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Executive Summary

This documents the final deliverable associated with the AMASS TaskMefhodological Guidance for
Architecturedriven Assurancewhich provideghe methodological guidéor the AMASSArchitectureDriven
Assurancepproach This deliverable represents an update of the AMASS [38]eliverable released at
m20; several sections have been added modified as summarizeth dAppendk A: Document changes
respect to D3.g. While D3.7 was based dhe functionality supported by the second prototype (P1) of the
AMASS platformthis deliverable, D3.8, msed on the third and final version of the prototype (P2).

This document focuses on the techniques developed in WRRBlides the users step by step in the usage of

the AMASS platform to support the architecturasign of a system collecting modelling artefacts and the
related results of early validation, verification, and safety analysis to be used in the safetyl cdsavea

more general overview and guide for the AMASS appraactuding the methods and tecligues provided

08 20KSNJ 2taz (GKS NBIFIRSNJ Aa NBFTSNNBR (2 5H[@Ep a! a
Also,to have a more detailed description of specific functions, the reader is referréek tool user manual,

which is included in the abowmentioned deliverable D2.5.
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1. Introduction

Embedded systems have significantly increased in technical complexity ®vegren, interconnected
systems. The rise of complex Cysdrysical Systems (CPS) has led to many initiatives to promote reuse and
automation of labofintensive activitiessuch as the assurance of their dependabhiliihe AMASS project
builds on the result®f two largescale projectsnamelyOPENCO389] and SafeCe48], which dealt with
assurance and certification of softwaimstensive critical systems using incremental and méduhded
approacheslin particular,SafeCer developed generic component model andontractbased verification
techniques for compositional devepment and certification of CPBhese have been integrated in the CHESS
tool support[50]. The AMASS project consolidates and extends such support with a wider razigalysis
techniques for the system architecture and combines it with the OPENCOSS solutions for building an
assuance case. The resulting Aitecture-Driven Assurance isirther enhanced for multiconcern aspects

(in particular, the interplay between safety and securifgj,reuseof architectural patterns, and exploits tool
interoperability mechanisms to interaatith external tools for modelling and analysis support.

Independent Assessment

Y

Certification Safety/S&curity
Liaison Assessment

AMASS Reference Tool Architecture

Multi-Concern Assurance (STO2)

Component ~ Module Assurance

AMASS Platform Basic Building Blocks Release  Case Development

WP4 WP5
Common Assurance &
System Componen Assurance Case Evidence fenti f
Specification Specification (cACM) Product Engineer'lng

Design Validation &
Verification

Development Quality
Management

Seamless Interoperability (STO3)

Figurel. ArchitectureDriven Assurance in relation to the other work packages
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Figurel provides a general overview of the different AMASS Scientific Technical Objectives (STOs) and how
they are implemented in the AMASS project by specific Work Packages (WPs). This ddooosss on
methodology guidelines for Architectw@riven Assurance and the related tools developed in WP3.

Thus, itdefinesa methodological guide apply the Architecturédriven Asurance approach, to use both its
conceptual aspects and its softreatool support. It first providesan overview of the kegoncepts, such as
system architecture, contradtased design, early verification and validatiand modeibased safety
analysis.Then, it details what Architettire-Driven Assurance meante role of thekey concepts in the
approach, and how the AMASS platform supportsAib overview of the tool architecture is given, in
particular of how the core component, CHESS, interacts with the external bodle rest of the document,
0§KS GSN)Y daiea@d spetificalKdefinedybytiie context, refers to the AMASS platfofravhich
CHESS is a core component).

This guidedescribes the methodology to follow, detailing the process steps and how to use the tool support.
The workflow is presented by meansadattivity diagrams or sequences of steps to follow, with details on how
to use the AMASS platforto perform each step. The steps are meant to give an example of usage of the
tool trying to cover all relevant features. The user is referred to the user mathad is included as an Annex

of D2.5[33], to get a deeper knowledge about the different options.

