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Executive Summary 
This document is the final deliverable associated with the AMASS Task 3.4 Methodological Guidance for 
Architecture-driven Assurance, which provides the methodological guide for the AMASS Architecture-Driven 
Assurance approach. This deliverable represents an update of the AMASS D3.7 [30] deliverable released at 
m20; several sections have been added or modified as summarized in άAppendix A: Document changes 
respect to D3.7έ. While D3.7 was based on the functionality supported by the second prototype (P1) of the 
AMASS platform, this deliverable, D3.8, is based on the third and final version of the prototype (P2). 

This document focuses on the techniques developed in WP3. It guides the users step by step in the usage of 
the AMASS platform to support the architectural design of a system collecting modelling artefacts and the 
related results of early validation, verification, and safety analysis to be used in the safety case. To have a 
more general overview and guide for the AMASS approach, including the methods and techniques provided 
ōȅ ƻǘƘŜǊ ²tǎΣ ǘƘŜ ǊŜŀŘŜǊ ƛǎ ǊŜŦŜǊǊŜŘ ǘƻ 5нΦр ά!a!{{ ǳǎŜǊ ƎǳƛŘŀƴŎŜ ŀƴŘ ƳŜǘƘƻŘƻƭƻƎƛŎŀƭ ŦǊŀƳŜǿƻǊƪέ [33]. 
Also, to have a more detailed description of specific functions, the reader is referred to the tool user manual, 
which is included in the above-mentioned deliverable D2.5. 
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1. Introduction 
Embedded systems have significantly increased in technical complexity towards open, interconnected 
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and 
automation of labor-intensive activities such as the assurance of their dependability. The AMASS project 
builds on the results of two large-scale projects, namely OPENCOSS [49] and SafeCer [48], which dealt with 
assurance and certification of software-intensive critical systems using incremental and model-based 
approaches. In particular, SafeCer developed a generic component model and contract-based verification 
techniques for compositional development and certification of CPS. These have been integrated in the CHESS 
tool support [50]. The AMASS project consolidates and extends such support with a wider range of analysis 
techniques for the system architecture and combines it with the OPENCOSS solutions for building an 
assurance case. The resulting Architecture-Driven Assurance is further enhanced for multi-concern aspects 
(in particular, the interplay between safety and security), for reuse of architectural patterns, and exploits tool 
interoperability mechanisms to interact with external tools for modelling and analysis support. 

 

Figure 1. Architecture-Driven Assurance in relation to the other work packages 
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Figure 1 provides a general overview of the different AMASS Scientific Technical Objectives (STOs) and how 
they are implemented in the AMASS project by specific Work Packages (WPs). This document focuses on 
methodology guidelines for Architecture-Driven Assurance and the related tools developed in WP3. 

Thus, it defines a methodological guide to apply the Architecture-Driven Assurance approach, to use both its 
conceptual aspects and its software tool support. It first provides an overview of the key concepts, such as 
system architecture, contract-based design, early verification and validation, and model-based safety 
analysis. Then, it details what Architecture-Driven Assurance means, the role of the key concepts in the 
approach, and how the AMASS platform supports it. An overview of the tool architecture is given, in 
particular of how the core component, CHESS, interacts with the external tools. In the rest of the document, 
ǘƘŜ ǘŜǊƳ άǘƻƻƭέΣ ǿƘŜƴ ƴƻǘ more specifically defined by the context, refers to the AMASS platform (of which 
CHESS is a core component). 

This guide describes the methodology to follow, detailing the process steps and how to use the tool support. 
The workflow is presented by means of activity diagrams or sequences of steps to follow, with details on how 
to use the AMASS platform to perform each step. The steps are meant to give an example of usage of the 
tool trying to cover all relevant features. The user is referred to the user manual, that is included as an Annex 
of D2.5 [33], to get a deeper knowledge about the different options. 

The guide uses simple case studies to concretely describe the approach. The material (more specifically, the 
set of CHESS projects) of these case studies is released with the tool. 
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2. Architecture-Driven Assurance Overview 

2.1 Background 

This section gives a brief description of the main concepts used in the guide. In each subsection, first, the 
concept itself is briefly described, and, second, the related tool support is summarized. The reader is referred 
to D3.3 ά5ŜǎƛƎƴ ƻŦ ǘƘŜ !a!{{ ǘƻƻƭǎ ŀƴŘ ƳŜǘƘƻŘǎ ŦƻǊ ŀǊŎƘƛǘŜŎǘǳǊŜ-driven assurance (bύέ [28] for further 
details on these concepts. 

