement content 
IV. Process definition 
V. Child processes 

 
On top of the list of child processes (in the red ellipse), the percentage of fulfilled subprocesses is displayed 
and continuously maintained (e.g. during process executions). Figure 15 shows this part of the screen with 
higher resolution.  

 

Figure 15. Sub processes in WEFACT and the share of those fulfilled 

Extension to Assurance case status report 

This refers to the “Could” requirement WP4_ACS_011: Assurance case status report = “The system could 
provide the capability for querying the assurance case in order to detect: 1) undeveloped goals, 2) fallacies.  

WEFACT is able to fulfill part of this requirement in the sense described in the previous section 
“Quantitative confidence metrics about an assurance case in a report”, namely by continuous information 
about fulfilled and not fulfilled requirements as it can be seen in the list box in Figure 15. 
 

I 

II 

I 
III 

IV 
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Undeveloped goals would probably already be identified when no (sub)process is defined for creating the 
evidence (GSN solution) for a certain requirement. This uncovers that the respective goal is not fully 
developed. 

Also, certain fallacies can be revealed by WEFACT like for instance technically invalid argumentation 
strategies, namely when a solution is intended and used in the argumentation which – under the given 
conditions – cannot be proven because it exceeds the capabilities of the system. 

Deficiencies in the GSN argumentation tree itself, however, would be an issue to be detected by the 
Assurance Case editor or an associated completeness checker tool. 

System dependability co-verification and co-validation with WEFACT 

This functionality fulfils the “Must” requirement WP4_SDCA_002 System dependability co-verification and 
co-validation - “The system shall support efficient system or component co-verification and co-validation 
with respect to multiple quality attributes”. 

With the existing features of WEFACT it is possible to enable System dependability co-verification and co-
validation. For processes in WEFACT, predecessor and successor processes can be defined. It is, thus, 
possible to combine verification (or validation) processes related to different quality attributes in a way 
that they form an efficient combined process which can be automated in the WEFACT workflow. Figure 16 
shows an example. 

          

Figure 16. Example for an automated safety-, security- and performance-verification process. 

WEFACT instantiated for safety and security analysis processes 

This feature implements the “Must” requirement WP4_SDCA_003 - “The system shall allow combinations 
of safety and security analysis”. 

There are two ways to achieve co-analysis: 

(1) Using a combined safety and security analysis tool like FMVEA, or 

(2) Combining separate tools by a WEFACT workflow. 

The concept for case (1) is described in the following section 2.1.4.3. 

Here, with WEFACT, case (2) is meant. The safety and security co-analysis is achieved by combining 
separate tools like e.g. Microsoft’s STRIDE-method-based Threat Analysis tool and a commercial Hazard 
analysis tool, for instance APIS FMEA or some HAZOP tool in a common WEFACT workflow. Figure 17 shows 
how this conceptually works. 
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Figure 17. Concept for safety and security co-analysis by combined process inn WEFACT 

The part that is not covered in the two separate tools is the interaction point, as it is known from several 
standards, e.g. SAE-J3061 [24]. This is an analysis by experts to find out whether the results of both analysis 
processes (safety and security requirements) are compatible, if they are then the result of the co-analysis 
process is PASS, otherwise the result of the process is FAIL and the analyses must be adapted. 

2.1.4.3 FMVEA Tool Concept (*) 

Chapter 2.1.1.2 explains the basic principles of the FMVEA method as a combination of the security analysis 
method of Threat Modelling with the safety-related model-based FMEA (Failure Modes and Effects 
Analysis). The outcome comprises Threats and Hazards with a risk evaluation. In the following, an outline of 
the tool currently under constructions is given. 
 

 

Figure 18. FMVEA tool architecture. 

Figure 18 shows the basic architecture of the FMVEA Tool, which consists of three parts: 

• the Modelling Environment 

o It is planned to support SysML and Dataflow Diagrams, 

• the Analysis Engine 

o It parses the model and matches defined Threats and Failures to the system model, 

• the Threat & Failure Database 

o It stores known threats and enables applying them to a system model 

The Threat & Failure Database is customer-specific and embedded into the application, i.e. not accessible 
from outside of the tool. The tool will include an update functionality or the database which avoids 
overwriting the current database. 

The tool applies the known threats and failures from the database to the model, which is for instance 
imported as SysML model elements. The result are the threats and hazards for the individual system and a 
risk evaluation. 

In the assurance lifecycle, FMVEA can be used in the initial risk assessment for defining: 

• the required SIL (safety integrity level) of the safety function needed for risk mitigation, and 

• the target security level (SL-T in e.g. IEC 62443 terminology) to be implemented. 

In later lifecycle phases, FMVEA is helpful for the repeated safety and security assessments necessary for 
safety and security validation, when the appropriateness of the implemented concepts has to be validated. 
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2.2 Dependability Assurance Case Modelling  

The main focus of this section is to present an approach to create multiconcern assurance cases. Note that 
how to address various dependability attributes (i.e. multiconcern) in the system development lifecycle is 
outside the scope of this section. The focus is how to structure multiconcern assurance argumentation in a 
way which allows to easily understand interactions and support the maintainability of the assurance case 
and the system.  

2.2.1 Introduction 

Assurance cases use a structured set of arguments and a corresponding body of evidence to justify that a 
system satisfies specific claims with respect to its properties (i.e. safety, security, reliability, etc.).  

Basically, an assurance case serves two groups of stakeholders in the assurance process: the one that 
creates the assurance case in order to claim that a product or system satisfies certain properties; and the 
one that reviews the claims and evaluates the completeness and soundness of the product or system 
against the claims. Hence an assurance case provides a structured and reviewable set of artefacts that 
make it possible to demonstrate to interested parties that the system’s requirements have been met to a 
reasonable degree of confidence. However, a key difference between arguing security and arguing other 
dependability attributes of a system is the presence of an intelligent adversary. 

In addition to that, there is an increasing need to consider the maintainability of a system in the assurance 
case. Security relies on frequent updates to close newly detected vulnerabilities or adapt security measures 
to the increased capabilities of an attacker. With a monolithic assurance case, such maintenance requires 
the complete repetition of the evaluation of the assurance case. In order to ease this burden, 
compositional assurance will play an important role. 

In this section, we investigate how we can create a safety and security assurance case, as the first step 
towards the concept of multiconcern assurance.  

2.2.2 Safety and Security Assurance Case (*) 

2.2.2.1 Safety & Security Assurance Case Structure  

In D4.1 [1]  Section 4.1.4, we surveyed the existing work and proposals for assurance case structure. This is 
especially important in the cases where the assurance case of the different suppliers combine in order to 
create a greater assurance case of the system. In D1.1 Case studies description and business impact [9], the 
case study 3 presents a scenario, cooperative autonomous driving, where the assurance case of one vehicle 
is not enough and we need to assure the combination of the assurance cases of the vehicles involved in the 
driving action. This case study CS3 has been used as the scenario in which we have made our analysis, 
research and where we are applying our proposals. 

Many existing works suggest to combine the dependability attributes in a unified GSN structure, including 
safety, security, availability, reliability, etc. However, there are so far no detailed specifications on how to 
go beyond the top-level split as illustrated in Figure 19. Furthermore, there is no agreed way to combine 
safety and security assurance cases that are currently accepted by safety and security standards.  
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Figure 19. An Assurance Case Fragment 

The vision of the AMASS project is to arrive at a unified safety & security GSN structure to specify a 
combined safety and security assurance caseWe propose several views on safety and security assurance 
case, with different proposals on how to combine them. These proposals can be further refined and 
discussed to aim at a consensus.  

One first attempt is to create a structure of argumentation modules in order to explicitly show the relations 
of the assurance cases with the components that form the system. We have taken the scenario of 
cooperative driving to work the possible assurance case architecture specification. In Figure 20 the first 
attempt of arguments allocation into different arguments modules is shown.  
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Figure 20. Assurance Case Structure, argument modules decomposition for Cooperative driving scenario 

Figure 21 shows a proposal of the multiconcern assurance case structure. The system is assured for 
multiple concerns such that a set of system goals is developed for all the different concerns. The concern 
specific goals are the basis for the concern-specific assurance informed of other concerns, e.g., security-
informed safety assurance. The system goals are supported by the system requirements developed for all 
the different concerns. The concern-specific system goals are supported by the safety requirements specific 
to different concerns. For example, a safety goal may be supported by both safety and security 
requirements. The system requirements are supported by the assurance case of different components, 
where each component assurance case includes assurance of that component for the different concerns. 
The different component concern specific modules support each other. For example, a safety module of 
one component may be supported by the security module of that or some other component. Interplay of 
the concerns on all the levels where cross concern trade-off occurs (goals, requirement and components) is 
handled in the trade-off module. 
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Figure 21. Multiconcern assurance case structure 

If we look at the “Trade-Off” argument module, the content will be aligned to the argument pattern 
presented in D4.1 [1] for making multi-attribute trade-offs and published in [59] and shown in Figure 22. 
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Figure 22. GSN Argument Pattern for making multiconcern trade-offs 

2.2.3 Multiconcern Argumentation  

When integrating different quality attributes in a unified assurance case, we identify the following generic 
relationships:  
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• Dependency relationship: The claim A of one attribute depends on the fulfilment of claim B of 
another attribute. For example, a fail-safe claim of attribute safety depends on the claim that the 
safety instrumentation system is not tampered of attribute security. 

o There is also a weaker connection, independency, meaning an element does not interfere / 
depend with other elements, e.g. is patchable /changeable without changing the rest of the 
assurance case. This relation is probably weaker than dependency, e.g. two goals do not 
depend on each other. 