The guide usesimple case studies to concretely describe the approable. material (more specifically, the
set of CHESS projectsf these case studids released with the tool.
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2. Architecture-Driven Assurance Overview

2.1 Background

This sectiongivesa hrief description of the main conceptsised in the guideln each subsection, first, the
concept itselis briefly described, and, seconithe related tool supports summarizedThe reader iseferred
toD33G5SaAdly 2F GKS !a! {{ 22 tddvenlagsRanc¥td §M]XdR turthdr 2 NJ |
details on these concepts.

2.1.1 System Architecture

As part of a modebased engineering approach to system developmiéi, the system architecture plays

an important role in the early phases of the system design. The system is first considered as a whole, defining
system requiremets and boundaries¢t KA a AYyAGALFf € S@St 2F I NOKAGSOU
DefintA 2y ¢ | 002 NR J8Y]. Thelsystem architecture model is thefefined to detail how the
different parts of the system are connected and interact to fulfil the system requirements. The system
architecture model is used to capture a variety of information: the internal hierarchical structure of the
system and its compeents the system functions and component behaviguend the component
interfaces, their connection andhteraction The model is used for early verification and validation, meant
here as modebased techniques to verify that (a certain part of) the modatisfies a highelevel
specification and to validate that the model captures what the designer has in miirdsystem architecture

model is also used fallocation ofthe safetyrelated requirements identified during theafetyanalysisand

safety comept creationphasesit includes the safety mechanisms implemented in the systenedoice the

risk introduced bysystem failures, and thenodel of faults used talerive of the safety mechanismsand

assess their effectiveness

The AMASS platform suppottise modelling of the system architecture with Sysktid UMLdiagramsfor

what regards themodelling of the requirementsSysMLRequirement diagrams)he internal hierarchical
structure of the systemand its components(SysMLBlock Definition and InternaBlock diagramsand the

components behavioursUML State Machine diagram$. Moreover, the CHESSnodelling language
(CHESSML)61] provides means teextend the afoementioned diagrams to support theodeling of

dependabilityconcerns and to apply theontractbaseddesign, the latter introduced in the ne8ection
2.1.2

2.1.2 ContractBased Design

The challenges posed by the design of complex ephgsical systemfs6] pushed the research of contract
based techniques for system desifmg.,[37][38][39][40]). The system architecture model is enriched with
expressions asserting the expected properties of the system, its coemt® and environment. In order to
allow compositional reasoning, the property of a component may be restricted to its interface considering
the component as a black box (without constraining the internal variables of the compacaeatian be
structured nto contracts, pairs of properties representing an assumption and a guarafithe component:

an assumption is @& assertion on theébehaviourof the component environmentwhile a guarantee is a
assertion on thebehaviour of the componentprovided that the entire set of assumptios holds. If
assumptions and guarantees are formal properties, which means they are specified in a formal language such
assome specific kind aémporal logic, the architectural decomposition can be verified byckimy that the
contract refinement is correct: this consisof checking that, for all composite components, the contract of

1CcHESSML is implemented as UML, SysML and MARTE profile
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the composite component is ensured by the contracts of the subcomponentonsidering their
interconnection as described by thechitecture- and that the assumption of each subcomponent is ensured
by the contracts of the othesiblingsubcomponents and the assumption of the composite component.

The contract specificatiorcan further be enrichedby categorising contractsito strongand weak[82] to
allow for better support for specification of reusable compondmhaviour Such components are intended
to work in different environments, andften exhibitenvironmentspecificbehaviours and assumptionghey
have also ben proven useful for specifying different behaviours or levels of quality for different
configurations, operation modes or degradation levels, which can in particular helpfyspgcsafety
properties of Systemef-Systems that reconfigure at runtime (e.g. vehicle platoons), as outling@jn

A strong contract, denoted by <A, G>, requires the environment to satisfy the assumption A so that the
component cannot be used in an environment violating A. On the contrary, a weak d¢pdiaoted by <B,

H>, is equivalent to the strong contract <True, B => H>: the component can be used in all environments,
while the guarantee H is specific for the environments that satisty Bther words, strong contracts must
always hold (if their asgnptions are violated, thdehaviourof the system is completely undefineohd the

system can even be destroyed), whereas the weak contract may hold or not in certain environments (i.e. in
any given environment, only the guarantees will be assured thabrigelto a contract set of which all
assumptions are fulfilled in this environmenth fact, the assumptions of weak contracts may be even in
mutual exclusion and only some of them are satisfied by the same environment.