2.1.1 System Architecture 

As part of a model-based engineering approach to system development [60], the system architecture plays 
an important role in the early phases of the system design. The system is first considered as a whole, defining 
system requirements and boundaries. ¢Ƙƛǎ ƛƴƛǘƛŀƭ ƭŜǾŜƭ ƻŦ ŀǊŎƘƛǘŜŎǘǳǊŜ Ŏŀƴ ŦǳƭŦƛƭ ǘƘŜ ǊƻƭŜ ƻŦ ŀƴ άLǘŜƳ 
Definitƛƻƴέ ŀŎŎƻǊŘƛƴƎ L{h нснсн [81]. The system architecture model is then defined to detail how the 
different parts of the system are connected and interact to fulfil the system requirements. The system 
architecture model is used to capture a variety of information: the internal hierarchical structure of the 
system and its components, the system functions and component behaviours, and the component 
interfaces, their connection and interaction. The model is used for early verification and validation, meant 
here as model-based techniques to verify that (a certain part of) the model satisfies a higher-level 
specification and to validate that the model captures what the designer has in mind. The system architecture 
model is also used for allocation of the safety-related requirements identified during the safety analysis and 
safety concept creation phases: it includes the safety mechanisms implemented in the system to reduce the 
risk introduced by system failures, and the model of faults used to derive of the safety mechanisms and 
assess their effectiveness. 

The AMASS platform supports the modelling of the system architecture with SysML and UML diagrams for 
what regards the modelling of the requirements (SysML Requirement diagrams), the internal hierarchical 
structure of the system and its components (SysML Block Definition and Internal Block diagrams) and the 
components behaviours (UML State Machine diagrams). Moreover, the CHESS modelling language 

(CHESSML)1 [61] provides means to extend the aforementioned diagrams to support the modelling of 
dependability concerns and to apply the contract-based design, the latter introduced in the next Section 
2.1.2. 

2.1.2 Contract-Based Design 

The challenges posed by the design of complex cyber-physical systems [36] pushed the research of contract-
based techniques for system design (e.g., [37][38][39][40]). The system architecture model is enriched with 
expressions asserting the expected properties of the system, its components and environment. In order to 
allow compositional reasoning, the property of a component may be restricted to its interface considering 
the component as a black box (without constraining the internal variables of the component) and can be 
structured into contracts, pairs of properties representing an assumption and a guarantee of the component: 
an assumption is an assertion on the behaviour of the component environment, while a guarantee is an 
assertion on the behaviour of the component provided that the entire set of assumptions holds. If 
assumptions and guarantees are formal properties, which means they are specified in a formal language such 
as some specific kind of temporal logic, the architectural decomposition can be verified by checking that the 
contract refinement is correct: this consists of checking that, for all composite components, the contract of 

                                                             

1 CHESSML is implemented as UML, SysML and MARTE profile. 
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the composite component is ensured by the contracts of the subcomponents ς considering their 
interconnection as described by the architecture - and that the assumption of each subcomponent is ensured 
by the contracts of the other sibling subcomponents and the assumption of the composite component. 

The contract specification can further be enriched by categorising contracts into strong and weak [82] to 
allow for better support for specification of reusable components behaviour. Such components are intended 
to work in different environments, and often exhibit environment-specific behaviours and assumptions. They 
have also been proven useful for specifying different behaviours or levels of quality for different 
configurations, operation modes or degradation levels, which can in particular help specifying safety 
properties of Systems-of-Systems that reconfigure at runtime (e.g. vehicle platoons), as outlined in [72]. 

A strong contract, denoted by <A, G>, requires the environment to satisfy the assumption A so that the 
component cannot be used in an environment violating A. On the contrary, a weak contract, denoted by <B, 
H>, is equivalent to the strong contract <True, B => H>: the component can be used in all environments, 
while the guarantee H is specific for the environments that satisfy B. In other words, strong contracts must 
always hold (if their assumptions are violated, the behaviour of the system is completely undefined and the 
system can even be destroyed), whereas the weak contract may hold or not in certain environments (i.e. in 
any given environment, only the guarantees will be assured that belong to a contract set of which all 
assumptions are fulfilled in this environment). In fact, the assumptions of weak contracts may be even in 
mutual exclusion and only some of them are satisfied by the same environment.  

