
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474. This Joint
¦ƴŘŜǊǘŀƪƛƴƎ ǊŜŎŜƛǾŜǎ ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ ŀƴŘ ƛƴƴƻǾŀǘƛƻƴ ǇǊƻƎǊŀƳƳŜ ŀƴŘ ŦǊƻƳ {ǇŀƛƴΣ /ȊŜŎƘ
Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Methodological Guide for Architecture-Driven
Assurance (b)

D3.8

Work Package: WP3: Architecture-Driven Assurance

Dissemination level: PU = Public

Status: Final

Date: 31st October 2018

Responsible partner: Stefano Tonetta (FBK)

Contact information: tonettas@fbk.eu

Document reference: AMASS_D3.8_WP3_FBK_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation

Pietro Braghieri, Alberto Debiasi, Ramiro
Demasi, Stefano Tonetta, Luca Cristoforetti

Fondazione Bruno Kessler (FBK)

Eugenio Parra Universidad Carlos III de Madrid (UC3)

Luis Alonso The Reuse Company (TRC)

Dejan Nickovic AIT Austrian Institute of Technology (AIT)

Estibaliz Amparan, Garazi Juez Tecnalia Research & Innovation (TEC)

Irfan Sljivo Mälardalen University (MDH)

Stefano Puri Intecs (INT)

¢ƻƳłǑ YǊŀǘƻŎƘǾƝƭŀ, Ivana Cerna, Vit Koksa Honeywell (HON)

Andrea Critelli, Luca Macchi RINA Services (RIN)

Markus Grabowski
Assystem Germany (formerly: Berner&Mattner
Systemtechnik) (B&M)

Bernhard Kaiser
ANSYS medini Technologies AG (formerly: KPIT medini
Technologies AG) (KMT)

Morayo Adedjouma, Ansgar Radermacher,
Huascar Espinoza, Bernard Botella, Thibaud
Antignac,

/ƻƳƳƛǎǎŀǊƛŀǘ Ł ƭΩ9ƴŜǊƎƛŜ !ǘƻƳƛǉǳŜ Ŝǘ ŀǳȄ 9ƴŜǊƎƛŜǎ
Alternatives (CEA)

Names Organisation

Gabriel Pedroza (Peer reviewer D3.7) /ƻƳƳƛǎǎŀǊƛŀǘ Ł ƭΩ9ƴŜǊƎƛŜ Atomique et aux Energies
Alternatives (CEA)

Bernhard Winkler (Peer reviewer D3.7) Virtual Vehicle (VIF)

Elena Alaña Salazar (Peer reviewer D3.8) GMV (GMV)

Daniele Tornaghi (Peer reviewer D3.8) Thales Italy (THI)

Cristina Martinez (Quality Manager D3.7 and D3.8) Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (TC reviewer D3.7 and D3.8) Universidad Carlos III de Madrid (UC3)

Barbara Gallina (TC reviewer D3.7 and D3.8) Maelardalen Hoegskola (MDH)

Alejandra Ruiz (TC reviewer D3.7 and D3.8) Tecnalia Research & Innovation (TEC)

Isaac Moreno (TC reviewer D3.8) Thales Alenia Space Spain (TAS)

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 145

TABLE OF CONTENTS

Executive Summary .. 10

1. Introduction.. 11

2. Architecture-Driven Assurance Overview ... 13

2.1 Background .. 13

2.1.1 System Architecture ... 13
2.1.2 Contract-Based Design ... 13
2.1.3 Semi-formal Specification of Requirements and Contracts ... 14
2.1.4 Requirements Validation .. 15
2.1.5 Verification and Validation of Behavioural Models ... 16
2.1.6 Model-Based Safety Analysis .. 16
2.1.7 Safety Case .. 18

2.2 Architecture-Driven Assurance ... 20

2.2.1 Main Idea ... 20
2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process 22
2.2.3 Tool Support Overview ... 28

3. Methodological Guide .. 30

3.1 Workflow Overview ... 30

3.2 System Design.. 36

3.2.1 System Definition ... 36
3.2.2 Hazard Identification .. 39
3.2.3 Requirements Formalization .. 42
3.2.4 Requirements Early Validation ... 51
3.2.5 Functional Refinement ... 77
3.2.6 /ƻƳǇƻƴŜƴǘΩǎ bƻƳƛƴŀƭ ŀƴŘ Cŀǳƭǘȅ .ŜƘŀǾƛƻǳǊ 5ŜŦƛƴƛǘƛƻƴ.. 86
3.2.7 Functional Early Verification ... 87

3.3 Safety Analysis ... 94

3.3.1 Simulation-based Fault Injection .. 94
3.3.2 Model-Based Safety Analysis .. 102
3.3.3 Contract-Based Safety Analysis .. 104

3.4 Safety Case .. 105

3.4.1 Evidence Generation .. 105
3.4.2 Link to Architectural Entities .. 107
3.4.3 Document Generation.. 107
3.4.4 Argument Fragments Generation ... 109

3.5 Summary ... 114

4. Case Studies.. 116

4.1 AIR6110 ... 116

4.1.1 Case Study Description ... 116

4.2 ETCS Linking function ... 119

4.2.1 Case Study Description ... 119
4.2.2 System Definition ... 121
4.2.3 Requirements Formalization .. 125
4.2.4 Parametrization of the Architecture ... 127

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 145

4.2.5 Error Parametrization... 129
4.2.6 Result Analysis ... 129
4.2.7 Evidence Generation .. 131

4.3 DC Motor Drive .. 132

4.3.1 Case Study Description ... 132
4.3.2 Experience gained with DC Drive Case Study at the stage of AMASS P2 135

5. Conclusions... 138

Abbreviations and Definitions.. 139

References ... 141

Appendix A: Document changes respect to D3.7 ... 145

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 145

List of Figures

Figure 1. Architecture-Driven Assurance in relation to the other work packages................................. 11

Figure 2. MBSA techniques for early safety assessment .. 17

Figure 3. Safety arguments show the fulfilment of safety goals and other related safety requirements
by providing evidences (e.g., ISO 26262 work products) ... 18

Figure 4. Links between the safety case and the design model ... 20

Figure 5. Modelling and Early V&V providing input to the assurance case ... 21

Figure 6. Generic ISO 26262 V-model ... 22

Figure 7. Zoom-in on left leg of the V-model ... 23

Figure 8. Workflow in the left V-leg with normal function development and safety activities.............. 24