The effectiveness of the contrabesed design approach applied to complex cyplysical systems is faced

with several challenges. CPS are heterogeneous systaimsy combine software and hardwaand even

optical or mechanicatomponents, exhibita combination of discrete event interactie with (often non

linear) continuous control dynamics and interact with an unpredictable physical environment. Application of
contractbased design at the systelavel of complex CPS requires addressing their heterogeraigwing

that many basic operatins from contractbased design, such as the refinement, are in general undecidable

in presence of continuous dynamicBhe recent survey39] on contracs for sysem design provides an
overview of this versatile approach to rich domains, such astmea&l and probabilistic systemdviore
specifically, a contradbased design methodology for developing controllers in CPS is proposed by Nuzzo et
al [73]. In this work, the contracts are expressed in Signal Temporal Logic (STL), a temporal assertion
language designed to express systkawel properties of CP$ a related worlf74], the complexity of CPS is
tackled by considering probabilistic contracts (expressed in stochastic variant of STL) and developing
algorithms for checking contract operations such as contract compatibility, consistency, and refinement, in a
stochastic settig. The contractbased design is increasingjginingattention in industry, especially in the
automotive domain, where companies such as Toyota, Volvo, Gasch,and Boeingused contract
languages such dsTL andSTL to formalize their functional CP§uieements, and build a rigorous testing
methodology around it to check violations of implementation and refinen&Bi[76][77][78][79][80][19].

To summarize, the adaptation from contrazhsed design in software toontractbased design i€PS is a

vivid area of research, which is also actively studied in AMASS.

The AMASS platformupports the specification and analysis of contrastsere assumptions and guarantees
are expressed in Linedime Temporal Logi¢52] (LTLwith future and past opmators [53], firstorder
constraints[54] such as linear constrains aviateger and real numbers, discrete or sujkEmse time model
[55][56]) or Hybrid extension of LTL (HREUBL). Finally, the external tool AMT2.0 uses contracts spetifi
in Signal Temporal Logic (S[E9).

2.1.3 Semiformal Specification of Requirements and Contracts

Because formal expressions are hard to write and understand byerperts, they tend to be avoided in
practice That turns out to be very unfortunate as they provide many striving characteriftics, which
requirements engineering processes would benefit. A sdeflned syntax and semantics offer only one way
to interpret statements, makinge.g. automatic verification and tracing possible. Expressions in
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unconstrainednatural language might be easier to read, but have no congsdim syntax and semantics
resulting in ambiguous statements which makeatomated processing or verificatiamearly impossibleln
many cases, it takean expertwith appropriate domain knowledge to interpret and validate the expressions
correctly, and even then, different experts might disagree on the exact meaning. Theearbe caused by
the fact, that some relevant details are simply not addressed at all in the humaale natural language
specification.

TemplateLanguageg5] can close the gap between purely formekpressionsand unconstrained natural
language. They provide a welhosen set of allowed sentence patterns, which resuitsa constrained

natural language featuring a walkfined syntax Ideally, the template languagalso has unambiguous
semantics, leaving only one way to interpret an expression.

There exist various attempts to seffiormalizerequirements Requirement Boilerplatef][6][7] offer a set

of predefined sentence patterns with placeholders that must be substituted by keywords such as
component, interface or function names. Advancgemiformal specification languagd8][9] feature not
only syntactical rules but also semantical meaning to the expressions TheltReuirement Specification
Language (RS]8], developed in the Artemis project CES@Rstefficient Methods and Processes for Safety
relevant Embedded Systemg)0], allows the semformal specification for various/pes of requirements,
such asfunctional, safety, architecturestc. The Goal and Contract Specification Langu&CSLP] which

has been developed during thBANSEDesigning for Adaptability and evolutioN in System of systems
Engineeringproject[11] considers the contract paradigm and allows a formal contract structure with-semi
formal assumption and guarantee notatioBuilding on the aforementioned pattern language and some
addtional considerations inspired by industrial experience, a new pattern language c8istem
Specification Pattern Language (S§PL1)has been developed during the AMASS project and applied onto
some of the AMASS case studies (in particular, the DC Drive system).