The effectiveness of the contract-based design approach applied to complex cyber-physical systems is faced 
with several challenges. CPS are heterogeneous systems ς they combine software and hardware and even 
optical or mechanical components, exhibit a combination of discrete event interactions with (often non-
linear) continuous control dynamics and interact with an unpredictable physical environment. Application of 
contract-based design at the system-level of complex CPS requires addressing their heterogeneity, knowing 
that many basic operations from contract-based design, such as the refinement, are in general undecidable 
in presence of continuous dynamics. The recent survey [39] on contracts for system design provides an 
overview of this versatile approach to rich domains, such as real-time and probabilistic systems. More 
specifically, a contract-based design methodology for developing controllers in CPS is proposed by Nuzzo et 
al [73]. In this work, the contracts are expressed in Signal Temporal Logic (STL), a temporal assertion 
language designed to express system-level properties of CPS. In a related work [74], the complexity of CPS is 
tackled by considering probabilistic contracts (expressed in stochastic variant of STL) and developing 
algorithms for checking contract operations such as contract compatibility, consistency, and refinement, in a 
stochastic setting. The contract-based design is increasingly gaining attention in industry, especially in the 
automotive domain, where companies such as Toyota, Volvo Cars, Bosch, and Boeing used contract 
languages such as LTL and STL to formalize their functional CPS requirements, and build a rigorous testing 
methodology around it to check violations of implementation and refinement [75][76][77][78][79][80][19]. 
To summarize, the adaptation from contract-based design in software to contract-based design in CPS is a 
vivid area of research, which is also actively studied in AMASS. 

The AMASS platform supports the specification and analysis of contracts where assumptions and guarantees 
are expressed in Linear-time Temporal Logic [52] (LTL with future and past operators [53], first-order 
constraints [54] such as linear constrains over integer and real numbers, discrete or super-dense time model 
[55][56]) or Hybrid extension of LTL (HRELTL) [57]. Finally, the external tool AMT2.0 uses contracts specified 
in Signal Temporal Logic (STL) [59]. 

2.1.3 Semi-formal Specification of Requirements and Contracts 

Because formal expressions are hard to write and understand by non-experts, they tend to be avoided in 
practice. That turns out to be very unfortunate as they provide many striving characteristics, from which 
requirements engineering processes would benefit. A well-defined syntax and semantics offer only one way 
to interpret statements, making e.g. automatic verification and tracing possible. Expressions in 
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unconstrained natural language might be easier to read, but have no constraints in syntax and semantics, 
resulting in ambiguous statements which make automated processing or verification nearly impossible. In 
many cases, it takes an expert with appropriate domain knowledge to interpret and validate the expressions 
correctly, and even then, different experts might disagree on the exact meaning. This can even be caused by 
the fact, that some relevant details are simply not addressed at all in the human-made natural language 
specification. 

Template Languages [5] can close the gap between purely formal expressions and unconstrained natural 
language. They provide a well-chosen set of allowed sentence patterns, which results in a constrained 
natural language featuring a well-defined syntax. Ideally, the template language also has unambiguous 
semantics, leaving only one way to interpret an expression. 

There exist various attempts to semi-formalize requirements. Requirement Boilerplates [5][6][7] offer a set 
of predefined sentence patterns with placeholders that must be substituted by keywords such as 
component, interface or function names. Advanced semi-formal specification languages [8][9] feature not 
only syntactical rules but also semantical meaning to the expressions built. The Requirement Specification 
Language (RSL) [8], developed in the Artemis project CESAR (Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems) [10], allows the semi-formal specification for various types of requirements, 
such as functional, safety, architecture, etc. The Goal and Contract Specification Language (GCSL) [9] which 
has been developed during the DANSE (Designing for Adaptability and evolutioN in System of systems 
Engineering) project [11] considers the contract paradigm and allows a formal contract structure with semi-
formal assumption and guarantee notation. Building on the aforementioned pattern language and some 
additional considerations inspired by industrial experience, a new pattern language called System 
Specification Pattern Language (SSPL) [71] has been developed during the AMASS project and applied onto 
some of the AMASS case studies (in particular, the DC Drive system). 