Figure 9. Dimensions of Refinement ... 25

Figure 10. Early vs. late formalization ... 26

Figure 11. V-Model with Monitor Generation, Fault Injection and Simulation 27

Figure 12. Internal and external tools involved in the Architecture-Driven Assurance 29

Figure 13. Main Steps to perform the design and development of the system with the support of the
AMASS platform for Architecture-Driven Assurance ... 31

Figure 14. Steps for the System Design ... 32

Figure 15. Detailed steps for the System Design with the definition of roles (I) 33

Figure 16. Detailed steps for the System Design with the definition of roles (II) 34

Figure 17. Sub-activities related to the safety analysis currently supported by the AMASS platform 35

Figure 18. Detailed Safety Analysis Process... 35

Figure 19. Sub-activities related to the safety case currently supported by the AMASS platform 36

Figure 20. A generic component and the system component created in the Block Definition Diagram .. 38

Figure 21. ISO 26262 HARA Process Flow .. 40

Figure 22. Example of system description in SysML .. 40

Figure 23. Example of HAZOP Analysis ... 41

Figure 24. Example of scenario analysis ... 42

Figure 25. Formal property created in the diagram editor. The property is associated to one
component .. 43

Figure 26. Formal property created in the diagram editor. The property is not associated to any
component .. 44

Figure 27. Owner component set in the UML tab ... 44

Figure 28. tǊƻǇŜǊǘȅ 9ŘƛǘƻǊ ǿƛǘƘ άŎƻƳǇƭŜǘƛƻƴ ŀǎǎƛǎǘŀƴŎŜέ .. 45

Figure 29. Requirements set in the Profile Tab ... 45

Figure 30. Popup related to the contract definition process.. 46

Figure 31. /ƻƴǘǊŀŎǘ ŜŘƛǘƻǊ ǿƛǘƘ άŎƻƳǇƭŜǘƛƻƴ ŀǎǎƛǎǘŀƴŎŜέ .. 46

Figure 32. Assertion section of the properties view in SAVONA .. 47

Figure 33. Assertion-Wizard: Selection of a General Pattern Type to formulate an assertion 48

Figure 34. Assertion-Wizard: Refine the pattern instance with names of available model elements 49

Figure 35. Pattern-suggestion feature of the Assertion Editor ... 49

Figure 36. Macros Section of the Properties View in SAVONA ... 50

Figure 37. Data Dictionary View in SAVONA .. 50

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 145

Figure 38. Formal assumptions/guarantees in the contract of a component ... 51

Figure 39. Invocation of the V&V Manager ... 52

Figure 40. V&V Result view ... 53

Figure 41. RQA Connection Window ... 54

Figure 42. OSLC-KM Connection (SysML CHESS sub-type) ... 55

Figure 43. RQA Connection Window ... 56

Figure 44. Information message to select a set of metrics .. 56

Figure 45. Window with the templates store in RQA that contains the set of metrics 57

Figure 46. RQA ready to assess the quality ... 57

Figure 47. Detail of the assessment options.. 58

Figure 48. Quality information of the model in RQA. .. 58

Figure 49. Connection window to export the evidence in an AMASS repository 59

Figure 50. Information message of the stored process.. 59

Figure 51. Evidence stored in the assurance project ... 60

Figure 52. Creation of a new custom-coded consistency metric .. 61

Figure 53. Custom-coded configuration step .. 62

Figure 54. Assembly, class and method selection .. 62

Figure 55. Range of values of K ... 63

Figure 56. Pattern groups selection .. 63

Figure 57. Metric ready to assess quality .. 63

Figure 58. Metric results ... 64

Figure 59. Correctness metrics related to nouns ... 65

Figure 60. Correctness metrics related to verbs .. 66

Figure 61. Database connection ... 67

Figure 62. Correctness metrics selection .. 68

Figure 63. Parameters configuration... 68

Figure 64. Generate classifier ... 69

Figure 65. Selecting systems and subsystems from SCM ... 69

Figure 66. Assessing the quality metrics ... 70

Figure 67. Saving snapshot with the quality of the project .. 70

Figure 68. Graphical representation of the quality evolution .. 71

Figure 69. Information of the snapshot... 71

Figure 70. Correctness metrics for model template .. 72

Figure 71. Assign template to the model .. 72

Figure 72. Assess quality of the model. ... 73

Figure 73. Creation the checklist metric .. 74

Figure 74. Complete checklist metric .. 74

Figure 75. Window to answer the questions ... 75

Figure 76. Checklist results statistics ... 76

Figure 77. Checklist results for each requirement ... 77

Figure 78. Two instances of the component Block1 compose the System component 78

Figure 79. Internal Block Diagram used for architectural refinement .. 79

Figure 80. Model Explorer showing a valid system architecture hierarchy in SAVONA........................... 79

Figure 81. Design pattern selection dialog .. 81

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 145

Figure 82. Role binding interface .. 82

Figure 83. Wizard to set the parameters of the parameterized architecture ... 83

Figure 84. Last page of the wizard to import the instantiated architecture into the current project 84

Figure 85. άtǊƻŦƛƭŜέ ǘŀō ǘƻ ŜŘƛǘ ǘƘŜ ǊŜŦƛƴƛƴƎ ŎƻƴǘǊŀŎǘǎ.. 84

Figure 86. Contracts Section in the Properties View of SAVONA ... 85

Figure 87. Contract Wizard of SAVONA: Assignment of assumptions and guarantees 85

Figure 88. Contract Wizard of SAVONA: Definition of contract refinements .. 86

Figure 89. Example of component .. 86

Figure 90. Example of nominal state machine (using SMV as action language) 87

Figure 91. Dedicated menu to perform the check of the contract refinements 88

Figure 92. An example of the result of the check contract refinement shown in the Trace View. In this
case, it is possible to see that one refinement is failed, and the counter example. 88

Figure 93. !ƴ ŜȄŀƳǇƭŜ ƻŦ ǘƘŜ ǊŜǎǳƭǘ ƻŦ ǘƘŜ ŎƘŜŎƪ ŎƻƴǘǊŀŎǘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ǎƘƻǿƴ ƛƴ ǘƘŜ ά¢ǊŀŎŜέ ǾƛŜǿΦ
It is possible to see that four contracts are not satisfied by the state machines of their
associated component and one contract not. ... 89