An integration of semformal languages and speciitionswith system modelling tools can greatly improve

the development process. Online expression checks on requirements or assertions can be made based on the
existing system model used as ontologya lemiformal specification is fully translatable # verifiable

formal languagesch ad TL or HREL{ferhaps not for all, but just for some of the assertions it can express)

the system model can be verified against the specification enabling early V&V.

The current AMASS platform supports the OCRA grathto formalize requiremerg. This has a formal
semantics, corresponds to LTL and HRELTL but with English words instead of mathematical symbols

2.1.4 Requirements Validation

Requirements validation is a fundamental step in the development process of sofwdreystem design. In

fact, requirements are typically specified in natural language, and flaws and ambiguities in the requirements
can lead to the development aforrect systemghat do not do what they were supposed to. The role of
requirements validation is to check if requirements are specified correctly. Possible faults in the
requirements are conflicts, ambiguities, incorrect values, incomplete cases, missing assumpi&ms, 0
specification, etcFormal methods for requirements validatiare being devoted increasing interest (e.g.,
[43][44][45][46]).

The AMASS gfarm provides different techniques to validate the requirements either based on quality
metrics or on formal semantics analysis (provideat requirements are formalized into formal properties).

2 http://ocra.fbk.eu
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2.1.5 Verificationand Validationof BehaviouralModels

A behavioural model describes the internal dynamics of a compondite model can describe how the
internal state of a component is updated or the functional update of outputs based on the infhuse
behaviouralmodels can be verified by means of model checkidd] against some formal propertieis
different temporal logicsThe formal properties can represent some requiremetg., functional or safety
related requirementspr some validation queries such as the reachability of stafleslel checking performs
an exhaustive search of the state space. However, it suffers ofwiléknown state space explosion
problem Thus, moarn symbolic model checking techniques combine search and deductive techniques.

In combination with contracbased design, the verification can be performed compositionally: state
machines are verified separately against the local contracts ofctireespnding components and the
correctness of the system is implicitly derived by the correctness of the contract refinement and the local
state machines.

As an alternative and complementary approach, the properties can be compiled into monitors that observe
individual execution traces and check whether they satisfy or violate the specifichiidmg simulation or

test runs This pragmatic approach provides a scalable, yet rigorous technique to reason about systems that
are too complex for formal verificationnd model checking. In addition, prope#ased monitoring
technigues can be applied to assess the correctness of -blaclsystems.

In AMASS, thbehaviourof components is specified with either state machines or other external modelling
languages such aSimulink.The AMASS platform provides model checking techniques supported by the
nuXmv model checkdd 7] and contractbased reasoning supported by the tool OJR@. These tools are
integrated in CHESS as backends. Monitor compilation is instead supported by AMT2.0, which is integrated
with the Simulink models.

2.1.6 Model-BasedSafety Analysis

Model-Based Safety Analysis (MB$20)] provides a set of techniques aimed at analysing the safety of a
system based on the models used for systdesign and developmend | £ 82 NBFSNNBR {2
Y 2 R S.fA&éyistep of MBSA fault injection, i.e.the deliberate introduction of faults intéthe system
nominal model [21] [22] [23]. Thisenables thevalidation (e.g., by means of simulationgrification (e.qg.,

model checking or monitoring), or, more in general, safety analysis (e.g., micitrsgts analysisdf fault-
tolerance mechanismgt basically consists of introducing faults into a sgstanalysing its behaviour with
respect to the introduced faudtand determining which kind of actions or measuresust further be taken,

until a stage is reached where the syist can cope with all reasonably foreseeable failure cabH3SA
contributes to thesafety analysis phaswhich includes theverification andvalidation of safetyconcepts and
requirements Some of ts most remarkable aims ar® suppat the assessment oimplemented safety
requirements and the correct implementation and the effectivendsagnostic coverage)f safetyor fault
tolerant mechanismsTraditional safety analysis methods such as Fault Tree Analysis (FTA) or Failure Mode
and Effect Analysis MEA) ardypically performed manually and are ofterot sufficient. Manual reviews are
normally neededo prove the completeness and the correctness of those analy24§ Furthermore, the

failure logic or the effects of certain faults cannot easily be determined by those analysis techniques. A
promising approach to overcome this limitation is to combine traditional analysisMBS8Aapproachesit

is important tounderstand thatMBSAmitigates the new challenges, but cannot replace safety assessments
such as FTA or FMBAne in the traditional wayTherefore MBSAand traditional safety analysis techniques
complement each other.