An integration of semi-formal languages and specifications with system modelling tools can greatly improve 
the development process. Online expression checks on requirements or assertions can be made based on the 
existing system model used as ontology. If a semi-formal specification is fully translatable to a verifiable 
formal language such as LTL or HRELTL (perhaps not for all, but just for some of the assertions it can express), 
the system model can be verified against the specification enabling early V&V. 

The current AMASS platform supports the OCRA grammar2 to formalize requirements. This has a formal 
semantics, corresponds to LTL and HRELTL but with English words instead of mathematical symbols.  

2.1.4 Requirements Validation 

Requirements validation is a fundamental step in the development process of software and system design. In 
fact, requirements are typically specified in natural language, and flaws and ambiguities in the requirements 
can lead to the development of correct systems that do not do what they were supposed to.  The role of 
requirements validation is to check if requirements are specified correctly. Possible faults in the 
requirements are conflicts, ambiguities, incorrect values, incomplete cases, missing assumptions, over-
specification, etc. Formal methods for requirements validation are being devoted increasing interest (e.g., 
[43][44][45][46]). 

The AMASS platform provides different techniques to validate the requirements either based on quality 
metrics or on formal semantics analysis (provided that requirements are formalized into formal properties).    

                                                             

2 http://ocra.fbk.eu 

http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://ocra.fbk.eu/
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2.1.5 Verification and Validation of Behavioural Models 

A behavioural model describes the internal dynamics of a component. The model can describe how the 
internal state of a component is updated or the functional update of outputs based on the inputs. These 
behavioural models can be verified by means of model checking [47] against some formal properties in 
different temporal logics. The formal properties can represent some requirements (e.g., functional or safety-
related requirements) or some validation queries such as the reachability of states. Model checking performs 
an exhaustive search of the state space. However, it suffers of the well-known state space explosion 
problem. Thus, modern symbolic model checking techniques combine search and deductive techniques.  

In combination with contract-based design, the verification can be performed compositionally: state 
machines are verified separately against the local contracts of the corresponding components and the 
correctness of the system is implicitly derived by the correctness of the contract refinement and the local 
state machines. 

As an alternative and complementary approach, the properties can be compiled into monitors that observe 
individual execution traces and check whether they satisfy or violate the specification during simulation or 
test runs. This pragmatic approach provides a scalable, yet rigorous technique to reason about systems that 
are too complex for formal verification and model checking. In addition, property-based monitoring 
techniques can be applied to assess the correctness of black-box systems. 

In AMASS, the behaviour of components is specified with either state machines or other external modelling 
languages such as Simulink. The AMASS platform provides model checking techniques supported by the 
nuXmv model checker [17] and contract-based reasoning supported by the tool OCRA [16]. These tools are 
integrated in CHESS as backends. Monitor compilation is instead supported by AMT2.0, which is integrated 
with the Simulink models. 

2.1.6 Model-Based Safety Analysis 

Model-Based Safety Analysis (MBSA) [51] provides a set of techniques aimed at analysing the safety of a 
system based on the models used for system design and development όŀƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άƴƻƳƛƴŀƭ 
ƳƻŘŜƭǎέύ. A key step of MBSA is fault injection, i.e. the deliberate introduction of faults into the system 
nominal model [21] [22] [23]. This enables the validation (e.g., by means of simulation), verification (e.g., 
model checking or monitoring), or, more in general, safety analysis (e.g., minimal-cut-sets analysis) of fault-
tolerance mechanisms. It basically consists of introducing faults into a system, analysing its behaviour with 
respect to the introduced faults and determining which kind of actions or measures must further be taken, 
until a stage is reached where the system can cope with all reasonably foreseeable failure cases. MBSA 
contributes to the safety analysis phase, which includes the verification and validation of safety concepts and 
requirements. Some of its most remarkable aims are to support the assessment of implemented safety 
requirements, and the correct implementation and the effectiveness (diagnostic coverage) of safety or fault 
tolerant mechanisms. Traditional safety analysis methods such as Fault Tree Analysis (FTA) or Failure Mode 
and Effect Analysis (FMEA) are typically performed manually and are often not sufficient. Manual reviews are 
normally needed to prove the completeness and the correctness of those analyses [24]. Furthermore, the 
failure logic or the effects of certain faults cannot easily be determined by those analysis techniques. A 
promising approach to overcome this limitation is to combine traditional analysis with MBSA approaches. It 
is important to understand that MBSA mitigates the new challenges, but cannot replace safety assessments 
such as FTA or FMEA done in the traditional way. Therefore, MBSA and traditional safety analysis techniques 
complement each other. 