Figure 94. AMT2.0 STL contract editor .. 90

Figure 95. AMT2.0 Evaluation view ... 91

Figure 96. AMT2.0 diagnostics results... 92

Figure 97. Weak contract selection for a component instance .. 93

Figure 98. Performing refinement analysis with strong and weak contracts .. 93

Figure 99. Integration workflow: from contract-based design to the generation of saboteurs and
monitors .. 95

Figure 100. Sabotage: global vision of the implementation with different tools 96

Figure 101. Select the Simulink file ... 97

Figure 102. Fault Target Block Selection ... 98

Figure 103. Fault List Creation .. 98

Figure 104. Faulty System Generation .. 99

Figure 105. Loading the CHESS file in Sabotage Framework .. 100

Figure 106. The possible connections of the system model .. 101

Figure 107. Assertions of a specific component .. 101

Figure 108. State machine modelling faulty behaviour ... 102

Figure 109. A fault tree visualized in the CHESS Editor View; note the probabilities associated to the top
and basic events .. 103

Figure 110. The FMEA table in the CHESS view ... 104

Figure 111. Dedicated menu to perform the compute the contract-based fault tree 105

Figure 112. Block Definition Diagram exported as vector image ... 108

Figure 113. Instance of an Internal Block Diagram exported as vector image .. 109

Figure 114. Popup to set the preferences of the generated document and diagrams............................ 109

Figure 115. Initiating the argument-fragment generation ... 110

Figure 116. Selecting the source analysis context ... 111

Figure 117. Selecting the destination assurance case folder on the CDO repository 112

Figure 118. Generation successfully completed with argument-fragments for each block 113

Figure 119. An example of the generated argument-fragment ... 114

Figure 120. Functional decomposition of the AIR6110 case study ... 117

Figure 121. WBS architecture overview (MV=Meter Valve; ASV=AntiskidShutoff Valve; W=Wheel) 119

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 145

Figure 122. Pictorial view of the Linked Balises on the track ... 121

Figure 123. ETCS Linking model - Requirements Diagram ... 121

Figure 124. SysML Block Definition Diagram of the parameterized model... 123

Figure 125. Internal Block Diagram of parameterized Physical block ... 124

Figure 126. LƴǘŜǊƴŀƭ .ƭƻŎƪ 5ƛŀƎǊŀƳ ƻŦ ǇŀǊŀƳŜǘŜǊƛȊŜŘ ά[ƛƴƪƛƴƎ ǎȅǎǘŜƳέ ōƭƻŎƪ 124

Figure 127. Tab Profile to link formal properties to requirements ... 125

Figure 128. Exepctation_window formal property .. 126

Figure 129. Scenarios formalization .. 126

Figure 130. SysML Block Definition Diagram of the instantiated model ... 128

Figure 131. Screenshot of a part of the documentation generated in HTML format 132

Figure 132. Architecture Overview of DC Drive Case Study (simplest version) 134

Figure 133. The physical implementation of the DC Drive Case Study as an experimental setting in
AMASS ... 135

Figure 134. A semiformal requirement for the DC Drive ... 136

Figure 135. Example of a macro expansion wizard allowing specification of semantically correct
requirements ... 137

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 145

List of Tables

Table 1. Artefacts produced by analysis ... 106

Table 2. Summary of modules supporting the different phases of the AMASS architecture-driven
assurance ... 114

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 145

Executive Summary
This document is the final deliverable associated with the AMASS Task 3.4 Methodological Guidance for
Architecture-driven Assurance, which provides the methodological guide for the AMASS Architecture-Driven
Assurance approach. This deliverable represents an update of the AMASS D3.7 [30] deliverable released at
m20; several sections have been added or modified as summarized in άAppendix A: Document changes
respect to D3.7έ. While D3.7 was based on the functionality supported by the second prototype (P1) of the
AMASS platform, this deliverable, D3.8, is based on the third and final version of the prototype (P2).

This document focuses on the techniques developed in WP3. It guides the users step by step in the usage of
the AMASS platform to support the architectural design of a system collecting modelling artefacts and the
related results of early validation, verification, and safety analysis to be used in the safety case. To have a
more general overview and guide for the AMASS approach, including the methods and techniques provided
ōȅ ƻǘƘŜǊ ²tǎΣ ǘƘŜ ǊŜŀŘŜǊ ƛǎ ǊŜŦŜǊǊŜŘ ǘƻ 5нΦр ά!a!{{ ǳǎŜǊ ƎǳƛŘŀƴŎŜ ŀƴŘ ƳŜǘƘƻŘƻƭƻƎƛŎŀƭ ŦǊŀƳŜǿƻǊƪέ [33].
Also, to have a more detailed description of specific functions, the reader is referred to the tool user manual,
which is included in the above-mentioned deliverable D2.5.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 145

1. Introduction
Embedded systems have significantly increased in technical complexity towards open, interconnected
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and
automation of labor-intensive activities such as the assurance of their dependability. The AMASS project
builds on the results of two large-scale projects, namely OPENCOSS [49] and SafeCer [48], which dealt with
assurance and certification of software-intensive critical systems using incremental and model-based
approaches. In particular, SafeCer developed a generic component model and contract-based verification
techniques for compositional development and certification of CPS. These have been integrated in the CHESS
tool support [50]. The AMASS project consolidates and extends such support with a wider range of analysis
techniques for the system architecture and combines it with the OPENCOSS solutions for building an
assurance case. The resulting Architecture-Driven Assurance is further enhanced for multi-concern aspects
(in particular, the interplay between safety and security), for reuse of architectural patterns, and exploits tool
interoperability mechanisms to interact with external tools for modelling and analysis support.

Figure 1. Architecture-Driven Assurance in relation to the other work packages

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 145

Figure 1 provides a general overview of the different AMASS Scientific Technical Objectives (STOs) and how
they are implemented in the AMASS project by specific Work Packages (WPs). This document focuses on
methodology guidelines for Architecture-Driven Assurance and the related tools developed in WP3.

Thus, it defines a methodological guide to apply the Architecture-Driven Assurance approach, to use both its
conceptual aspects and its software tool support. It first provides an overview of the key concepts, such as
system architecture, contract-based design, early verification and validation, and model-based safety
analysis. Then, it details what Architecture-Driven Assurance means, the role of the key concepts in the
approach, and how the AMASS platform supports it. An overview of the tool architecture is given, in
particular of how the core component, CHESS, interacts with the external tools. In the rest of the document,
ǘƘŜ ǘŜǊƳ άǘƻƻƭέΣ ǿƘŜƴ ƴƻǘ more specifically defined by the context, refers to the AMASS platform (of which
CHESS is a core component).