• Conflicting relationship: The assurance measure of attribute A is in conflict with the assurance 
measure of attribute B. For example, a strong password or blocking a terminal after several failed 
login attempts for security conflicts with the emergency shutdown for safety. Resolution of such a 
conflict need to be noted in the Assurance Case. 

• Supporting relationship. The assurance measure of attribute A is also applicable to assurance of 
attribute B, such that one assurance measure can be used to replace two separate ones if the 
attributes are considered and addressed individually. For example, encryption can be used for both 
security for confidentiality and to check data integrity for safety instead of checksum. This means 
two goals can be addressed by one argumentation. 

These relationships can appear at all levels of an assurance case structure, from safety and security goals to 
evidence and justifications. Therefore, a relatively simplified approach to multiconcern assurance is to 
adapt the existing GSN structure to cover the aforementioned three relationships.  

We propose the use of an impact relationship concept to address the different relationships mentioned 
above head. The impact concept is an abstract relationship which takes advantages of proposals made by 
research groups working in this area. 

The dependency relationship between a claim A and a claim B, so that claim A will only be true if claim B is 
also true can be explicitly specified using “in the context of” notation with a closed white arrow (see Figure 
23). Usually this type of relationship in GSN is used connecting a claim within a context; however, here we 
use it connecting two claims which both need to be supported by evidences.  

 

Figure 23. The dependency – impact relationship 

Lately, the Object Management Group (OMG) has been working on a standard for Structured Assurance 
Case Metamodel (SACM) in order to provide a common and structured way for assurance case 
composition. One of the concepts included in the standard is the AssertedChallenge. “The 
AssertedChallenge association class records the challenge (i.e. counter-argument) that a user declares to 
exist between one or more Claims and another Claim”. In the OPENCOSS project [51] Deliverable D5.3, it 
was proposed to have a graphical notation for this concept, a red arrow with a cross in the middle (see 

Claim A Claim B 
in the context of 

Evidence 
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Figure 24). The target of the arrow is a Claim D which is conflicting and will become false if the source of 
the arrow, Claim C, becomes true.  

 

Figure 24. The conflicting-impact relationship 

Finally, the supporting relationship mentioned before can be noted using already accepted notation to be 
used in argumentation patterns. There is a GSN option symbol, which is used to represent choices between 
lines of argumentation used to support a particular claim [83], for example, Claim E is supported either if 
Claim F is true or Claim G is true (see Figure 25). It is highly recommended to provide an annotation 
denoting the nature of the choice made. 

 

Figure 25. The supporting-impact relationship 

In this context, since multiple quality attributes are considered in one picture, more specific questions arise 
such as: 

• Safety is usually non-degradable. What if a non-safety assurance measure has the potential to 
lower the SIL level? 

• Is it possible to reduce 100% availability in order to allow an emergency shutdown when safety 
issues occur? 

• Security update is a solution to the changing threat landscape. But should a security update be 
delayed because it will compromise availability? 

• Can we justify a decision for less expensive component as a trade-off for reliability? 
• Security threats evolve in time, as attacks improve, will the security mechanism be effective after 

some time? 
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It is important to mention that when dealing with security, effectiveness is valid just for a period of time, 
for that reason, assurance cases should be checked periodically. We propose to re-create the evidences to 
ensure they are still supporting the claims and if not, provide an impact analysis and modify the system to 
ensure the vulnerabilities are well mitigated and/or avoided. 

2.2.4 Support for variability management at the argumentation level (*) 

As known [72], an assurance case is constituted of claims, contextual information, evidence, and reasoning 
structures aimed at explaining why the claims are sufficiently supported by the evidence. 

As documented in D6.2 [12], these elements may vary (e.g., based on the criticality) and thus, it becomes 
clear that a single assurance case model does not fit all assurance needs. One size does not fit all. An entire 
family of assurance cases is embraced.  

Thus, additional concepts are needed to enable the systematization of reusable assurance-case-related 
modelling elements between family members. 

• Assurance case-related commonality: indicates the assurance case elements that do not vary and 
that characterize the family of assurance cases. 

• Assurance case-related variability: indicates the assurance case elements that vary and that 
characterize the individuals within a family of assurance cases. 

• Assurance case-related variation point: indicates points of variation where a product element may 
represent: 

o Assurance case-related options, when for instance an additional branch aimed at 
developing the argument is not always needed due to optional requirements. 

o Assurance case-related alternatives, when for instance alternative branches aimed at 
developing the argument can be chosen, due to requirements that can be met in different 
ways. 

• Variability: Two kinds of variability might be identified within a set of assurance cases: 

o Intrinsic: whenever there is more than one argumentation style to support the claims of a 
particular product-line instance (see, for instance, alternative). 

o Extrinsic: whenever reusable assets (referenced in the assurance case and bound to 
concrete assets within product-line models such as the feature and reference architectural 
models) vary. 

To enable the systematization of reuse when engineering families of arguments, within AMASS, an 
orthogonal solution based on the BVR Tool was proposed. The BVR-Tool-based solution permits users to 
reason about variability in a unified way regarding process, product, and assurance cases. The BVR-Tool-
based solution is currently under development in the context of WP6, more specifically in D6.3, final and 
public version of D6.2.  

2.3 Multiconcern Contracts 

Contract-Based Design provides the mechanisms to formalise assumptions and guarantees of components 
and to formally verify that structural decomposition of a system into components is correct, i.e., that the 
guarantees of the system is assured by the subcomponents provided that the system assumptions hold and 
that the assumptions of subcomponents are assured by the sibling subcomponents, again provided that the 
system assumptions hold. If the contracts involved in the contract refinement are related to different 
concerns, we can talk of a multiconcern contract refinement. This information is typically however hidden 
and not exploited. It is instead important to highlight the concerns of the contracts to make explicit in the 
argumentation how they interact, how the proof of the contract refinement guarantees their compatibility, 
how a mechanism (e.g., a monitor or an encoding function) is used for both safety and security, or how a 
safety mechanism (e.g., a redundancy) has been introduced to make a security mechanism fault tolerant. 
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Employment in the AMASS Platform 

The AMASS platform will allow to tag requirements, properties, and contracts with concerns (i.e., safety, 
security, performance, etc.). When the contract refinement involves multi concerns, the related argument 
fragment will be enriched with a rational explaining how they interact and/or interfere. 

The tool functionality supporting this multiconcern contract-based assurance will extend the contract-
based assurance described in D3.2 [10]. 

Usage of multiconcern contracts in assurance via argument-fragment generation 

In D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a) [10], we have 
presented how contracts traced with assurance information can be used to automate instantiation of 
argument patterns stating that the corresponding requirements are sufficiently satisfied. Extending CACM 
with concern tags for requirements allows us to distinguish to which concern belongs the particular 
requirement and also the associated contracts and the assurance assets. The concern tags then allow us to 
generate concern-specific argument-fragments that represent a skeleton of the concern assurance case. 
The safety engineers are envisaged to continue building upon the generated skeleton. This idea is depicted 
in Figure 26 for the case of safety and security concerns. Knowing to which concern is a particular 
argument-fragment related allows us to either build concern-specific viewpoints of the assurance case, or 
even to build a unified dependability case where the different fragments would support different concern-
specific goals.  

 

Figure 26. Assuring different concerns via multiconcern contracts, taken from [65] 

2.3.1 Abstract functions in the contracts specification (*) 

Supports WP4_CMA_002 and WP4_SDCA_002. 

Security-related requirements sometimes refer to confidential data or high-level security data or similar 
attributes associated with data. The semantics of such attributes is often not clear and the actual 
implementation of the system must give them a meaning, for example saying that data coming from the 
hospital records are always confidential. Sometimes it is possible that specific component attributes always 
contain either high-level or low-level security data. More often, this depends on the actual data values so 
that we can represent it as a function of data (e.g. “is_confidential(record)”). When dealing with 
architectural design, it is sometimes impossible to give a specific semantics to these functions and it is 
useful to use “uninterpreted functions” to formalize security-related requirements and analyze their 
interaction with other concerns. For example, in the work proposed in [68], OCRA has been used to analyze 
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the contract refinement of a security-related requirement and how monitoring mechanisms can be used to 
ensure the security in case of component failure.  