There are different MBSA techniques like symbolic MBSA or simulation-based MBSA. Symbolic MBSA arises 
as an attempt to introduce formal methods into the area of fault injection in order to evaluate the 
dependability of safety-critical computer systems. Meanwhile, simulation-based MBSA realises a controlled 
testing experiment to evaluate the behaviour of the system in the presence of faults. 
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Fault Injection requires, on the one hand, a formal or an executable design model from which an undesired 
behaviour is modelled with the system model. On the other hand, safety analysis techniques based on model 
checkers (e.g. xSAP [25] [26]) or on simulation (e.g. Sabotage [27]) [13], help to analyse the system model 
extended with faulty behaviour. This helps, for example, to find inconsistencies between the modelled and 
the safety requirements. As explained in D3.3 [28], when setting up the fault injection environment, it is 
important to define the fault injection policy which is called fault list [34]. This configuration process includes 
the definition of fault locations, fault injection times, fault durations, and the input data for the system. 

Figure 2 depicts the role of applying multi-techniques with the intention of completing an early safety 
assessment, showing how they contribute to architecture-driven assurance. The novelty of this approach lies 
in the combination of simulation and model-checking to automate the safety analysis construction, define 
the needed safety measures, verify the safety mechanisms and validate if the required level of safety is 
achieved.   

 

Figure 2. MBSA techniques for early safety assessment 

2.1.6.1 Simulation-Based MBSA 

Among the different MBSA techniques, simulation-based approaches emerge as a promising solution to 
provide an early safety evaluation and V&V of a system. 

Simulation-based MBSA involves the construction of a behavioural model of the system [35]. The simulation 
models can be developed on different level of abstractions such as Simulink/SCADE or using hardware 
description languages like Very High speed integrated circuit Hardware Description Language (VHDL). In the 
context of AMASS, only the first category is considered. 

In order to identify differences in the system´s behaviour and to automate the fault injection campaigns, the 
simulation results of a faulty system under test (faulty SUT) or extended system model with faulty behaviour 
are compared versus a fault free system (golden SUT) under the same workload. Extra model blocks 
(saboteurs) are injected into the component inputs, which reproduce a certain failure mode. After that, the 
effect of that fault can be observed in the output by including extra read-out blocks or monitors. These fault 
injectors simulate failures at input ports and the inclusion of monitors in the output ports in order detect 
whether and in which ways an output assertion is violated in consequence.  

The results can be stored as part of the safety case as applies to the conventional safety analysis techniques. 

2.1.6.2 Symbolic MBSA 

Symbolic MBSA [51] searches for all the possible combinations of faults (minimal cut sets) that may lead to a 
system failure. The result can be presented in form of a fault tree, where the system failure represents the 
top-level event and the injected faults are the basic events. 

If the system architecture is enriched with contracts, a fault tree can be generated semi-automatically to 
represent how the failures of components can be propagated and result in a system failure, based on an 
analysis of the contract refinement. In this case, the failure of a component represents the inability of the 
component to fulfil any of its guarantees although all assumptions about its environment hold, while the 
failure in the componentΩǎ environment represents a violation of any of the componentΩǎ assumptions. At 
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every level of the contract refinement, minimal cut sets (or minimal cut sequences in the case of timed 
behaviour) can be computed to see how the failure of the composite component depends on the failure of 
the environment and the failure of the subcomponents. The results can be integrated into a hierarchical fault 
tree that respects the architectural decomposition of the system. 