This guide describes the methodology to follow, detailing the process steps and how to use the tool support.
The workflow is presented by means of activity diagrams or sequences of steps to follow, with details on how
to use the AMASS platform to perform each step. The steps are meant to give an example of usage of the
tool trying to cover all relevant features. The user is referred to the user manual, that is included as an Annex
of D2.5 [33], to get a deeper knowledge about the different options.

The guide uses simple case studies to concretely describe the approach. The material (more specifically, the
set of CHESS projects) of these case studies is released with the tool.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 145

2. Architecture-Driven Assurance Overview

2.1 Background

This section gives a brief description of the main concepts used in the guide. In each subsection, first, the
concept itself is briefly described, and, second, the related tool support is summarized. The reader is referred
to D3.3 ά5ŜǎƛƎƴ ƻŦ ǘƘŜ !a!{{ ǘƻƻƭǎ ŀƴŘ ƳŜǘƘƻŘǎ ŦƻǊ ŀǊŎƘƛǘŜŎǘǳǊŜ-driven assurance (bύέ [28] for further
details on these concepts.

2.1.1 System Architecture

As part of a model-based engineering approach to system development [60], the system architecture plays
an important role in the early phases of the system design. The system is first considered as a whole, defining
system requirements and boundaries. ¢Ƙƛǎ ƛƴƛǘƛŀƭ ƭŜǾŜƭ ƻŦ ŀǊŎƘƛǘŜŎǘǳǊŜ Ŏŀƴ ŦǳƭŦƛƭ ǘƘŜ ǊƻƭŜ ƻŦ ŀƴ άLǘŜƳ
Definitƛƻƴέ ŀŎŎƻǊŘƛƴƎ L{h нснсн [81]. The system architecture model is then defined to detail how the
different parts of the system are connected and interact to fulfil the system requirements. The system
architecture model is used to capture a variety of information: the internal hierarchical structure of the
system and its components, the system functions and component behaviours, and the component
interfaces, their connection and interaction. The model is used for early verification and validation, meant
here as model-based techniques to verify that (a certain part of) the model satisfies a higher-level
specification and to validate that the model captures what the designer has in mind. The system architecture
model is also used for allocation of the safety-related requirements identified during the safety analysis and
safety concept creation phases: it includes the safety mechanisms implemented in the system to reduce the
risk introduced by system failures, and the model of faults used to derive of the safety mechanisms and
assess their effectiveness.

The AMASS platform supports the modelling of the system architecture with SysML and UML diagrams for
what regards the modelling of the requirements (SysML Requirement diagrams), the internal hierarchical
structure of the system and its components (SysML Block Definition and Internal Block diagrams) and the
components behaviours (UML State Machine diagrams). Moreover, the CHESS modelling language

(CHESSML)1 [61] provides means to extend the aforementioned diagrams to support the modelling of
dependability concerns and to apply the contract-based design, the latter introduced in the next Section
2.1.2.

2.1.2 Contract-Based Design

The challenges posed by the design of complex cyber-physical systems [36] pushed the research of contract-
based techniques for system design (e.g., [37][38][39][40]). The system architecture model is enriched with
expressions asserting the expected properties of the system, its components and environment. In order to
allow compositional reasoning, the property of a component may be restricted to its interface considering
the component as a black box (without constraining the internal variables of the component) and can be
structured into contracts, pairs of properties representing an assumption and a guarantee of the component:
an assumption is an assertion on the behaviour of the component environment, while a guarantee is an
assertion on the behaviour of the component provided that the entire set of assumptions holds. If
assumptions and guarantees are formal properties, which means they are specified in a formal language such
as some specific kind of temporal logic, the architectural decomposition can be verified by checking that the
contract refinement is correct: this consists of checking that, for all composite components, the contract of

1 CHESSML is implemented as UML, SysML and MARTE profile.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 145

the composite component is ensured by the contracts of the subcomponents ς considering their
interconnection as described by the architecture - and that the assumption of each subcomponent is ensured
by the contracts of the other sibling subcomponents and the assumption of the composite component.

The contract specification can further be enriched by categorising contracts into strong and weak [82] to
allow for better support for specification of reusable components behaviour. Such components are intended
to work in different environments, and often exhibit environment-specific behaviours and assumptions. They
have also been proven useful for specifying different behaviours or levels of quality for different
configurations, operation modes or degradation levels, which can in particular help specifying safety
properties of Systems-of-Systems that reconfigure at runtime (e.g. vehicle platoons), as outlined in [72].

A strong contract, denoted by <A, G>, requires the environment to satisfy the assumption A so that the
component cannot be used in an environment violating A. On the contrary, a weak contract, denoted by <B,
H>, is equivalent to the strong contract <True, B => H>: the component can be used in all environments,
while the guarantee H is specific for the environments that satisfy B. In other words, strong contracts must
always hold (if their assumptions are violated, the behaviour of the system is completely undefined and the
system can even be destroyed), whereas the weak contract may hold or not in certain environments (i.e. in
any given environment, only the guarantees will be assured that belong to a contract set of which all
assumptions are fulfilled in this environment). In fact, the assumptions of weak contracts may be even in
mutual exclusion and only some of them are satisfied by the same environment.

The effectiveness of the contract-based design approach applied to complex cyber-physical systems is faced
with several challenges. CPS are heterogeneous systems ς they combine software and hardware and even
optical or mechanical components, exhibit a combination of discrete event interactions with (often non-
linear) continuous control dynamics and interact with an unpredictable physical environment. Application of
contract-based design at the system-level of complex CPS requires addressing their heterogeneity, knowing
that many basic operations from contract-based design, such as the refinement, are in general undecidable
in presence of continuous dynamics. The recent survey [39] on contracts for system design provides an
overview of this versatile approach to rich domains, such as real-time and probabilistic systems. More
specifically, a contract-based design methodology for developing controllers in CPS is proposed by Nuzzo et
al [73]. In this work, the contracts are expressed in Signal Temporal Logic (STL), a temporal assertion
language designed to express system-level properties of CPS. In a related work [74], the complexity of CPS is
tackled by considering probabilistic contracts (expressed in stochastic variant of STL) and developing
algorithms for checking contract operations such as contract compatibility, consistency, and refinement, in a
stochastic setting. The contract-based design is increasingly gaining attention in industry, especially in the
automotive domain, where companies such as Toyota, Volvo Cars, Bosch, and Boeing used contract
languages such as LTL and STL to formalize their functional CPS requirements, and build a rigorous testing
methodology around it to check violations of implementation and refinement [75][76][77][78][79][80][19].
To summarize, the adaptation from contract-based design in software to contract-based design in CPS is a
vivid area of research, which is also actively studied in AMASS.