More specifically, the system-level requirement specified that “no high-level data shall be sent to the 
external world” formalized as “never is_high(output_data)”. This was structured into a contract assuming 
that “The user shall switch the dispatcher to high before entering high-level data” formalized as “always 
((is_high(cmd_data)) implies ((not switch_to_low) since switch_to_high))”. The contract refinement was 
proved correct. Moreover, fault-tree analysis confirmed that no single failure of the dispatcher or the 
monitor could cause the system security failure (to be precise, single point of failures could be the user not 
respecting the assumption or the component inventing high level data). 

2.3.2 Contract-based trade-off analysis in parameterized architectures (*) 

Supports WP4_CAC_010.  

Parametrized architectures, as defined and developed in WP3, provide the means to analyze the system 
architecture in different configurations. Each configuration may enable/disable some components, ports, 
connections, and contracts. Different configurations can be analyzed and compared with respect to 
different aspects: contract refinement, satisfaction of formal properties, fault tolerance, minimal cut sets, 
reliability measures. Such an approach was for example followed in the analysis of different configuration 
of the next generation of air traffic control design [68]. 

Comparing the different configurations allows the designer to perform trade-off analysis and design space 
exploration. Architectural choices are supported by the mentioned analysis results. In particular, the choice 
whether adding or removing a function (represented by a block or by a contract), enabling or disabling a 
redundancy, or other similar changes is supported by checking which functional and non-functional 
properties hold in the different configurations. This trade-off analysis is enhanced by the information about 
the concern addressed by the different properties and contracts: the analysis provides a direct way to 
evaluate the impact of the trading-off architectural elements on the multiconcern represented by 
properties and contracts. 

2.3.3 General extensions to contract based multi-concern assurance (*) 

OPENCOSS proposed a methodology for structuring argumentation in component-based systems and 
integrating it to form system-level ssuring the interfaces with other components. From the safety 
perspective, safety is a whole system properargumentation.  In component based design, components are 
assumed to have a correct functionality just by aty and assuring the correct function of components does 
not mean that the (composed, integrated) system will remain safe. The context in which the component is 
going to be integrated is important, and as Ruiz [69] indicated for the SEooC (Safety Element out of 
Context) perspective, the assumptions of the item can be understood as the context characterization. In 
addition, to support safety assessment, failure behaviours of components, and their behaviour in the 
presence of failures, must be defined. 

Similarly, to reconcile the bottom up component-based approach with top-down hazard and safety 
analyses, SafeCer proposed that generic evidence about components properties is linked with specific top-
down safety requirements of one or more systems in which the component is used [81]. One method for 
presenting a safety case is via a safety argument (a logical decomposition arguing about the safety of the 
system) which is supported by evidence (e.g. software testing results or static analysis). The generic 
evidence about the component properties are captured in the component argument fragments. 

In AMASS we propose to merge both approaches to take advantage of both OPENCOSS and SafeCer 
contributions to compositional assurance. In particular, we build upon the compositional assurance 
methodology proposed by OPENCOSS and use it as the basis for structuring the assurance case. 
Furthermore, for ensuring the validity of the component context, we take advantage of the formal 
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validation of multi-concern contracts envisaged in SafeCer and improved in AMASS, in the context of WP3. 
This supports conceptually WP4_CMA_003. 

Building upon the OPENCOSS and SafeCer usage of the argument contracts for compositional assurance, we 
integrate the argument contracts within the AMASS multiconcern assurance case structure proposed in 
Figure 21. We use argument contracts to capture the interplay between the concerns by creating argument 
contracts between concern specific modules. In particular, we make the argument contracts both between 
the hierarchical levels (e.g., between goal and requirement modules) and between the different concern 
modules on the same level (e.g., between different concern specific modules about requirements), as 
depicted in Figure 27. 

To capture the interplay of concerns in argument contracts, we should capture and describe the generic 
relationships for multiconcern assurance identified in Section 2.2.3. Capturing the supporting relationships 
across concerns can be done via the existing contract argumentation pattern proposed by IAWG and 
presented in D4.1 [1]. For capturing the dependency and conflicting relationships in argument contracts, 
we adapt the existing pattern to capture the information relevant for the new relationships. 

 

Figure 27. Capturing interplay of concerns in argument contracts 

 
Figure 28 presents the safety case contract argument pattern for capturing the conflicting relationships 
across concern-specific modules. We relate the affected goal with all the conflicting goals, and for both 
include the inherited contexts, so that the conflicting relationship can be better understood. Furthermore, 
for each conflict, there is a choice to either resolve it and point to the trade-off argument discussing its 
resolution, or justify why the conflict does not require resolution. Since the resolution of the conflicts may 
imply the revision of the initial goals, the versioning of the goals can be used to indicate which versions 
were in conflict and needed resolution. 



              

         AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0 

 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 51 of 84 

 
 

 

Figure 28. Safety case contract argumentation pattern for capturing the conflicting relationships across concern-
specific modules 

The dependency relationship follows a similar pattern as the supporting relationship where all 
dependencies are identified and explained via contexts of the related goals. The adapted safety case 
contract argument pattern for dependency relationship is shown in Figure 29. 

The initial argument contracts for some generic relationships can be derived from the results of formal 
verification via component contracts. For example, the supporting relationships between different safety 
case goals can be identified when the same formal property or a component contract is used to formalize 
two different requirements of two different concerns. The conflicting relationships can be identified in case 
of identified inconsistency between different component contracts or formal properties related to different 
concerns. Finally, the dependencies can be identified between different component contracts when 
guarantees of a particular concern-specific component contract are needed to satisfy assumptions of 
another concern-specific component contract. By analysing the results of component contract refinement 
and property consistency checking we can automatically identify and generate skeleton argument contracts 
for some of the relationships relevant for multiconcern argumentation. Since not all relationships can be 
identified based on the results of component contract checking, the remaining multiconcern relationships 
need to be identified and captured in the argumentation contracts. 
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2.3.4 Contract-based trade-off analysis with the Analytical Network Process (*) 

Supports WP4_CAC_010. 

As discussed in conceptual section the ANP allows to evaluate the impact of factors on the bottom of the 
hierarchy to the top dependability attributes which are set by our desired goal. This gives a design feedback 
that changes in design of which component or sub-system will enable us to achieve our desired goal. It also 
tells us the relative impact of all factors that are affecting that component or subsystem such as failure 
causes or vulnerabilities, so we know which security strategy or component with increased reliability (may 
be redundancy) can help us to achieve this goal, which will be verified by analysis for the impact on 
dependability attributes. All the appropriate design possibilities can be evaluated to find if the safety 
critical system requirements meet and for their impact on other non- safety attributes for tradeoff analysis. 

Since ANP represents information in such a way that the impact of factors at bottom (say level 0) will be 
shown at all upper levels e.g. level 1, level 2, .... and dependability attributes at top, this makes contract 
based analysis easier.   

 

Figure 29. Safety case contract argument pattern for dependency relationship 
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3. Design Level 

3.1 Functional Architecture for AMASS Multiconcern Assurance 

3.1.1 Overview 

Multiconcern assurance is the way assurance must be done if more than one quality attribute of a critical 
system has to be taken care of. As nowadays systems become more networked and are therefore more 
vulnerable to cybersecurity attacks, the discipline of safety-critical system engineering is learning that, in 
particular, security plays an essential role in order to assure safety. Other quality attributes (e.g., reliability, 
maintainability, etc.) play a significant role. 

The essential goal of the multiconcern assurance process is to demonstrate in a credible manner that the 
requirements associated with the different quality attributes are fulfilled. This includes the argumentation 
with all assumptions and contexts, and finally the evidences for the arguments. From this perspective, 
multiconcern assurance is the linear superposition of the argumentations for all quality attributes.  

One might argue that there are interdependencies between these multiple quality attributes. This is 
correct, but the final design contains all decisions related to these attributes, and the final assurance 
provides separate, distinct evidences for the individual quality attributes. It shall be noted, however, that 
sometimes one evidence can support more than one quality attribute, for instance, following the MISRA 
standard guarantees a good level of safety as well as security from the code quality perspective. 

Figure 30 shows the multiconcern assurance process. As will be explained below, it includes product as well 
as process assurance. 

In Figure 2, also a combined security and safety process is presented. While the classical HARA is used for 
safety-related hazard analysis, for security analysis the STRIDE approach is applied, and the SAHARA 
method is used to assess the safety hazards induced by security threats. As a whole, the approach of Figure 
2 can be inserted in Figure 30 as a combined analysis method, i.e. instead of the FMVEA. 