2.1.7 Safety Case 

In most industries, a well-structured Safety-Case, i.e. a concluding argument that the system to be released 
for public usage is sufficiently safe, is required by safety standards and certification authorities. Standards 
mentioning the obligation for a Safety Case include IEC 61508, ISO 26262 and many more. A more 
comprehensive list and a compilation of notions of Safety Case (and problems with informal definitions what 
a Safety Case exactly is) is given in [58][65]. The notion of a Safety Case is not formally defined by the 
standards and therefore varies among different standards, regions and industry branches ς it can even 
depend on the company who creates it or on the safety assessor or local certification authority. Where this 
term is in use, it refers at least to a collection of all relevant output documents from the safety process, from 
which an external assessor can conclude that everything has been done to assure that the product is safe in 
its practical application. A more formal interpretation shaped by Tim Kelly is a structured representation of 
argument lines that show the fulfilment of every safety goal by providing evidences, see Figure 3. 

 

Figure 3. Safety arguments show the fulfilment of safety goals and other related safety requirements by providing 
evidences (e.g., ISO 26262 work products) 

The lines of argumentation may be long and winding, requiring a structured representation, e.g. using the 
popular Goal-Structuring-Notation (GSN). This way of thinking has influenced British aerospace industries as 
well as the automotive standard ISO 26262 (but only in its informative part, i.e. as a recommendation).  
{ƛƳƛƭŀǊ ƴƻǘŀǘƛƻƴǎ ŀǊŜ ǘƘŜ ά{ŀŦŜǘȅ /ƻƴŎŜǇǘ ¢ǊŜŜǎέ [70] ǇǊƻǇƻǎŜŘ ōȅ CǊŀǳƴƘƻŦŜǊ L9{9 ƻǊ ǘƘŜ ƴƻǘŀǘƛƻƴ ά/ƭŀƛƳǎΣ 

!ǊƎǳƳŜƴǘǎ ŀƴŘ 9ǾƛŘŜƴŎŜ ό/!9ύέ ǎǳƎƎŜǎǘŜŘ ōȅ ǘƘŜ ǘƻƻƭ ŎƻƳǇŀƴȅ !ŘŜƭŀǊŘ3, or the graphical structuring of 

safety concepts provided by the tool medini analyze4.  All of them have in common that they are tree-style 
notations that iteratively decompose the safety goal and graphically distinguish between different semantic 
items like claims, arguments and evidences (with varying terminology). 

Looking closer at safety cases from real industries, we can often notice that two levels of abstraction are 
involved: 

1. The process level, where the individual evidences are safety work products (e.g. a FMEA report, a 
test report, a review report), demonstrating that all necessary process activities have been arranged 

                                                             

3 See product website: https://www.adelard.com/asce/choosing-asce/cae.html 

4 See product website http://www.medini.eu/index.php/de/products/functional-safety  

https://www.adelard.com/asce/choosing-asce/cae.html
http://www.medini.eu/index.php/de/products/functional-safety
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in a way as to provide a gap-less argument (e.g. Why are we sure that we have considered all 
reasonably assumable hardware failures? Ą Because we have performed an FMEA and had it 
reviewed by independent experts!). 

2. The level of technical product development, where individual safety mechanisms (e.g. a range check, 
a watchdog), their describing requirements, the architectural items to which they are allocated and 
their corresponding individual verification artefacts (a passed test case, a formal proof for some 
property, etc.) are all linked to each other, allowing the reader to follow the argument on a technical 
level (e.g. Why are we sure that the power part is switched off in case that some software routine is 
trapped in an endless loop? Ą Because we have implemented a safety mechanism consisting of a 
software part that monitors the program flow and a hardware watchdog that disables the power 
part via a dedicated wire if the software is detected to be hanging). 

The usage of tree-style notations for safety argument structuring in a technical safety concept, belongs to the 
second category, whereas the usage of tree notations to structure the process argument in a safety case 
belongs to the first category. Notations like GSN are applicable for both purposes in industry.  

Other classification terminologies have been proposed in literature, all roughly addressing the same semantic 
difference, e.g. 

¶ Indirect evidences = process level 

¶ Direct evidences = verification (test) results on product level (right side of the V-model) 

¶ Immediate evidences = the design artefacts describing the product technically (left side of the V-
model) 

However, the distinction in left and right leg of the V-model can be seen problematic these days, because 
firstly, in the era of agile development and bottom-up system construction by reusing existing parts, the 
general applicability of the V-model can be doubted at all, and secondly, early prototyping, simulation, 
analysis and the like happen already in the left leg of the V-model, but provide similar kind of evidences as 
the test results in the right leg (see Figure 5). More contributions to this classification can be found for 
instance in [69]. 