There are differenMBSAtechniques like symboliIBSAor simulatiorbasedMBSA SymbolidMBSAarises

as an attempt to introduce formal methods into the area of fault injection in order to evaluate the
dependability of safetgritical computer systems. Meanwhile, simulatibasedMBSArealisesa controlled
testing experiment to evaluate the behaviour of the system in the presence of faults.
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Fault Injection requireson the one hand,a formal or an executable design modeim whichan undesired
behaviour is modelled with the systemodd. On the other handsafety analysis techniques basedrmndel
checkerg(e.g. XSA25] [26]) or on simulation(e.g. Sabotag§?7]) [13], help to analyse the system model
extended with faulty behaviourThis helps, for exampléo find inconsistencies between the modelled and
the safety requirementsAs explained in D3.[28], when setting up the fault injection environment, it is
important to define the fault injection policy which is called fault [8t]. This configuration process includes
the definition of fault locations, fault injection times, fault durations, and the input data for the system.

Figure 2 depictsthe role of applyingmulti-techniqueswith the intention of compleing an early safety
assessmentshowinghow they contribute toarchitecturedriven assurancelhe novelty of this gmroach lies

in the combination of isnulation and modelcheckingto automate the safety analysis construction, define

the needed safety measures, verify the safety mechanisms and validate if the required level of safety is
achieved.

Nominal Model

Model-based Safety
Analysis:
FTA, FMEA, CCA, Failure
Propagation

Maodel Checking

Model Extended

Fault Modelling
Semantics
(safety-related
information)

with Faults
Simulation Safety V&V

Figure2. MBSAtechniques for early safety assessment
2.1.6.1 SimulationBasedVBSA

Among the differentMBSAtechniques, simulatio#based approaols emerge as a promising solution to
provide an early safety evaluation and V&V of a system.

SimulationrbasedMBSAinvolves the construction of a behavioural model of the sysf88). The simulation
models can be developedn different level of abstractions such as SimuB&ADE or usinbardware
description languagekike Very High speed integrated circuit Hardware Description Language (VHDL). In the
context of AMASS, dnthe first categoryis considered

In order to identify differencem the system’s behaviour and tatamate the fault injection campaigns, the
simulation resultof afaulty system under test (faulty SVdr extended system model with faulty behaviour
are compared versus a fault free systegplflen SUY) under the same workloadExtra model blocks
(saboteaurs) are injected into the component inputs, which reproduce a certain failure mode. After that, the
effect of that fault can be observed in the output by including extra reatdblocks or monitors. These fault
injectors simulate failures at input portsd the inclusion of monitors in the outpytorts in order detect
whether and in which ways an output assertion is violated in consequence.

The results can be stored as part of the safety @ssplies tothe conventional safety analysis technigue
2.1.6.2 Symbolic MBSA

Symbolic MBS[51] searchedor all the possible combinations of faults (minimal cut sets) that may lead to a
system failure. The result can be presented in forna fdult tree, where the system failure represts the
top-level event and the injected faults are the basic events.

If the system architecture is enriched with contracts, a fault tree can be genessrdautomaticallyto
represent how the failures of components can be propagated and result intansyailure, based on an
analysis of the contract refinement. In this case, the failure of a component represents the inability of the
component to fulfilany of itsguarantees although all assumptions about its environment holdile the
failure in the componenQ @nvironment represents a violation ainy ofthe componen assumptiors. At

H2020JTIECSERO15# 692474 Pagel7 of 145



.\
\\-_/) AMASS Methodological guide foarchitecturedriven assurancebf D38V1.0

every level of the contract refinement, minimal cut s€éts minimal cut sequences in the case of timed
behaviou) can be computed to see how the failure of the compmsiomponent depends on the failure of
the environment and the failure of the subcomponerntée results can be integrated into a hierarchical fault
tree that respects the architectural decomposition of the system.