It shall be mentioned that Figure 30 contains also the multiconcern assurance activities for process 
assurance. The path splits between product and processes in the safety & security requirements: They are 
made up from system and process requirements. And there are also trade-offs between process 
requirements. E.g. the security-related process requirement “frequent updates” contradicts the safety 
requirement of “safety validated system in continuous operation”. To solve the entire problem, a solution 
in the product may be necessary (e.g. a cold-standby system to use during system software update and 
subsequent safety validation). Similarly, the mitigation measure for a system safety risk may be a process 
(e.g. a preventive maintenance process if useful lifetime of components is shorter than system lifetime). 

Summarizing we may state that product and process assurance have to be done in parallel, there are 
equally trade-offs between quality attributes for both the product and the processes, and they are even 
interlinked when it comes to mitigation measures. 
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Figure 30. The multiconcern assurance process 

There are mainly three points in the system development and assurance case development lifecycle, at 
which multiconcern-aware methods can provide an advantage compared to single concern assurance: 

• the initial hazard and risk analyses, 

• the architecture and design process where multiconcern-aware design decisions can help avoiding 
corrections afterwards, and 

• the redesign process when multiconcern validation reveals insufficient achievement of the quality-
attribute-specific targets. 

Assurance is always based on a defined design and defined processes. This means that, when the evidences 
for the arguments are created, there is no negotiable trade-off anymore which could influence the 
argumentation. Arguments supporting the different quality attributes are treated separately on the basis of 
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the chosen architecture and design. As mentioned above, it is nevertheless possible that one proof delivers 
the evidence for more than one quality attribute. 

Process Assurance 

It shall be noted that also high-quality processes (during development as well as operation and 
maintenance) are indispensable in order to guarantee sufficient safety and security. Here we have trade-
offs between attributes, too. As an example, safety requires restrictions w.r.t. updates of the system 
because, according to functional safety standards, any change in the system requires safety re-validation. 
On the other hand, security demands to install updates whenever one is available. At the end, we need a 
similar assurance process model as depicted above for the product. We just analyse processes instead of 
products and consider requirements to processes instead of product requirements. Process design takes 
the role of product architecture and design, and the decision whether the process implementation meets 
the various requirements is also analogous to the product assurance lifecycle. As already mentioned above, 
the multiconcern assurance process depicted in Figure 30 comprises, therefore, product as well as process 
assurance. 

Design for Multiconcern Assurance 

Multiconcern assurance is basically covered by methods which are used as well for single concern 
assurance. No additional design block needs to be introduced to cover the needs of multiconcern 
assurance. The following subsections discuss the three main functions assigned to WP4, as depicted in 
Figure 31 in more detail. 

 
Figure 31. The three WP4 functionalities with explanations 
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Figure 32 shows the “Assurance Case Specification” basic building block, responsible for the assurance case 
creation and management which has evolved from the previous one defined in D2.2 [11] .  

 

Figure 32. Assurance Case Specification 

3.1.2 Dependability Assurance Modelling (*) 

The Assurance case in AMASS is modelled in SACM (Structured Assurance Case Metamodel) (cf. Figure 33). 
The implementation of the respective tool, the OpenCert Assurance Case Editor has been done in the first 
iteration of the AMASS platform, i.e. it is a Basic Building Block. Details can be read in D4.4 [8] and the 
respective user documentation. The tool has been derived from the OpenCert safety case editor, originally 
called Prossurance, and enhanced with an extended vocabulary for multiple concerns and a graphical 
presentation of the assurance case in GSN notation. A specific extension to support impact was needed in 
order to cover multiconcern aspects. It can, however, make sense to include annotations related to 
multiple concerns treated in the arguments in order to make certain argumentations or design decisions 
better understandable. 
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Figure 33. Dependability Assurance Modelling block 

3.1.2.1 Support specification of variability at the argumentation level (*) 

As mentioned in section 2.2.4, a solution based on the BVR Tool was proposed and is currently under 
development in the context of WP6, so details on the design can be found in D6.3. 

3.1.3 Contract-Based Multiconcern Assurance (*) 

As explained in Figure 31, we have to cover two aspects of multiconcern contracts. 

Assurance contracts help bundling two or more argument modules of the Assurance case with inter-
dependence between them. This is supported by OpenCert. When a claim about a specific concern in one 
argument module needs to reference an argument, which is being explained and supported in another 
argument module (which in turns deals with another concern), this dependency is collected in the 
assurance contract. 

Component contracts enable assume-guarantee relations of components with their environment. Formal 
contract reasoning allows the re-use of the assurance case fragment of the component in its new 
application context and, thus, enables cost savings. Basically, if multiple concerns shall be treated, they 
mean just some more properties in the contract. OpenCert supports Assurance case fragments, and it is 
planned to use the CHESS modelling environment for component contracts. It is, however, questionable 
whether one modelling language is equally adequate for presenting safety and security properties within 
one contract (for instance, temporal logic is good for safety contracts but less for security contracts). It 
may, therefore, be necessary to use safety and security contracts in different notations in parallel. The 
concrete application in use cases is expected to bring clarification. 

3.1.3.1 Abstract functions in the contracts specification (*) 

Supports WP4_CMA_002 and WP4_SDCA_002. 

Abstract uninterpreted functions will be represented in CHESS as UML FunctionBehaviors, which are 
functions that do not modify any objects or external data, and can be used also to represent primitive 
functions such as arithmetic operations. FunctionBehaviors declared in the CHESS model will be used to 
enrich the constraints such as FormalProperties with uninterpreted functions. The CHESS components for 
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editing FormalProperties and for importing/exporting OCRA models will be extended to support such 
functions. 

3.1.3.2 Contract-based trade-off analysis in parameterized architectures (*) 

Supports WP4_CAC_010. 

The support for the Contract-based trade-off analysis requires the possibility to configure the system 
designing a parametrized architecture, i.e. a set of architectures specified using parameters so that static 
architectures can be instantiated by specifying the values of the parameters. With such parameters, it is 
possible to vary the number of components, the number of ports, the connections, and the static attributes 
of components to instantiate. In CHESS, this information can be mapped to the SysML multiplicity attribute, 
without the need to extend the CHESS model. The variables used to describe the multiplicity (e.g. the 
variable N of 1..N that may express the boundary of the elements to instantiate) can be represented by a 
static FlowPort and can be assigned using the Constraint element. To interpret the multiplicity and the 
involved parameters, CHESS will require some updates. The formal language used to edit the formal 
properties/contracts/constraints will be extended and the OSS importer/exporter will be enhanced to map 
the information about the multiplicity in the CHESS model with its corresponding imported/exported 
textual specification. Finally, the backend tool OCRA will be also updated to support the V&V of 
parametrized architectures. 

3.1.3.3 Contract-based trade-off analysis with the Analytical Network Process (*) 

Supports WP4_CAC_010. 

Threat and failure propagation state machine models from CHESS will be used for generation of failure-
maintenance and attack-recovery state transition model appropriate to the ANP tool. The tool will provide 
analysis of this model for evaluation of dependability attributes in concern such as safety, security, 
reliability and availability. For analysis we will use Markov and Simulation (Monte-Carlo). The results from 
this analysis will be input to final Analytical Network Process metric for evaluation.  

3.1.4 System Dependability Co-Analysis/Assessment (*) 

These are the promising novel combined methods which lead to potential improvements w.r.t. quality, cost 
and development time. As depicted in Figure 30, two combined methods are in scope - Co-Analysis and 
Trade-off Analysis. They are marked as light brown rectangles in Figure 34. 

Co-Analysis is the combined analysis of more than one quality attribute, taking into account the inter-
dependencies between them. Most prominent and already understood in the standardization scene is 
safety and security co-analysis. Here, the application of merely single-concern oriented analysis may pose 
the risk to overlook safety-related hazards which are caused by security breaches. An example for this 
method is FMVEA (Failure Modes, Vulnerabilities and Effect Analysis), which is shortly described further 
below in chapter 4. 

Trade-off Analysis is a way to analyse the impact of failures and cyberattacks on overall safety and security 
of a given system, and to use this information as a decision support in the architecture and design phases. 
A respective novel approach using the Analytical Network Process (ANP) is described in detail in section 
2.1.2. The expectation is to strongly reduce the number of iterations (see Figure 30) needed until an 
appropriate design that sufficiently satisfies safety and security requirements is found by applying matrices-
based computations. The method is currently under development and more information is expected for the 
second iteration of this concept deliverable. 

As it was explained in Section 2.1.3, process-related co-assessment is conceptually conducted via SiSoPLE. 
Figure 34 depicts the designed solution. SiSoPLE is supported by the integration of two tools: EPF-C and  
BVR tool [54]. The details regarding EPF-C & BVR Tool integration are expected to be given in D6.2 [12] and 
D6.5 [13]. Once a SiSoPL (regarding the planning processes) is modelled in EPF-C&BVR Tool, properly 
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tailored multi-concern single processes can be derived and used to feed the argument fragment generator 
(which implements MDSafeCer [49][48]). The generation might be needed in case an explicit argument is 
required to explain why the tailored process is compliant to the standards pertaining to the different 
concerns. The generated argument can then be visualized via the Assurance Case Editor. 