In AMASS, both levels are linked to each other via the meta-model: the model-based artefacts from (1) 
contain the individual model elements from (2). This is depicted in Figure 4: in the upper section of the 
figure, the safety artefacts on process level can be seen, whereas the lower section shows architecture, 
requirements faults/failures and safety mechanisms. The links crossing the boundary between upper and 
lower section show the containment relationships. The AMASS tool chain adheres to this meta model (see 
CACM description in AMASS D2.8 άIntegrated AMASS Platform όŎύέ) and allows navigable links in accordance 
to the meta model links, so traceability is assured from project artefacts constituting the safety case to 
individual modelling elements in the functional / technical product architecture. 
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Figure 4. Links between the safety case and the design model 

2.2 Architecture-Driven Assurance 

2.2.1 Main Idea 

The idea of architecture-driven assurance is: 

(1) on technical level: to exploit the architectural design in order to  

a. develop the product correct and dependable by construction, in particular by decomposing 
the requirements onto the architecture components using the contract-based approach 
while verifying the correctness of this refinement,  

b. by supporting safety analysis, in particular by semi-automatically deriving safety and other 
analysis results from the architecture, by establishing a safety concept with safety 
mechanisms on top of the architecture and, finally, by verifying the compliance of each 
component of the architecture with its contracts, using techniques like formal methods, 
simulation with observers, reviews or testing; 

(2) on process level:  to collect all artefacts produced during the early phases of the system design to be 
used as evidences in the safety case and to drive the assurance of the system with arguments that 
document why and in which context the artefacts were created.  
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The architectural design phase provides an enormous opportunity for the preparation of the safety case: 
most design choices, especially related to the safety measures to be included in the system, are made in this 
phase and it is of paramount importance to explain and justify these design choices in the argumentation, as 
well as the context in which they were taken; moreover, the availability of models enables the possibility to 
verify and validate the design earlier than the typical V&V phase; while the main purpose of early V&V is to 
reduce cost and time discovering problems before the system is implemented and deployed, the generated 
artefacts provide an amount of evidence for the safety case that is typically not present in the traditional 
workflow. 

The architecture-driven assurance proposes to develop the assurance case along the development process 
collecting the inputs of the system architecture modelling and early V&V as depicted in Figure 5. Note that 
the V-Model is a simplification and not meant to be the realistic workflow; moreover the picture does not 
show the iterations that are necessary in practice, in particular when safety needs to be considered (iterative 
cycle of design Ą safety analysis Ą additional safety requirements Ą design, until the remaining risk is 
considered acceptable). It rather highlights the overall idea of early model-based verification and validation, 
as well as the interaction of the system development with the construction of the assurance case thanks to 
the model-based system architecture. 

 

Figure 5. Modelling and Early V&V providing input to the assurance case 

The Prototype P2 of the AMASS platform supports the Architecture-Driven Assurance approach by: 

¶ Providing a rich set of early V&V and model-based safety analysis techniques, 

¶ Collecting the results of the analysis as evidence for the assurance case, 

¶ Linking the modelling elements to the corresponding elements of the assurance case, 

¶ Generating argument fragments from the models. 
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2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process 

As shown above, the main idea of AMASS is projected onto a V-model process that is the blueprint for most 
safety-related development process models in any industry. However, to explain how the methods and tools 
from AMASS fit together and to give an overview how they can be applied on the background of an industrial 
V-model process, the V-model will be shown again, with some more details and connections between the 
work products.  

To do so at the example of an ISO 26262 automotive process, let us start with Figure 6, which is a simplified 
interpretation of the standard workflow V from ISO 26262-2 Figure 1. It shows: 

¶ In the blue ribbon: the activities of normal development, as usual the constructive activities on the 
left leg, the verification and validation activities on the right leg (note that the system level from ISO 
26262 has been deliberately replicated: one vehicle level, which is normally done by the vehicle 
OEM, and one ECU/system level, which is normally passed to a supplier; in reality, there can even be 
ƳƻǊŜ άǎȅǎǘŜƳέ ƭŜǾŜƭǎ). 

¶ In the red ribbon: the additional activities for functional safety, such as Hazard Analysis and Risk 
Assessment, or different kind of safety analysis. 