The AMASS platform supports the specification and analysis of contracts where assumptions and guarantees
are expressed in Linear-time Temporal Logic [52] (LTL with future and past operators [53], first-order
constraints [54] such as linear constrains over integer and real numbers, discrete or super-dense time model
[55][56]) or Hybrid extension of LTL (HRELTL) [57]. Finally, the external tool AMT2.0 uses contracts specified
in Signal Temporal Logic (STL) [59].

2.1.3 Semi-formal Specification of Requirements and Contracts

Because formal expressions are hard to write and understand by non-experts, they tend to be avoided in
practice. That turns out to be very unfortunate as they provide many striving characteristics, from which
requirements engineering processes would benefit. A well-defined syntax and semantics offer only one way
to interpret statements, making e.g. automatic verification and tracing possible. Expressions in

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 145

unconstrained natural language might be easier to read, but have no constraints in syntax and semantics,
resulting in ambiguous statements which make automated processing or verification nearly impossible. In
many cases, it takes an expert with appropriate domain knowledge to interpret and validate the expressions
correctly, and even then, different experts might disagree on the exact meaning. This can even be caused by
the fact, that some relevant details are simply not addressed at all in the human-made natural language
specification.

Template Languages [5] can close the gap between purely formal expressions and unconstrained natural
language. They provide a well-chosen set of allowed sentence patterns, which results in a constrained
natural language featuring a well-defined syntax. Ideally, the template language also has unambiguous
semantics, leaving only one way to interpret an expression.

There exist various attempts to semi-formalize requirements. Requirement Boilerplates [5][6][7] offer a set
of predefined sentence patterns with placeholders that must be substituted by keywords such as
component, interface or function names. Advanced semi-formal specification languages [8][9] feature not
only syntactical rules but also semantical meaning to the expressions built. The Requirement Specification
Language (RSL) [8], developed in the Artemis project CESAR (Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems) [10], allows the semi-formal specification for various types of requirements,
such as functional, safety, architecture, etc. The Goal and Contract Specification Language (GCSL) [9] which
has been developed during the DANSE (Designing for Adaptability and evolutioN in System of systems
Engineering) project [11] considers the contract paradigm and allows a formal contract structure with semi-
formal assumption and guarantee notation. Building on the aforementioned pattern language and some
additional considerations inspired by industrial experience, a new pattern language called System
Specification Pattern Language (SSPL) [71] has been developed during the AMASS project and applied onto
some of the AMASS case studies (in particular, the DC Drive system).

An integration of semi-formal languages and specifications with system modelling tools can greatly improve
the development process. Online expression checks on requirements or assertions can be made based on the
existing system model used as ontology. If a semi-formal specification is fully translatable to a verifiable
formal language such as LTL or HRELTL (perhaps not for all, but just for some of the assertions it can express),
the system model can be verified against the specification enabling early V&V.

The current AMASS platform supports the OCRA grammar2 to formalize requirements. This has a formal
semantics, corresponds to LTL and HRELTL but with English words instead of mathematical symbols.

2.1.4 Requirements Validation

Requirements validation is a fundamental step in the development process of software and system design. In
fact, requirements are typically specified in natural language, and flaws and ambiguities in the requirements
can lead to the development of correct systems that do not do what they were supposed to. The role of
requirements validation is to check if requirements are specified correctly. Possible faults in the
requirements are conflicts, ambiguities, incorrect values, incomplete cases, missing assumptions, over-
specification, etc. Formal methods for requirements validation are being devoted increasing interest (e.g.,
[43][44][45][46]).

The AMASS platform provides different techniques to validate the requirements either based on quality
metrics or on formal semantics analysis (provided that requirements are formalized into formal properties).

2 http://ocra.fbk.eu

http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://ocra.fbk.eu/

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 145

2.1.5 Verification and Validation of Behavioural Models

A behavioural model describes the internal dynamics of a component. The model can describe how the
internal state of a component is updated or the functional update of outputs based on the inputs. These
behavioural models can be verified by means of model checking [47] against some formal properties in
different temporal logics. The formal properties can represent some requirements (e.g., functional or safety-
related requirements) or some validation queries such as the reachability of states. Model checking performs
an exhaustive search of the state space. However, it suffers of the well-known state space explosion
problem. Thus, modern symbolic model checking techniques combine search and deductive techniques.

In combination with contract-based design, the verification can be performed compositionally: state
machines are verified separately against the local contracts of the corresponding components and the
correctness of the system is implicitly derived by the correctness of the contract refinement and the local
state machines.

As an alternative and complementary approach, the properties can be compiled into monitors that observe
individual execution traces and check whether they satisfy or violate the specification during simulation or
test runs. This pragmatic approach provides a scalable, yet rigorous technique to reason about systems that
are too complex for formal verification and model checking. In addition, property-based monitoring
techniques can be applied to assess the correctness of black-box systems.

In AMASS, the behaviour of components is specified with either state machines or other external modelling
languages such as Simulink. The AMASS platform provides model checking techniques supported by the
nuXmv model checker [17] and contract-based reasoning supported by the tool OCRA [16]. These tools are
integrated in CHESS as backends. Monitor compilation is instead supported by AMT2.0, which is integrated
with the Simulink models.