MDSafeCer is also expected to be implemented in the context of WP6. The multiconcern knowledge base in 
terms of multiconcern method content as well as cross-concern commonality identification is being 
developed within WP4 and is being modelled within EPF-C & BVR Tool. 

A properly tailored process plan obtained by configuring the SiSoPL can also be used to feed WEFACT in 
order to execute the plan. 

 

Figure 34. Process-related Co-assessment 

3.1.4.1 System dependability co-analysis via ConcertoFLA (*) 

Figure 35 shows the basic building block of the system dependability co-analysis, responsible for generation 
of security informed safety fault tree. To perform system dependability co-analysis, the component-based 
architecture of a system as well as the input/output failure behaviour for each component is modelled 
using CHESSML. The failure behaviour is further elaborated, to address different concerns, using the error 
model state machine, as explained in Section 2.1.4.1. The analysis engine (ConcertoFLA) generates the 
failure propagation paths, which are then utilized by the fault tree generator to generate fault trees. 
Finally, the fault tree editor is utilized for visualizing the fault trees.   
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Figure 35. System Dependability co-analysis 

3.1.4.2 WEFACT Tool Concept (*) 

As mentioned in section 2.1.3.2, WEFACT V2, as delivered in D4.5 [6], contained all features which allow 
using the conceptual extensions described here in section 2.1.3.2. A description of the tool WEFACT can be 
found in D4.5 and – with details about the handling – in the user manual provided with the executable. For 
details like directory and file names see D4.5. 

3.1.4.3 FMVEA Tool Concept (*) 

This chapter gives first information on how the FMVEA tool will be implemented in the form of user 
interface mock-ups. A detailed description will be delivered with the executable itself with D4.6 [5]. 

As described in section 2.1.4.3, the FMVEA tool consists mainly of three components, the Modelling 

Environment, the Analysis Engine, and the Threat & Failure Database. Figure 36 shows the tool architecture 

in more detail. 
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Figure 36. The FMVEA architecture 

Figure 37 shows a mock-up of the designed user interface for the model editor. 
 

 

Figure 37. Mockup of the FMVEA model editor including properties definition 

The model editor allows defining the nodes, here called objects, and connections. Additionally, properties 
can be specified. 
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The threat database is collected based on knowledge and experience over time using the threat editor, and 
the threats are stored in the form of rules. 

The analysis engine is started from the respective menu item, applies these collected threats to the system 
model and yields the system-specific individual threats and failures including a risk assessment as outcome. 

The result is displayed on the screen, as shown in Figure 38 below. 

 

 

Figure 38. The FMVEA results 

Additionally, a function for exporting reports is planned. 

The final implementation will be described in D4.6 (due in August 2018). 

3.2 AMASS Multiconcern Assurance Metamodel 

The metamodel is a review of the Argumentation metamodel from OPENCOSS project [51] and it is an 
extension of the SACM metamodel of OMG. 

This metamodel is used to store argumentation patterns and assurance cases referring a specific system in 
a certain context. The concepts available in the Assurance Case Metamodel are compatible with the SACM 
metamodel version 2 which at the time of writing this deliverable is still a draft. 

The Assurance Case metamodel provides the assurance case specification capabilities, connects to 
contracts elicitation, both argumentation contracts and connections to system architecture design 
contract. It identifies the links between argumentation-related entities and the other parts of the CACM, so 
to support the multi concern co-assurance approach.  

3.2.1 Elaborations 

This section addresses the modifications that have been addressed in the Assurance Case metamodel with 
respect to the version presented in AMASS D2.2 [11]; the modifications have been applied to cover the 
conceptual approaches discussed in chapter 2. 
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Some of the changes made in the Assurance Case metamodel have been due to feedback from the first 
prototype, and proposals made in chapter 2. 

On one hand, some of the notations made about the impact relationship were available before. However, 
there were some constrains (OCL) such as AssertedContext which was only accepted for connecting claims 
objects with informationElement objects (contexts). Now the AssertedContext entity can link any 
ArgumentationElement class. This way it is allowed to connect claims together, so the dependency 
relationship mentioned in section 2.2.3 is possible, but also to connect ArgumentPackage together, which 
is especially useful when specifying the Argument Case structure in form of argument modules. 

In this update, we have specially focused on changes due to connection with other metamodels and how 
we have extended the metamodel in relation with multi concern, compositional assurance and use of 
assurance patterns. 

Relations with other metamodels from AMASS CACM 

The argumentation metamodel is connected with the evidence model through the class 
“ArtefactElementCitation” whose cited artefact is the “Artefact” class from the evidence metamodel, see 
Figure 39.  
 

 

Figure 39. Relation with other metamodels 

System Component Metamodel for Architecture-driven Assurance 

The SystemComponentMetamodel developed in WP3 (see D3.2 [10]) is extended in order to support the 
notion of concern. In particular, according to what has been elaborated in chapter 3.1.3, there is the need 
to know the concern addressed by a given requirement and contract. The extensions, shown in Figure 40, 
are the following: 

• ConcerEnum: new enumeration entity, representing the possible concerns. 

• Requirement: the attribute concern typed with ConcerEnum has been added to represent the 
concern addressed by the requirement. 

• FormalExpression: the attribute concern typed with ConcerEnum has been added to represent the 
concern addressed by the FormalExpression, which can play the role of weak/strong assumption or 
guarantee property of a Contract entity. The value for the concern attribute can be derived starting 
from the Requirement formalised by the FormalExpression. 

• Contract: the attribute concern typed with ConcerEnum has been added to represent the concern 
addressed by the Contract. The value for the concern attribute is derived starting from the concern 
attributes specified for the guarantee FormalExpression. A “contract” from the system component 
metamodel refers to arguments which are encapsulated in the “ArgumentPackageInterface” in the 
SACM metamodel. 
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• BlockInstance: A component in the system model references to an argument. This connection is the 
one that links the “Blockinstance” class from the system component metamodel with the 
“ArgumentationElement”. 

 

 
Figure 40. Contract concern 

We have identified more areas to be improved with respect to the metamodels connection. One to 
mention is the one related to dependability modelling and possible needs to extend system component 
specification in order to support modelling certain concerns at the system component specification level.  
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4. Way Forward to the Implementation 

4.1 Potential Tool support 

This section provides an overview of the tools that are expected to play a key role in enabling the 
achievement of WP4 scientific and technological objectives.  

4.1.1 OpenCert – supports “Dependability Assurance Modelling” 

OpenCert is an open source tool which started as a result of OPENCOSS project and now is being updated 
and improved in the context of the AMASS project. OpenCert deals with product and process 
assurance/certification management to support the compliance assessment and certification of safety-
critical systems in sectors such as aerospace, railway and automotive. Figure 41 shows a general view of the 
functional decomposition of OpenCert conceptual platform which are: 

• Prescriptive Knowledge Management: Functionality related to the management of standards 
information as well as any other information derived from them, such as interpretations about intents, 
mapping between standards, etc. This functional group maintains a knowledge database about 
“standards & understandings”. 

• Assurance Project Lifecycle Management: This functionality factorizes aspects such as the creation of 
safety assurance projects. This module manages a “project repository”, which can be accessed by the 
other modules. 

• Safety Argumentation Management: This group manages argumentation information in a modular 
fashion. It also includes mechanisms to support compositional safety assurance, and assurance patterns 
management. 

• Evidence Management: This module manages the full life-cycle of evidences and evidence chains. This 
includes evidence traceability management and impact analysis. In addition, this module is in charge of 
communicating with external engineering tools (requirements management, implementation, V&V, etc.). 

 

Figure 41. Functional decomposition of the OpenCert platform 

• Assurance Configuration Management: This is an infrastructure functional module. This includes 
functionality for traceability management. 

• System Management: It includes generic functionality for reports creation and data storage. 



              

         AMASS Design of the AMASS tools and methods for multiconcern assurance (b) D4.3 V1.0 

 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 66 of 84 

 
 

• Measurement: This module contains functionality related to indicators.  

For multi concern assurance, we have used mainly the safety argumentation management functionality 
block. The first prototype implementations and changes made in this area are described in document D4.4 
[8]. 