¶ In the thin white ribbon: the planning and tracking activities of the process. 

¶ In the thin green ribbon: the supporting processes, such as configuration management, change 
management etc. 

¢ƘŜ ǎƻǊǘ ƻŦ άǿƛƴƎǎέ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎ ŀƴŘ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ± ǎȅƳōƻƭƛȊŜ ǘƘŜ ǇǊƻŘǳŎǘ ŘŜŦƛƴƛǘƛƻƴ ǇƘŀǎŜ ŀƴŘ ǘƘŜ 
production / operation / maintenance phase, which are not part of the core development activities, but also 
relevant to safety and therefore covered by ISO 26262 (and in similar way, by most safety standards from 
other industries).  
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Figure 6. Generic ISO 26262 V-model 

What is not shown in the V model is the fact that all practical processes in industry contain iterations (loops 
within the V-model) and incremental execution (like several V-models following each other, the early ones 
with more emphasis on concept and requirements, the later ones with more focus on testing activities). To 
be industrially applicable, the AMASS process must be adaptable to this way of proceeding.  

Also, ƴƻǘ ǎƘƻǿƴ ŀǊŜ ǘƘŜ άƳƻŘŜƭǎ Ҍ ŜŀǊƭȅ ±ϧ±έ ōǊŀƴŎƘŜǎ ŦǊƻƳ ǘƘŜ !a!{{ ± ƳƻŘŜƭ ƛƴ Figure 5, which are a key 
feature of the AMASS proceeding. When zooming into the details, we will show how exactly these activities 
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are enabled by the specification, modelling, analysis, verification and validation activities proposed in this 
methodological guide. 

Let us now come one step closer and have a more detailed look on the left leg of the V model, see Figure 7. It 
is obvious, that the foundations for model-based analysis and V&V are laid on the left leg of the V model. The 
activities on the left leg are concerned with the transformation of an initial, coarse and informal product idea 
and item definition (maybe just a list of functions or use cases, maybe a requirements collection in natural 
language) to more and more detailed models and more formal requirements, which are decomposed onto 
the subsystems, components, subcomponents etc. of the system-to-be. The quality and degree of formality 
of these requirements and the models is key for efficient or even automated verification of the refinement, 
but also of the compliance of the implemented blocks in the end with their specification, and also for 
systematic safety analysis (see Section 4 of [3]). The desired output of the whole chain of activities is clearly 
the technical implementation, laid down as mechanical drawings, part lists, electronic hardware circuit 
diagrams, and code for hardware and software, such as C or VHDL language. 

 

Figure 7. Zoom-in on left leg of the V-model 

To explain how this transition is performed in detail in the AMASS context, Figure 8 shows more details on 
the work products and interconnections. 
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Figure 8. Workflow in the left V-leg with normal function development and safety activities 

For the initial requirements capturing (e.g. as function lists or use cases) and for the preliminary architecture, 
no specific tools or notations are assumed (can be even standard office tools), but after that, the 
requirements will have to be captured in a structured way, allowing their atomization and identification 
(even if they are still written informally, in plain natural language) and the architecture on the highest level 
should be modelled in a semi-formal language like SysML, which has at least a well-defined syntax and some 
modelling guidelines that come with it. As these are standard activities, it does not come as a surprise that 
there are many different choices for appropriate tools from AMASS and from outside of AMASS, the AMASS 
tools even partly overlapping on this area. Possible tools for SysML architecture design are CHESS/Papyrus, 
SAVONA, SCADE Architect, and many commercial tools, and also for requirements capturing a variety of tools 
is on the market (IBM Doors, PTC, Jama, just to name a few of them). 

The next, very important step is the stepwise formalization, and the decomposition along with the 
architecture hierarchy.  Doing requirements refinement and architecture design in an intertwined way is one 
of the key success factors, and not yet supported a lot by commercially available tools. To do so, AMASS 
proposes the application of the contract-based design paradigm, and the application of template-based 
languages which allow first to restrict the syntax of the assertions (semi-formal representation) and then, 
wherever possible, specify them in a language that provides a formal semantics, enabling both 

(a) Verification of the refinement between the levels of the architecture, and 

(b) verification of the implementation at the end of the left V-leg with the respective contracts for each 
leaf component of the architecture. 




















































































































































































































