2.1.7 Safety @se

In most industries, a welltructured SafetyCase, i.e. a concluding argument that the system to be released
for public usage is sufficiently safe, is required by safety standards and certification authorities. Standards
mentioning the obligation for a Saty Case include IEC 61508, ISO 26262 and many more. A more
comprehensive list and a compilation of notions of Safety Case (and problems with informal definitions what
a Safety Case exactly is) is giverj58][65]. The notion of a Safety Case not formally defined by the
standards and thereforezaries among different standds, regions and industry branchesit can even
depend on the company who creates it or on the safety assessor or local certification autkidinigye this

term is in use, it refers at least to a collection of all relevant output documents from the gafetgss, from

which an external assessor can conclude that everything has been done to assure that the product is safe in
its practical application. A more formal interpretation shaped by Tim Kelly is a structured representation of
argument lineghat show the fulfilment of every safety goal by providing evidences,Fgare3.

Safety goals and other related
Safety Requirements

(CEEC

Safety Argument

(CC((

ISO 26262 Workproducts ‘

Figure3. Safety arguments show the fulfilment of safety gaatsl other related safety requirements by providing
evidences (e.g., ISEB262work product3

The lines of argumentation may be long and winding, requiring a structured representation, e.g. using the
popular GoaiStructuringNotation (GSN). This way of tking has influenced British aerospace industries as

well as the automotive standard ISO 26262 (but only in its informative part, i.e. as a recommendation).
{AYAT NI y2GFGA2ya | NFOKBLIB&AERSGE CRYGEKRETENLESAE
| NBdzySyida IyR 9@ARSYOS 6/ ! 90¢ 3 ordg §aphiaRstruztdringlok S
safety comepts provided by the tool edini analyz€. All of them have in common that they are trsgyle
notations that iteratively decompose the safety goal and graphically distinguish between different semantic
items like claims, arguments and evidences (with varying terminology).

Lookingcloser at safety cases from real industries, we can often notice tthatlevels of abstractiorare
involved

1. Theprocesslevel where the individual evidences are safety work products (e.g. a FMEA report, a
test report, a review report)demonstrating that all necessary process activities have been arranged

3See product websitéhttps://www.adelard.com/asce/choosinasce/cae.html

4 see product websitattp://www.medini.eu/index.php/de/products/functionakafety
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in a way as to provide a gdgss argument (e.g. Why are we sure that we have considered all
reasonably assumable hardware failured? Because we have performed an FMEA and had it
reviewed by independent experts!)

2. The level otechnical product developmentvhere individual safetygnechanismge.g. a range check,
a watchda@), their describing requirements, the architectural items to which they are allocated and
their corresponding indidual verificationartefacts (a passed test case, a formal proof for some
property, etc.) areall linked to each other, allowing the reader to follow the argument dechnical
level (e.g. Why are we sure th#fhe power part is switched off in case thedme software routine is
trapped in an endless loop® Because we have implemented a safety mechanism consisting of a
software part that monitors the program flow and a hardware watchdog that disables the power
part via a dedicated wire if the softwaredstected to be hanging)

The usage of trestyle notatiors for safety argument structuring iatechnical safety concept, belongs to the
second category, whereas thesage of tree notations to structure the process argument in a safety case
belongs to thdirst category. Notations lik&SNare applicablefor both purposesn industry.

Other classification terminologies have been proposed in literature, all roughly addressing the same semantic
difference, e.g.

9 Indirect evidences = process level

9 Direct evideces = verification (test) results on product level (right side of theodel)
1 Immediate evidences = the design artefacts describing the product technically (left side of the V
model)

However, the distinction in left and right leg of thembdel can be sen problematic these days, because
firstly, in the era of agile development and bottemp system construction by reusing existing parts, the
general applicability of the -vhodel can be doubted at all, and secondly, early prototyping, simulation,
analysis ad the like happen already in the left leg of therdel, but provide similar kind of evidences as
the test results in the right legsee Figure5). More contributions to thisclassification can be founfbr
instancein [69].