4.1.2 CHESS - supports “Contract-Based Multiconcern Assurance” 

CHESS modelling language (CHESSML), based on UML/SysML/MARTE, and toolset, the latter available on 
Polarsys and based upon Papyrus, has been adopted in AMASS as basic building block for system 
component specification with contract-based design. Beside the aforementioned modelling support, 
CHESSML allows the modelling of timing concerns too, by reusing and extending what is available in the 
MARTE profile for real time system, to then enable model-based timing analysis. Moreover, CHESS comes 
with a dedicated profile for dependability, called SafeConcert, presented in AMASS D3.2 [10] and accepted 
for publication [63]. SafeConcert allows modelling of the failure behaviour for system components and so 
model-based dependability analysis, like failure propagation or state-based analysis. Regarding specific 
support for multiconcerns at modelling language level, the part of the CHESS profile related to contract-
based design is enriched with the new features elaborated in section 3.2.1. 

As it was documented in D4.5 [6] and as recalled within this document (see Section 2.1.4.1), the CHESS 
toolset also includes ConcertoFLA. 

4.1.3 FMVEA - supports “System Dependability Co-Analysis/Assessment”  

Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) [27] is a holistic safety and security analysis 
methodology based on Failure Mode and Effect Analysis (FMEA) and STRIDE threat modelling. Figure 42 
shows the basic concept of the method. Semi-quantitative assessment of threats and failures allows a 
combined impact evaluation and the combined definition of respective mitigation measures.  

 

Figure 42. Basic concept of FMVEA  

The methodology is supported by a tool developed by AIT (see section 4.1.3), which allows the user to 
specify the system model and perform a partially automated analysis, based on a dataflow model of a 
system architecture and a fault / threat model for the system components.  
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4.1.4 EPF-Composer - supports “System Dependability Co-analysis and 
assessment” 

The Eclipse Process Framework (EPF) project5 has developed an approach for supporting customisable 
(software) process engineering frameworks. This approach, depicted in Figure 43 and called the EPF 
approach, consists in enabling the separation of method content definition (i.e., definition or reusable 
process element such as units of work, roles, guidelines, work products) from method content usage, i.e., 
creation of process models via reuse of pre-defined reusable process elements.  

The EPF approach contributes to addressing the following needs: 

• Development teams need easy and centralized access to the information 

• Ensure compliance to standardised practices  
• Teams need support for right-sizing their processes  

The EPF approach is tool-supported via the EPF Composer, shortened EPF-C6, which is based on a 
metamodel, called UMA (Unified Method Architecture), which almost fully supports SPEM2.0 (the OMG 

standard for specification of systems and software processes7). 

In AMASS, the EPF approach and its tool support have been integrated as core building block. Within WP6, 
D6.2 [12], EPF-C is currently being strengthened via integration with the BVR tool [54], outcome of the EU 
ARTEMIS VARIES (VARiability In safety-critical Embedded Systems) Project [55]. This integration will be 
beneficial not only for general reuse but more specifically for co-assessment and cross-concern reuse, 
focusing on the interplay of safety and security in line with WP4 objectives.  

 

Figure 43. The EPF approach, adapted from [64]. 

 

                                                             
 
 
5 http://www.eclipse.org/epf 
6 https://eclipse.org/epf/downloads/tool/tool_downloads.php  
7 http://www.omg.org/spec/SPEM/2.0  

http://www.eclipse.org/epf
https://eclipse.org/epf/downloads/tool/tool_downloads.php
http://www.omg.org/spec/SPEM/2.0/
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4.1.5 WEFACT - supports the assurance process workflow 

The tool WEFACT (Workflow Engine For Analysis, Certification and Test) originated from the DECOS8 Test 
Bench, which was a Web-based distributed platform for requirements-based testing with continuous 
impact-assessment in order to support the safety case with evidences. In SafeCer9, the test workflow was 
extended to a workflow for safety certification, and in EMC210 the quality attribute of security was 
integrated. 

The WEFACT Version1 was based on the requirements management tool DOORS®.  

Now, a new Eclipse-based WEFACT Version2 (see Figure 44) is available, see D4.5 [6]. This new tool version 
has been extended towards multiconcern assurance cases in the AMASS project. 

AIT provides WEFACT as an external workflow tool and, provides interfaces to the AMASS platform. 
 

 

Figure 44. Screenshot WEFACT Version2 

 

 
 
 

                                                             
 
 
8  FP6 Integrated Project DECOS (Dependable Embedded COmponents and Systems) 
9  Artemis project SafeCer (Safety Certification of Software-Intensive Systems with Reusable Components) 
10  Artemis project EMC2 (Embedded multi-core systems for mixed criticality applications in dynamic and changeable 

real-time environments) 
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4.1.6 Medini Analyze - supports the assurance process workflow (*) 

The medini analyze11 tool-set supports the safety analysis and design for software-controlled safety related 
functions in various domains, following well known safety standards as ISO 26262, DO-178B and IEC 61508. 
The tool integrates system architecture design (based on SysML) and software functional design (for 
example MATLAB®/Simulink®/Stateflow®) with risk and hazard analysis methods - Hazard List, Risk Graph, 
Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). 

Being built on top of Eclipse technologies like EMF (Eclipse Modelling Framework), medini analyze can trace 
and track all safety - or more generally assurance case - relevant information and decisions throughout the 
whole development process. Moreover, it provides numerous tool interfaces for example to central 
ALM/PLM system and system architecture tools, automatic generation of work products and assurance of 
their consistency, reuse support by library concepts, as well as catalogues and templates mechanisms, and 
support of assessments and reviews.  

 

Figure 45. medini analyze overview 

The tool has been extended in the SESAMO12 project towards cybersecurity (see SESAMO deliverables D3.3 
for details on the conceptual part). Methodology wise the tool supports Attack Trees, TARA (Threat analysis 
and Risk Assessment), as well as Security FMEA in analogy to system safety FTA, HARA and FMEA. Basically, 
all concept phase activities of the SAE J3061 Guidebook are supported as a prototype implementation. 
 

Phase / Activity Supported By 

Project Setup / Preparation Project templates for different guidelines 
● JASO TP-15002 
● EVITA/SESAMO 
● SAE J3061 (in preparation) 

Definition of Target of 
Evaluation 

● Form-based target (item) definition 
● Graphical SysML editor 

                                                             
 
 
11 medini™ analyze is a registered trademark of ANSYS medini Technologies AG 
12 Security and Safety Modelling, Artemis JU Grant Agreement no.: 295354 
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● Function list editor 

Threat Analysis ● Attack Tree Modelling 
● Attack Path Computation 
● Propagation to TARA 

Risk Assessment ● TARA with Customizable Risk Graph 
● Out-of-the Box Support for CVSS/CRSS and Common 

Criteria/EVITA 
● Traces to Security Objectives 

Definition of Security Objectives 
and Requirements 

● GSN-based graphical editor 
● Table-based DOORS-like editor 
● Export to DOORS, PTC Integrity, JAMA 
● Report Generation 

 

As a result of having system safety as well as cyber security analysis methods in the same tool and being 
executed on the same architecture model enables cross-references from security analysis results to safety 
analysis results, which leads to potential synergies in implementing the mitigation/prevention functions 
and countermeasures.   

 

Figure 46. Cyber security analysis with medini analyze 

4.1.7 AMASS Farkle - supports product assurance 

The AMASS Farkle tool is a learning-based approach on model-based software testing. The AMASS Farkle 
tool is based on the Farkle tool for model-based certification that has evolved over the last years. 

At this stage, we propose to include it in AMASS to prove the inter-operability of the tools when 
interworking with model-based tools of the AMASS platform. The tests will give proof point that the 
AMASS-tools support the flow towards the design for multiconcern systems. 

The Farkle tool has previously been tested with an automotive use case EAST-ADL Brake-by-wire model 
[56], also known as model-based test case generation. The AMASS version includes machine-learning as 
concept. 
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The idea of LBT is to automatically generate many test cases by combining incremental automata learning 
algorithm or a model inference algorithm with a model checking algorithm. This results in incremental 
learning-based testing for reactive systems.  

The three steps fundamental to LBT are:  

1. Automated model checking algorithm  
2. Execution of tests generated in step 1. 
3. Assigning a verdict on a test outcome (the oracle step). 

There is an iterative feed-back loop: This optimizes test case generation based on previously observed 
outcomes of test cases. 

The interpreter subsystems of AMASS Farkle is interfacing the Linx library, which makes it possible to do 
tests on any platform on any location. The tool is a combination of Learning- and Model Based Testing.  

With the growth of CPS there is a need for verification and certification in an automated way. The models 
are in some cases poor and not in sync with design which is a common problem in the industry. A tool chain 
that combines model learning and model checking offers a solution to this problem.  

NuSMV model is sent to the model checker for convergence checking. This model is a full representation of 
the learned states and has more similarities to the Abstract Test Case, used as input for Extended Farkle. 
Assuming a generated model, the next step is running Extended Farkle. When Extended Farkle is done, 
LBTest needs to be provided with the output of the counter example to continue learning of the model. As 
Model Based Testing relies on comparison of In- & Output from the model and the SUT, Extended Farkle 
should output those sequences somewhere. Instead of just logging these, the tool chain can pass them 
back to the wrapper for processing. The wrapper could then select which results are relevant for LBTest 
and return those back to the learning algorithm. 