2.1.6 Model-Based Safety Analysis

Model-Based Safety Analysis (MBSA) [51] provides a set of techniques aimed at analysing the safety of a
system based on the models used for system design and development όŀƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άƴƻƳƛƴŀƭ
ƳƻŘŜƭǎέύ. A key step of MBSA is fault injection, i.e. the deliberate introduction of faults into the system
nominal model [21] [22] [23]. This enables the validation (e.g., by means of simulation), verification (e.g.,
model checking or monitoring), or, more in general, safety analysis (e.g., minimal-cut-sets analysis) of fault-
tolerance mechanisms. It basically consists of introducing faults into a system, analysing its behaviour with
respect to the introduced faults and determining which kind of actions or measures must further be taken,
until a stage is reached where the system can cope with all reasonably foreseeable failure cases. MBSA
contributes to the safety analysis phase, which includes the verification and validation of safety concepts and
requirements. Some of its most remarkable aims are to support the assessment of implemented safety
requirements, and the correct implementation and the effectiveness (diagnostic coverage) of safety or fault
tolerant mechanisms. Traditional safety analysis methods such as Fault Tree Analysis (FTA) or Failure Mode
and Effect Analysis (FMEA) are typically performed manually and are often not sufficient. Manual reviews are
normally needed to prove the completeness and the correctness of those analyses [24]. Furthermore, the
failure logic or the effects of certain faults cannot easily be determined by those analysis techniques. A
promising approach to overcome this limitation is to combine traditional analysis with MBSA approaches. It
is important to understand that MBSA mitigates the new challenges, but cannot replace safety assessments
such as FTA or FMEA done in the traditional way. Therefore, MBSA and traditional safety analysis techniques
complement each other.

There are different MBSA techniques like symbolic MBSA or simulation-based MBSA. Symbolic MBSA arises
as an attempt to introduce formal methods into the area of fault injection in order to evaluate the
dependability of safety-critical computer systems. Meanwhile, simulation-based MBSA realises a controlled
testing experiment to evaluate the behaviour of the system in the presence of faults.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 145

Fault Injection requires, on the one hand, a formal or an executable design model from which an undesired
behaviour is modelled with the system model. On the other hand, safety analysis techniques based on model
checkers (e.g. xSAP [25] [26]) or on simulation (e.g. Sabotage [27]) [13], help to analyse the system model
extended with faulty behaviour. This helps, for example, to find inconsistencies between the modelled and
the safety requirements. As explained in D3.3 [28], when setting up the fault injection environment, it is
important to define the fault injection policy which is called fault list [34]. This configuration process includes
the definition of fault locations, fault injection times, fault durations, and the input data for the system.

Figure 2 depicts the role of applying multi-techniques with the intention of completing an early safety
assessment, showing how they contribute to architecture-driven assurance. The novelty of this approach lies
in the combination of simulation and model-checking to automate the safety analysis construction, define
the needed safety measures, verify the safety mechanisms and validate if the required level of safety is
achieved.

Figure 2. MBSA techniques for early safety assessment

2.1.6.1 Simulation-Based MBSA

Among the different MBSA techniques, simulation-based approaches emerge as a promising solution to
provide an early safety evaluation and V&V of a system.

Simulation-based MBSA involves the construction of a behavioural model of the system [35]. The simulation
models can be developed on different level of abstractions such as Simulink/SCADE or using hardware
description languages like Very High speed integrated circuit Hardware Description Language (VHDL). In the
context of AMASS, only the first category is considered.

In order to identify differences in the system´s behaviour and to automate the fault injection campaigns, the
simulation results of a faulty system under test (faulty SUT) or extended system model with faulty behaviour
are compared versus a fault free system (golden SUT) under the same workload. Extra model blocks
(saboteurs) are injected into the component inputs, which reproduce a certain failure mode. After that, the
effect of that fault can be observed in the output by including extra read-out blocks or monitors. These fault
injectors simulate failures at input ports and the inclusion of monitors in the output ports in order detect
whether and in which ways an output assertion is violated in consequence.

The results can be stored as part of the safety case as applies to the conventional safety analysis techniques.

2.1.6.2 Symbolic MBSA

Symbolic MBSA [51] searches for all the possible combinations of faults (minimal cut sets) that may lead to a
system failure. The result can be presented in form of a fault tree, where the system failure represents the
top-level event and the injected faults are the basic events.

If the system architecture is enriched with contracts, a fault tree can be generated semi-automatically to
represent how the failures of components can be propagated and result in a system failure, based on an
analysis of the contract refinement. In this case, the failure of a component represents the inability of the
component to fulfil any of its guarantees although all assumptions about its environment hold, while the
failure in the componentΩǎ environment represents a violation of any of the componentΩǎ assumptions. At

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 145

every level of the contract refinement, minimal cut sets (or minimal cut sequences in the case of timed
behaviour) can be computed to see how the failure of the composite component depends on the failure of
the environment and the failure of the subcomponents. The results can be integrated into a hierarchical fault
tree that respects the architectural decomposition of the system.

2.1.7 Safety Case

In most industries, a well-structured Safety-Case, i.e. a concluding argument that the system to be released
for public usage is sufficiently safe, is required by safety standards and certification authorities. Standards
mentioning the obligation for a Safety Case include IEC 61508, ISO 26262 and many more. A more
comprehensive list and a compilation of notions of Safety Case (and problems with informal definitions what
a Safety Case exactly is) is given in [58][65]. The notion of a Safety Case is not formally defined by the
standards and therefore varies among different standards, regions and industry branches ς it can even
depend on the company who creates it or on the safety assessor or local certification authority. Where this
term is in use, it refers at least to a collection of all relevant output documents from the safety process, from
which an external assessor can conclude that everything has been done to assure that the product is safe in
its practical application. A more formal interpretation shaped by Tim Kelly is a structured representation of
argument lines that show the fulfilment of every safety goal by providing evidences, see Figure 3.

Figure 3. Safety arguments show the fulfilment of safety goals and other related safety requirements by providing
evidences (e.g., ISO 26262 work products)

The lines of argumentation may be long and winding, requiring a structured representation, e.g. using the
popular Goal-Structuring-Notation (GSN). This way of thinking has influenced British aerospace industries as
well as the automotive standard ISO 26262 (but only in its informative part, i.e. as a recommendation).
{ƛƳƛƭŀǊ ƴƻǘŀǘƛƻƴǎ ŀǊŜ ǘƘŜ ά{ŀŦŜǘȅ /ƻƴŎŜǇǘ ¢ǊŜŜǎέ [70] ǇǊƻǇƻǎŜŘ ōȅ CǊŀǳƴƘƻŦŜǊ L9{9 ƻǊ ǘƘŜ ƴƻǘŀǘƛƻƴ ά/ƭŀƛƳǎΣ

!ǊƎǳƳŜƴǘǎ ŀƴŘ 9ǾƛŘŜƴŎŜ ό/!9ύέ ǎǳƎƎŜǎǘŜŘ ōȅ ǘƘŜ ǘƻƻƭ ŎƻƳǇŀƴȅ !ŘŜƭŀǊŘ3, or the graphical structuring of

safety concepts provided by the tool medini analyze4. All of them have in common that they are tree-style
notations that iteratively decompose the safety goal and graphically distinguish between different semantic
items like claims, arguments and evidences (with varying terminology).