In AMASS, both levels are linked to each other via the mmetdel: the modebased artefactfrom (1)
contain the individual model elements from (2)hisis depictedin Figure4: in the upper section of the
figure, the safety artefacts on process level d@nseen, whereas the lower section shows architecture,
requirements faults/failures and safety mechanisms. The links crossing the boundary between upper and
lower section show the containment relationshipghie AMASS tool chain adheres to this meta mddek

CACM description in AMASS ®dntegrated AMASS Platforth Q anél allows navigable links in accordance

to the meta model linksso traceability is assured from project artefacts constituting the safety case to
individual modelling elements in thfeinctional / technical product architecture.
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Figure4. Links between the safety case and the design model
2.2 Architecture-Driven Assurance

2.2.1 Main ldea

The idea of architecturdriven assurance is
(1) on techni@l level: to exploit the architectural design in order to

a. develop the product correct and dependable by construction, in particular by decomposing
the requirements onto the architecture components using the conttzaded approach
while verifying the corctness of this refinement,

by supporting safety analysis, in particular §gymiautomatically deriving safety and other
analysisresults from the architecture, by establishing a safety concept with safety
mechanisms on top of the architecture and, figalby verifying the compliance of each
component of the architecture with its contracts, using techniques like formal methods,
simulation with observers, reviews or testing

(2) on process level: to collect all artefacts produced during the early phases sf/#tem design to be
used as evidences in the safety case and to drive the assurance of the system with arguments that
document why and in which context the artefacts were created.
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The architectural design phase provides an enormous opportunity foiptbparation of thesafety case:

most design choices, especially related to the safety measures to be included in the system, aie thade
phaseand it is of paramount importance &xplain and justifghesedesignchoices in the argumentatigs

well as the context in which they were taken; moreover, the availability of models enables the possibility to
verify and validate the design earlier than the typical V&V phase; while the main purpose of early V&V is to
reduce cost and time discovering problefmsfore the system is implemented and deployed, the generated
artefacts provide an amount of evidence for the safety case that is typically not present in the traditional
workflow.

The architecturedriven assurance proposes to develop the assurance casgalte development process
collecting the inputs of the system architecture modelling andye®&V as depicted iRigure5. Note that
the \AModel isa simplificationand not meant to be therealisticworkflow; moreoverthe picture does not
showthe iterations thatare necessarin practice in particular when safety needs to be considered (iterative
cycle of desigrA safety analysi#\ additional safety requirementg, design, until the remaining risk is
considered acceptable)t rather highlights theverall idea of early moddiased verification and validation,
as well as thénteraction of the system development witthe constuction of the assurance casgieanks to
the modetbased system architecture

Assurance

Require-
ments

Architec-
ture

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

Figure5. Modeling and Early V&V providing input to the assurance case

ThePrototype P2 of the AMASS platform supportie ArchitectureDriven Assurance approach by:
1 Providing a rich set afarly V&V and modebased safety analysis techniqyes
1 Collecting the results of the analysis evidence for the assurance case
1 Linking the modelling elements to the corresponding elements of the assurance case
1 Generating argument fragments from the mdsle
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2.2.2 Transferof the AMASSMain Idea to an IndustryProof Working Process

As shown above, the main idea of AMASS is projected ontmadél process that is the blueprint for most
safetyrelated development process models in any industry. However, to exptav the methods and tools

from AMASS fit together and to give an overview how they can be applied on the background of an industrial
V-model processthe V-model will be shownagain, with some more details and connections between the
work products.

To i so at the example of an ISO 26262 automotive process, let us starFigilhe6, which is a simplified
interpretation of the standard workflow V from 1SO 2625&gure 1. It shows

1 In the blue ribbon: the activities of normal development, as usual the constructive activities on the
left leg, the verification and validation activities on the right leg (note that the system level from ISO
26262 has been deliberately replicatedone vehicle level, which is normally done by trehicle
OEM, and one ECU/system level, which is hormally passed to a supptieality, there can even be
Y2NB aqaeaisSyé tS@St a

1 In the red ribbon the additional activitiedor functional safety, such as Hazard Analysis and Risk

Assessment, or different kind of safety analysis

In the thin white ribbon: the planning and tracking activities of the process

In the thin green ribbon: the supporting processes, such as configarahanagement, change

management etc.