In the overview Figure 47 the Learning Based Test (LBTest) and the Extended Farkle is interworking. The 
Extended Farkle connects the system under test (SUT) in the target and the complementing dummy under 
test (DUT). 
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Figure 47. System Overview AMASS Farkle tool 

4.1.8 Safety Architect – supports “System Dependability Co-Analysis/Assessment” 

Safety Architect is ALL4TEC tool, initially dedicated to perform classical safety analyses: local Failures 
Modes, Effects and Analysis (FMEA), and automatic deduction of Fault Tree Analysis (FTA) of the identified 
Feared Events (FE). It is extended during the MERgE ITEA project and French Clarity Project to support 
Safety and Security Co-Analysis. As described in D4.1 [1] Section 4.2.2.3, Safety engineers and Security 
engineers can work within Safety Architect, either using separated views or a merged view, to describe the 
way failures and security threats propagate inside the system architecture. Then, dysfunctional analysis 
techniques already available in Safety Architect can be applied, such as the automatic generation of fault 
trees or attack trees. Safety Architect has different interfaces with many system engineering tools, such as 
Capella, System Architect, Papyrus, etc. One of ALL4TEC objectives in the AMASS project is to provide 
Safety Architect as an external tool-chain and to develop interfaces to the AMASS platform. 
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4.1.9 AMT2.0 – supports “Contract-Based Multiconcern Assurance” 

AMT2.0 shall deploy methods for monitoring and diagnosing Cyber-Physical System (CPS) models in the 
Simulink. The monitoring activities would include translating informal system specifications into formal 
specification expressed in the extended Signal Temporal Logic (STL) declarative language. The tool would be 
integrated with the existing monitoring techniques at AIT to the Simulink environment. Novel methods 
shall be developed for system diagnosis and error localization in the Simulink models upon the detection of 
the specification violations. 

4.1.10  Extensions (*) 

The conceptual and design extensions described here in addition to what was already contained in D4.2 [2] 
are mostly implemented in existing tools (e.g. CHESS/OCRA, the OpenCert Assurance Case Editor or 
WEFACT, which were provided in D4.5 [6] or even in D4.4 [8]). Part of them are rather conceptual 
extensions, i.e. an extended usage of existing tool capabilities (in particular w.r.t. WEFACT and CHESS). 

Only few new developments are ongoing and planned to be delivered as new tools in D4.6 [5]. This set of 
new tools comprises the FMVEA tool and the planned tool for trade-off analysis using an ANP (Analytical 
Network Process). 

4.1.11  Implemented Multiconcern Assurance Related Requirements (*) 

The following table gives an overview on the requirements covered by the concepts and designs described 
in this document, and partly in other documents: The assurance case editor was used from the Core 
prototype, which is described in D4.4 [8]. 

Table 6. WP4 requirements coverage 

ID Short Description Description 
Proto-

type Nº 
Priority 

Elaborated 
in section 

WP4_ACS_
001 

Assurance case 
edition 

The system shall be able to edit an assurance 
case in a scalable way. 

P1 Must see D4.4 

WP4_ACS_
002 

Argumentation 
architecture 

The system shall be able to edit a modular 
structure (argument architecture) associated 
with a system and/or component. 

P2 Must see D4.4 

WP4_ACS_
003 

Drag and drop 
argumentation 
patterns 

The system shall be able to instantiate in the 
actual assurance case an argument pattern 
(concerning safety and security) selected from 
the list of patterns stored. 

P1 Must see D4.4 

WP4_ACS_
004 

Provide 
guidelines for 
argumentation 
patterns 

The system should be able to provide 
guidelines to use and instantiate argument 
pattern (concerning safety and security) 
presented in the actual assurance case. 

 Should  

WP4_ACS_
005 

Provide a 
structured 
language to the 
text inside the 
claims 

The system could be able to provide support 
for language formalization inside argument 
claims. 

P1 Could see D4.4 

WP4_ACS_
006 

Provide 
guidelines for 
argumentation 

The system could be able to provide guidelines 
about the assurance case edition based on the 
system/component development phase status. 

P1 Could see D4.4 

WP4_ACS_
007 

Argumentation 
import/export 

The system could be able to import/export 
argumentations to SACM. 

P2 Could see D4.4 
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ID Short Description Description 
Proto-

type Nº 
Priority 

Elaborated 
in section 

WP4_ACS_
008 

Traceability of the 
dependability 
case 

The system should provide the dependability 
case reviewers the ability of tracing an overall 
dependability case (GSN) goal to the 
requirement within the dependability profile 
for a given system element and the attribute of 
interest with which goal is associated. 

P1 Should see D4.4 

WP4_ACS_
009 

Find high level 
claims 

The system shall be able to find high level 
claims, which are sufficiently cohesive to be 
supported by extremely diverse strands of 
argument, supported by diverse types of 
evidence. 

 Must  

WP4_ACS_
010 

Composition of 
the overall 
argument 

The system should provide the capability of 
generating a compositional assurance case 
argument. 

P2 Should see D4.4 

WP4_ACS_
011 

Assurance case 
status report 

The system could provide the capability for 
querying the assurance case in order to detect: 
1) undeveloped goals, 2) fallacies. 

P2 Could 2.1.4 

WP4_ACS_
012 

Formal validation 
of assumptions 
and context when 
arguments 
modules are 
connected 

The system could be able to indicate the 
validation of assumptions contained in 
argument modules every time the modules are 
connected and/or modified 

 Could  

WP4_ACS_
013 

Provide 
quantitative 
confidence 
metrics about an 
assurance case in 
a report 

The system could produce a status report 
indicating a quantitative confidence metric for 
assurance case. 

P2 Could 2.1.4 

WP4_CAC_
010 

Contract-based 
trade-off analysis 

The system could provide the capability to 
evaluate safety and security requirements on 
different system architectures to perform 
trade-off analysis based on the contract 
specification. 

P2 Could 

2.3.2, 
2.3.4, 
3.1.3.2, 
3.1.3.3 
 

WP4_DAM
_001 

Capability to 
model 
relationships 
between 
concerns 

The system shall be able to provide an 
assurance case which records the relationships 
between dependability attributes and how 
they are affected because of design decisions. 

P2 Must  

WP4_DAM
_002 

Capability to 
capture conflicts 
occurring during 
system 
development and 
the trade-off 
process 

The system shall provide the capability for 
modelling a dependability case which captures 
the conflicts that occur during system 
development and the trade-off process to 
justify why the taken design decisions are the 
most optimal ones. 

P2 Must  

WP4_CMA
_001 

The AMASS tools 
must support 
specification of 
variability at the 
argumentation 
level 

The system shall provide the capability for 
modelling arguments in the assurance case 
about multi-concern and multi-context.  
The multi-concern and multi-context 
argumentation could follow a variability 
modelling a solution. If GSN-like modelling 

P2 Must 2.2.4 
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ID Short Description Description 
Proto-

type Nº 
Priority 

Elaborated 
in section 

elements are considered, the diamond for 
representing alternatives as well as the 
octagon for extrinsic variability could be 
considered. 

WP4_CMA
_002 

Component 
contracts must 
support multiple 
concerns 

The system shall provide a contract 
specification language that supports the 
formalization of both safety and security 
requirements. 

P2 Must 
2.3.1, 
3.1.3.1 

WP4_CMA
_003 

Contract based 
multi-concern 
assurance 

The system must support features that support 
contract-based assurance with respect to 
multiple concerns; i.e. it must be possible to 
specify relations between safety contracts, 
security contracts and other-concerns-related 
contracts in order to take care of the 
influence of system modifications for 
mitigating the risks associated with one quality 
attribute on the contract belonging to another 
quality attribute. 

concep
tually 

develo
pped 

Must 2.3.3 

WP4_SDCA
_001 

System 
dependability co-
architecturing 
and co-design 

The system shall provide features, which allow 
architecture modelling collaboration and co-
designing a system or component with a 
balanced combination of different goals 
addressing various quality attributes. 

P2 Must 

WP3 13; 

2.1.2, 
2.3.2, 
2.3.4, 

4.1.9 14. 

WP4_SDCA
_002 

System 
dependability co-
verification and 
co-validation 

The system shall support efficient system or 
component co-verification and co-validation 
with respect to multiple quality attributes. 

P2 Must 
2.1.4, 
2.3.1, 
3.1.3.1 

WP4_SDCA
_003 

The system shall 
allow 
combinations of 
safety and 
security analysis 

The system shall allow combinations of safety 
and security analysis. 