Looking closer at safety cases from real industries, we can often notice that two levels of abstraction are
involved:

1. The process level, where the individual evidences are safety work products (e.g. a FMEA report, a
test report, a review report), demonstrating that all necessary process activities have been arranged

3 See product website: https://www.adelard.com/asce/choosing-asce/cae.html

4 See product website http://www.medini.eu/index.php/de/products/functional-safety

https://www.adelard.com/asce/choosing-asce/cae.html
http://www.medini.eu/index.php/de/products/functional-safety

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 145

in a way as to provide a gap-less argument (e.g. Why are we sure that we have considered all
reasonably assumable hardware failures? Ą Because we have performed an FMEA and had it
reviewed by independent experts!).

2. The level of technical product development, where individual safety mechanisms (e.g. a range check,
a watchdog), their describing requirements, the architectural items to which they are allocated and
their corresponding individual verification artefacts (a passed test case, a formal proof for some
property, etc.) are all linked to each other, allowing the reader to follow the argument on a technical
level (e.g. Why are we sure that the power part is switched off in case that some software routine is
trapped in an endless loop? Ą Because we have implemented a safety mechanism consisting of a
software part that monitors the program flow and a hardware watchdog that disables the power
part via a dedicated wire if the software is detected to be hanging).

The usage of tree-style notations for safety argument structuring in a technical safety concept, belongs to the
second category, whereas the usage of tree notations to structure the process argument in a safety case
belongs to the first category. Notations like GSN are applicable for both purposes in industry.

Other classification terminologies have been proposed in literature, all roughly addressing the same semantic
difference, e.g.

¶ Indirect evidences = process level

¶ Direct evidences = verification (test) results on product level (right side of the V-model)

¶ Immediate evidences = the design artefacts describing the product technically (left side of the V-
model)

However, the distinction in left and right leg of the V-model can be seen problematic these days, because
firstly, in the era of agile development and bottom-up system construction by reusing existing parts, the
general applicability of the V-model can be doubted at all, and secondly, early prototyping, simulation,
analysis and the like happen already in the left leg of the V-model, but provide similar kind of evidences as
the test results in the right leg (see Figure 5). More contributions to this classification can be found for
instance in [69].

In AMASS, both levels are linked to each other via the meta-model: the model-based artefacts from (1)
contain the individual model elements from (2). This is depicted in Figure 4: in the upper section of the
figure, the safety artefacts on process level can be seen, whereas the lower section shows architecture,
requirements faults/failures and safety mechanisms. The links crossing the boundary between upper and
lower section show the containment relationships. The AMASS tool chain adheres to this meta model (see
CACM description in AMASS D2.8 άIntegrated AMASS Platform όŎύέ) and allows navigable links in accordance
to the meta model links, so traceability is assured from project artefacts constituting the safety case to
individual modelling elements in the functional / technical product architecture.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 145

Product Meta Model

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

Safety Mechanism

realizes

describes

leads to

subfunction

0Χ*

subcomponent

0Χ* 1..*

1Χ*

is compromised by 1

1

1Χ*

0Χ*

1

0Χ*

destination

source

1

1

1

0Χ*

Argument

1

0Χ*

mitigate

is classified by

Safety Requirement

Activation

Condition
Event Occurrence Event

allocate

Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0Χ*

Safety Measure

Process Measure
Measure in other

technology

1

1Χ*

realizes

describes

Design

Decision

1Χ*

1

dekomposes

Argument0Χ*

role:
guarantee

role:
assumption

Contract Assertion

is violation of

corresponds to

is attached to

is attached to

1

0Χ*

is

classified

by

Work Product Meta Model

Safety Case

Architecture Failure Analysis Safety Concept

FMEA FTA

mitigates all
findings of

based upon

assured by

assured by

Specification

Document

assured by

Functional

Architecture

Technical

Architecture

documented in

documented in

documented in
documented in

assured by

documented in

Figure 4. Links between the safety case and the design model

2.2 Architecture-Driven Assurance

2.2.1 Main Idea

The idea of architecture-driven assurance is:

(1) on technical level: to exploit the architectural design in order to

a. develop the product correct and dependable by construction, in particular by decomposing
the requirements onto the architecture components using the contract-based approach
while verifying the correctness of this refinement,

b. by supporting safety analysis, in particular by semi-automatically deriving safety and other
analysis results from the architecture, by establishing a safety concept with safety
mechanisms on top of the architecture and, finally, by verifying the compliance of each
component of the architecture with its contracts, using techniques like formal methods,
simulation with observers, reviews or testing;

(2) on process level: to collect all artefacts produced during the early phases of the system design to be
used as evidences in the safety case and to drive the assurance of the system with arguments that
document why and in which context the artefacts were created.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 145

The architectural design phase provides an enormous opportunity for the preparation of the safety case:
most design choices, especially related to the safety measures to be included in the system, are made in this
phase and it is of paramount importance to explain and justify these design choices in the argumentation, as
well as the context in which they were taken; moreover, the availability of models enables the possibility to
verify and validate the design earlier than the typical V&V phase; while the main purpose of early V&V is to
reduce cost and time discovering problems before the system is implemented and deployed, the generated
artefacts provide an amount of evidence for the safety case that is typically not present in the traditional
workflow.

The architecture-driven assurance proposes to develop the assurance case along the development process
collecting the inputs of the system architecture modelling and early V&V as depicted in Figure 5. Note that
the V-Model is a simplification and not meant to be the realistic workflow; moreover the picture does not
show the iterations that are necessary in practice, in particular when safety needs to be considered (iterative
cycle of design Ą safety analysis Ą additional safety requirements Ą design, until the remaining risk is
considered acceptable). It rather highlights the overall idea of early model-based verification and validation,
as well as the interaction of the system development with the construction of the assurance case thanks to
the model-based system architecture.