¢KS a2NI 2F dagAy3Taégd G GKS 06S3aAYyYyAy3a FyR (4KS SyR

production / operation / maintenance phase, which are not part of the core development activities, but also

relevant to safety and therefore covered by ISO 26262 (and in similar way, by most safety standards from
other industries).

=a =9

q P q Production
Project Initialization

Production Operation

Preparation
Product Definition q
Maintenance

Item Definition Hazard Analysis System System ) Instruct./ Instruct/
- equirements (Vehicle) Test Tracking Tracking|
Safety

Safety Process Init.

System

System .
Architecture (Vehicle)

Planning, Tracking & Update/Refine

Supporting Process Integration

Component Component
Requirements Test

Component
(HW/SW)
Integration

Component
Architecture

HW
:W Protot.
€9 Test

HW W/ sw
Arch. Protot. Int.
g Asmbl g

HW Design HW Layout /BOM / SW.
Unit

SW Implementation

Guidelines & Reviews

Figure6. Generic ISO 26262 odel

What is not shown in the V model is the faleat all practical processes in industry contain iterations (loops
within the \\model) and incrementa¢xecution(like several \/odels following each other, the early ones

with more emphasis on concept and requirements, the later ones with more focussbing activities). To

be industrially applicable, the AMAB®cesanust be adaptable to this way of proceeding.

Alsoy 20 aK2gy INB (GUKS aY2RSfta b S| NI &gues which areNalkgyOK S &
feature of the AMASS proceeding. When zooming into the details, we will show how exactly these activities
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are enabled by the specification, modelling, analysis, verification and validation actpitipssed in this
methodological guide.

Let us now come one step closer and have a more detailed look on the left leg of the V mo&gjuses. It

is obvious, thathe foundations for modebased analysis and V&V are laid on the leftdethe V model The
activities on the left leg are concerned with the transformation of an initial, coarse and informal product idea
and item definition (maybe just a list of funatis or use cases, maybe a requirements collection in natural
language) to more and more detailed models and more formal requirements, which are decomposed onto
the subsystems, components, subcomponents etc. of the systebe. The quality and degree of foality

of these requirements and the models is key for efficient or even automated verification of the refinement,
but also of the compliance of the implemented blocks in the end with their specification, and also for
systematic safety analysis (see Settoof[3]). Thedesiredoutput of the whole chain of activitieis clearly

the technical implementationaid down as mechanical drawings, part lists, electrona&rdware circuit
diagrams, and code for hardware and software, such as C or VHDL language.

Use Cases

HARA
H | ASIL
HO1| B
HO2 | ===

FMEA

Figure7. Zoomin on left leg of the ¥model

To explain how this transition is performed in detail in the AMASS coriayire8 shows more details on
the work products and interconnections.
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Figure8. Workflow in the left Meg with normal functiordevelopment and safety activities

For the initialrequirements capturing (e.g. as function listsuse casegsandfor the preliminary architecture,

no specific tod or notationsare assumed (can be even standard office tools), but after that, the
requirements will have to be captured in a structured watlowing their atomization and identification
(even ifthey arestill written informaly, in plain natural language) and the architecture on the highest level
should be modelled in a sefformal languagdike SysML, which has at least a widfined syntax and some
modelling guidelines that come with it. As these are standard activitielgds not come aa surprise that
there are many different choices for appropriate tools from AMASS and from outBii®1ASS, the AMASS
tools even partly overlapping on this area. Possible tools for SysML architelgsignare CHESS/Papyrus,
SAVONA, SCADE Architect, and many commercial amalslso for requirements capturing a variety of tools
is on the market (IBNDoors, PTC, Jama, just to name a few of them).

The next, very important step is the stepwise formalization, and the decompositiong with the
architecture hierarchy Doing requirements refinement and architecture design in an intertwined way is one
of the key success factors, and not yet supported a lot by commercially available Tootdo so, AMASS
proposes the application of the contrabased design paradigm, and the application of templaased
languages which allow first to restrict the syntaiktbe assertiongsemiformal representation)and then,
wherever possible, specify them in a language that provides a formal semantics, enabling both

(a) Verification of the refinement between the levels of the architecture, and

(b) verification of the implementabn at the end of the left eg with the respective contracts for each
leaf component of the architecture
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