P2 Must 2.1.4 

 
 

                                                             
 
 
13 This refers to the 1st sentence of the requirement; collaboration at architectural level is under development and 

expected in P2. 
14 This refers to the 2nd sentence; first prototypes for trade-off analysis are expected in P2. 
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5. Conclusions (*) 

In this deliverable, the conceptual approach for multiconcern assurance has been elaborated in two 
iterations, the confidential intermediate edition D4.2 [2] and the public final edition D4.3 – the document 
at hand. After an introduction which explained the scope, the relation to other tasks and deliverables 
within and beyond WP4, chapter 2 presents several approaches for the main features of multiconcern 
assurance including extensions added in the second iteration, namely “System Dependability Co-Analysis 
and Assessment”, “Dependability Assurance Case Modelling”, and “Contract-Based Multiconcern 
Assurance”, building on and explaining relations to the state of the art described in D4.1 [1]. 

In chapter 3, the design of the approaches described in the previous chapter is been presented, first on a 
conceptual design level and then on the level of Multiconcern Assurance Metamodel extensions. This 
design will guide the implementation of the third iteration of the AMASS platform implementation, which 
will be described in D4.6 [5]. 

Chapter 4 presents a set of identified tools for realizing the aforementioned features in the second 
iteration. The set comprises internal tools for the basic building block Assurance Case Modelling as well as 
external tools for the other features. In this edition D4.3, a table has been added describing the coverage of 
requirements by the realized multiconcern assurance features. 

The relation between the implemented functionalities for Multiconcern Assurance and their realization and 

evaluation in the case studies is described in D1.5 [82], wherein Table 76 gives an overview, showing that, 

already in Prototype P1, 7 out of 11 case studies apply WP4 functionalities, in most cases more than one. 

Contract-based Multiconcern Assurance as described here in D4.3 is not yet covered there but prototypic 

implementations are planned for P2. Moreover, Contract-based Multiconcern Assurance at runtime 

according to section 4.1.9 is mainly described in D3.3 [88] and realized in CS3. 
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Abreviations and Definitions (*) 

Definitions are common to the whole AMASS project and are given in the AMASS glossary (deliverable D2.2 
[11]). Following abbreviations are used in this document: 
 

Abbreviation Explanation 

AFHA Aircraft-level Functional Hazard Assessment 

ALM Application Lifecycle Management 

ANP Analytical Network Process 

ARP Aerospace Recommended Practice 

ARTEMIS 
ARTEMIS Industry Association is the association for actors in Embedded Intelligent 
Systems within Europe 

ASA Aircraft Safety Assessment 

ASIC Application Specific Integrated Circuit 

ASIL Automotive Safety Integrity Level 

ATA Attack Tree Analysis 

BDMP Boolean Logic Driven Markov Processes 

BRA Binary Risk Analysis 

BVR 
Base Variability Resolution - a domain-specific language designed specifically to 
enable software product-line engineering (SPLE) 

CACM Common Assurance and Certification Metamodel 

CAN Controller Area Network 

CCL Common Certification Language 

CENELEC 
Comité Européen de Normalisation Électrotechnique (European Committee for 
Electrotechnical Standardization) 

CHASSIS Combined Harm Assessment of Safety and Security for Information Systems 

CHESSML CHESS Modelling Language 

CIA Confidentiality, Integrity, Availability 

CPS Cyber-Physical Systems 

CS Case Study 

CTMM Continuous Time Markov Models 

CVSS Common Vulnerability Scoring System 

DD Dependence Diagram 

DAL Development Assurance Levels 

DFD Data-Flow Diagram 

DUT Dummy Under Test 

EAST-ADL 
Electronics Architecture and Software Technology - Architecture Description Language 
(AUTOSAR-compliant modelling language for the Automotive industry) 

ECSEL Electronic Components and Systems for European Leadership 

EMC2 
Embedded multi-core systems for mixed criticality applications in dynamic and 
changeable real-time environments 

EN European Norm 

EPF/C Eclipse Process Framework-Composer 

EVITA E-Safety Vehicle Intrusion Protected Applications 
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FANDA 
Tool supplied by Fairmount Automation, used together with TOM for assessing design 
alternatives and facilitating trade-offs in critical systems  

FHA Functional Hazard Assessment 

FMEA Failure Modes and Effects Analysis 

F(I)MEA Failure (Intrusion) Modes and Effects Analysis 

FMVEA Failure Modes, Vulnerabilities and Effect Analysis 

FTA Fault Tree Analysis 

FTP File Transfer Protocol 

GSM-R  Global System for Mobile Communications – Railway 

GSN Goal Structuring Notation 

HARA Hazard Analysis and Risk Assessment 

HAZOP HAZard and OPerability study 

HEAVENS 
HEAling Vulnerabilities to ENhance Software Security and Safety (Swedish Vinnova funded 
research project) 

HMI Human Machine Interface 

HTTPS Hypertext Transfer Protocol Secure 

IACS Industrial Automation and Control System 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IL Impact Level 

ISO International Organization for Standardization 

IT Information Technology 

JU Joint Undertaking 

LBTest Learning Based Test 

MA Markov Analysis 

MILS Multiple Independent Levels of Security 

MISRA Motor Industry Software Reliability Association 

NuSMV New Symbolic Model Verifier (a symbolic model checker tool for finite state systems) 

OBD On-Board Diagnosis  

OCL Object Constraint Language 

OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation 

OSS Ocra System Specification 

PASA Preliminary Aircraft Safety Assessment 

PASRA Preliminary Aircraft Security Risk Assessment 

PLM Product Lifecycle Management 

PSecAC Plan for Security Aspects of Certification 

PSSA Preliminary System Safety Assessment 

RAMS Reliability, Availability, Maintainability, Safety (and Security) 

RL Remediation Levels 

RTCA Radio Technical Commission for Aeronautics 

SACM Structured Assurance Case Metamodel 

SAE Society of Automotive Engineers 

SAHARA Security-aware Hazard Analysis and Risk Assessment 

SCADA Supervisory Control And Data Acquisition 

SEooC Safety Element out of Context 
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SIL Safety Integrity Level 

SL Security Level 

SiSoPLE Security-informed Safety-oriented Process Line Engineering 

SoPLE Safety-oriented Process Line Engineering 

SPEM Software & Systems Process Engineering Metamodel 

SSA System Safety Assessment 

STL Signal Temporal Logic 

STPA-SEC STAMP (Systems- Theoretic Accident Model and Processes) Based Process Analysis 

STRIDE 
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation of 
privilege 

SUT System Under Test 

SW Software 

SysML System Modelling Language 

S&S Safety and Security 

TARA Threat Analysis and Risk Assessment  

TOM 
Tool supplied by Fairmount Automation, used together with FANDA for assessing design 
alternatives and facilitating trade-offs in critical systems 

TVRA Threat, Vulnerability and Risk Analysis 

TCP/IP Transmission Control Protocol/Internet Protocol 

TL threat level 

UDP User Datagram Protocol 

UMA Unified Method Architecture 

UML Unified Modelling Language 

V&V Verification and Validation 

WP Work Package 
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Appendix A: Changes since the Predecessor Version D4.2 (*) 

New Sections: 

Section Title 

2.1.4.1 System dependability co-analysis via ConcertoFLA 

2.1.4.2 WEFACT Tool Concept 

2.1.4.3 FMVEA Tool Concept 

2.2.4 Support for variability management at the argumentation level 

2.3.1 Abstract functions in the contracts specification 

2.3.2 Contract-based trade-off analysis in parameterized architectures 

2.3.3 General extensions to contract based multi-concern assurance 

2.3.4 Contract-based trade-off analysis with the Analytical Network Process 

3.1.2.1 Support specification of variability at the argumentation level 

3.1.3.1 Abstract functions in the contracts specification 

3.1.3.2 Contract-based trade-off analysis in parameterized architectures 

3.1.3.3 Contract-based trade-off analysis with the Analytical Network Process 

3.1.4.1 System dependability co-analysis via ConcertoFLA 

3.1.4.2 WEFACT Tool Concept 

3.1.4.3 FMVEA Tool Concept 

4.1.10 Extensions 

4.1.11 Implemented Multiconcern Assurance Related Requirements 

Appendix A Changes since the Predecessor Version D4.2 

 
Modified Sections: 

Section Title Changes 

1. Introduction Updated 

1.1 From Monoconcern to Multiconcern Updated 

1.2 Scope and Objectives of this Deliverable Updated 

1.2 Relation to other AMASS Deliverables Updated 

2.1.3.2  Normative spaces ready for SiSoPLE 
Added description of process development in 
EPF-C and the process execution with WEFACT 
based on an example 

2.2.2 Safety and Security Assurance Case Updated 

4.1.6 
Medini Analyze - supports the assurance 
process workflow 

Description extended with more details about 
the latest tool version 

5 Conclusions Updated 

 References Minor extensions 

 Abbreviations and Definitions Minor extensions 

 