Figure 5. Modelling and Early V&V providing input to the assurance case

The Prototype P2 of the AMASS platform supports the Architecture-Driven Assurance approach by:

¶ Providing a rich set of early V&V and model-based safety analysis techniques,

¶ Collecting the results of the analysis as evidence for the assurance case,

¶ Linking the modelling elements to the corresponding elements of the assurance case,

¶ Generating argument fragments from the models.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 145

2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process

As shown above, the main idea of AMASS is projected onto a V-model process that is the blueprint for most
safety-related development process models in any industry. However, to explain how the methods and tools
from AMASS fit together and to give an overview how they can be applied on the background of an industrial
V-model process, the V-model will be shown again, with some more details and connections between the
work products.

To do so at the example of an ISO 26262 automotive process, let us start with Figure 6, which is a simplified
interpretation of the standard workflow V from ISO 26262-2 Figure 1. It shows:

¶ In the blue ribbon: the activities of normal development, as usual the constructive activities on the
left leg, the verification and validation activities on the right leg (note that the system level from ISO
26262 has been deliberately replicated: one vehicle level, which is normally done by the vehicle
OEM, and one ECU/system level, which is normally passed to a supplier; in reality, there can even be
ƳƻǊŜ άǎȅǎǘŜƳέ ƭŜǾŜƭǎ).

¶ In the red ribbon: the additional activities for functional safety, such as Hazard Analysis and Risk
Assessment, or different kind of safety analysis.

¶ In the thin white ribbon: the planning and tracking activities of the process.

¶ In the thin green ribbon: the supporting processes, such as configuration management, change
management etc.

¢ƘŜ ǎƻǊǘ ƻŦ άǿƛƴƎǎέ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎ ŀƴŘ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ± ǎȅƳōƻƭƛȊŜ ǘƘŜ ǇǊƻŘǳŎǘ ŘŜŦƛƴƛǘƛƻƴ ǇƘŀǎŜ ŀƴŘ ǘƘŜ
production / operation / maintenance phase, which are not part of the core development activities, but also
relevant to safety and therefore covered by ISO 26262 (and in similar way, by most safety standards from
other industries).

Component

(HW/SW)

Integration

System

Requirements

SW

Req.

System

Architecture

Component

Requirements

Component

Architecture

HW

Req.

SW

Arch.

HW

Arch.

HW Design
SW

Design

HW Layout / BOM

SW Implementation

SW

Unit

Test

SW

Int.

HW

Protot.

Asmbly

SW

Test

HW

Protot.

Test

Component

Test

Item Definition Hazard Analysis

 Funct.

 Safety

 Concept

 System

 Techn.

 Safety

 Concept

 Comp.

 Guide-

 lines &

 Reviews

 Safety

 Assess.

System

(Vehicle)

Integration

System

(Vehicle) Test

 Guide-

 lines &

 Reviews

 Reliab.

 Test

 Guide-

 lines &

 Reviews

 HW Arch
 Metrics

 Guide-

 lines &

 Reviews

 HW
 Analysis
 & Diag.
 Design

Guidelines & Reviews

Instruct./

Tracking

 Production

 Preparation

Decom-

mission

ing

Instruct/
Tracking

Production

Operation

Maintenance
Product Definition

Project Initialization

 Safety Process Init.

Supporting Process

Planning, Tracking & Update/Refine

Figure 6. Generic ISO 26262 V-model

What is not shown in the V model is the fact that all practical processes in industry contain iterations (loops
within the V-model) and incremental execution (like several V-models following each other, the early ones
with more emphasis on concept and requirements, the later ones with more focus on testing activities). To
be industrially applicable, the AMASS process must be adaptable to this way of proceeding.

Also, ƴƻǘ ǎƘƻǿƴ ŀǊŜ ǘƘŜ άƳƻŘŜƭǎ Ҍ ŜŀǊƭȅ ±ϧ±έ ōǊŀƴŎƘŜǎ ŦǊƻƳ ǘƘŜ !a!{{ ± ƳƻŘŜƭ ƛƴ Figure 5, which are a key
feature of the AMASS proceeding. When zooming into the details, we will show how exactly these activities

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 145

are enabled by the specification, modelling, analysis, verification and validation activities proposed in this
methodological guide.

Let us now come one step closer and have a more detailed look on the left leg of the V model, see Figure 7. It
is obvious, that the foundations for model-based analysis and V&V are laid on the left leg of the V model. The
activities on the left leg are concerned with the transformation of an initial, coarse and informal product idea
and item definition (maybe just a list of functions or use cases, maybe a requirements collection in natural
language) to more and more detailed models and more formal requirements, which are decomposed onto
the subsystems, components, subcomponents etc. of the system-to-be. The quality and degree of formality
of these requirements and the models is key for efficient or even automated verification of the refinement,
but also of the compliance of the implemented blocks in the end with their specification, and also for
systematic safety analysis (see Section 4 of [3]). The desired output of the whole chain of activities is clearly
the technical implementation, laid down as mechanical drawings, part lists, electronic hardware circuit
diagrams, and code for hardware and software, such as C or VHDL language.

Figure 7. Zoom-in on left leg of the V-model

To explain how this transition is performed in detail in the AMASS context, Figure 8 shows more details on
the work products and interconnections.

 AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 145

Figure 8. Workflow in the left V-leg with normal function development and safety activities

For the initial requirements capturing (e.g. as function lists or use cases) and for the preliminary architecture,
no specific tools or notations are assumed (can be even standard office tools), but after that, the
requirements will have to be captured in a structured way, allowing their atomization and identification
(even if they are still written informally, in plain natural language) and the architecture on the highest level
should be modelled in a semi-formal language like SysML, which has at least a well-defined syntax and some
modelling guidelines that come with it. As these are standard activities, it does not come as a surprise that
there are many different choices for appropriate tools from AMASS and from outside of AMASS, the AMASS
tools even partly overlapping on this area. Possible tools for SysML architecture design are CHESS/Papyrus,
SAVONA, SCADE Architect, and many commercial tools, and also for requirements capturing a variety of tools
is on the market (IBM Doors, PTC, Jama, just to name a few of them).

The next, very important step is the stepwise formalization, and the decomposition along with the
architecture hierarchy. Doing requirements refinement and architecture design in an intertwined way is one
of the key success factors, and not yet supported a lot by commercially available tools. To do so, AMASS
proposes the application of the contract-based design paradigm, and the application of template-based
languages which allow first to restrict the syntax of the assertions (semi-formal representation) and then,
wherever possible, specify them in a language that provides a formal semantics, enabling both

(a) Verification of the refinement between the levels of the architecture, and

(b) verification of the implementation at the end of the left V-leg with the respective contracts for each
leaf component of the architecture.

