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Executive Summary 
This document is the final deliverable associated with the AMASS Task 3.4 Methodological Guidance for 
Architecture-driven Assurance, which provides the methodological guide for the AMASS Architecture-Driven 
Assurance approach. This deliverable represents an update of the AMASS D3.7 [30] deliverable released at 
m20; several sections have been added or modified as summarized in “Appendix A: Document changes 
respect to D3.7”. While D3.7 was based on the functionality supported by the second prototype (P1) of the 
AMASS platform, this deliverable, D3.8, is based on the third and final version of the prototype (P2). 

This document focuses on the techniques developed in WP3. It guides the users step by step in the usage of 
the AMASS platform to support the architectural design of a system collecting modelling artefacts and the 
related results of early validation, verification, and safety analysis to be used in the safety case. To have a 
more general overview and guide for the AMASS approach, including the methods and techniques provided 
by other WPs, the reader is referred to D2.5 “AMASS user guidance and methodological framework” [33]. 
Also, to have a more detailed description of specific functions, the reader is referred to the tool user manual, 
which is included in the above-mentioned deliverable D2.5. 
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1. Introduction 
Embedded systems have significantly increased in technical complexity towards open, interconnected 
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and 
automation of labor-intensive activities such as the assurance of their dependability. The AMASS project 
builds on the results of two large-scale projects, namely OPENCOSS [49] and SafeCer [48], which dealt with 
assurance and certification of software-intensive critical systems using incremental and model-based 
approaches. In particular, SafeCer developed a generic component model and contract-based verification 
techniques for compositional development and certification of CPS. These have been integrated in the CHESS 
tool support [50]. The AMASS project consolidates and extends such support with a wider range of analysis 
techniques for the system architecture and combines it with the OPENCOSS solutions for building an 
assurance case. The resulting Architecture-Driven Assurance is further enhanced for multi-concern aspects 
(in particular, the interplay between safety and security), for reuse of architectural patterns, and exploits tool 
interoperability mechanisms to interact with external tools for modelling and analysis support. 

 

Figure 1. Architecture-Driven Assurance in relation to the other work packages 
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Figure 1 provides a general overview of the different AMASS Scientific Technical Objectives (STOs) and how 
they are implemented in the AMASS project by specific Work Packages (WPs). This document focuses on 
methodology guidelines for Architecture-Driven Assurance and the related tools developed in WP3. 

Thus, it defines a methodological guide to apply the Architecture-Driven Assurance approach, to use both its 
conceptual aspects and its software tool support. It first provides an overview of the key concepts, such as 
system architecture, contract-based design, early verification and validation, and model-based safety 
analysis. Then, it details what Architecture-Driven Assurance means, the role of the key concepts in the 
approach, and how the AMASS platform supports it. An overview of the tool architecture is given, in 
particular of how the core component, CHESS, interacts with the external tools. In the rest of the document, 
the term “tool”, when not more specifically defined by the context, refers to the AMASS platform (of which 
CHESS is a core component). 

This guide describes the methodology to follow, detailing the process steps and how to use the tool support. 
The workflow is presented by means of activity diagrams or sequences of steps to follow, with details on how 
to use the AMASS platform to perform each step. The steps are meant to give an example of usage of the 
tool trying to cover all relevant features. The user is referred to the user manual, that is included as an Annex 
of D2.5 [33], to get a deeper knowledge about the different options. 

The guide uses simple case studies to concretely describe the approach. The material (more specifically, the 
set of CHESS projects) of these case studies is released with the tool. 
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2. Architecture-Driven Assurance Overview 

2.1 Background 

This section gives a brief description of the main concepts used in the guide. In each subsection, first, the 
concept itself is briefly described, and, second, the related tool support is summarized. The reader is referred 
to D3.3 “Design of the AMASS tools and methods for architecture-driven assurance (b)” [28] for further 
details on these concepts. 

2.1.1 System Architecture 

As part of a model-based engineering approach to system development [60], the system architecture plays 
an important role in the early phases of the system design. The system is first considered as a whole, defining 
system requirements and boundaries. This initial level of architecture can fulfil the role of an “Item 
Definition” according ISO 26262 [81]. The system architecture model is then defined to detail how the 
different parts of the system are connected and interact to fulfil the system requirements. The system 
architecture model is used to capture a variety of information: the internal hierarchical structure of the 
system and its components, the system functions and component behaviours, and the component 
interfaces, their connection and interaction. The model is used for early verification and validation, meant 
here as model-based techniques to verify that (a certain part of) the model satisfies a higher-level 
specification and to validate that the model captures what the designer has in mind. The system architecture 
model is also used for allocation of the safety-related requirements identified during the safety analysis and 
safety concept creation phases: it includes the safety mechanisms implemented in the system to reduce the 
risk introduced by system failures, and the model of faults used to derive of the safety mechanisms and 
assess their effectiveness. 

The AMASS platform supports the modelling of the system architecture with SysML and UML diagrams for 
what regards the modelling of the requirements (SysML Requirement diagrams), the internal hierarchical 
structure of the system and its components (SysML Block Definition and Internal Block diagrams) and the 
components behaviours (UML State Machine diagrams). Moreover, the CHESS modelling language 

(CHESSML)1 [61] provides means to extend the aforementioned diagrams to support the modelling of 
dependability concerns and to apply the contract-based design, the latter introduced in the next Section 
2.1.2. 

2.1.2 Contract-Based Design 

The challenges posed by the design of complex cyber-physical systems [36] pushed the research of contract-
based techniques for system design (e.g., [37][38][39][40]). The system architecture model is enriched with 
expressions asserting the expected properties of the system, its components and environment. In order to 
allow compositional reasoning, the property of a component may be restricted to its interface considering 
the component as a black box (without constraining the internal variables of the component) and can be 
structured into contracts, pairs of properties representing an assumption and a guarantee of the component: 
an assumption is an assertion on the behaviour of the component environment, while a guarantee is an 
assertion on the behaviour of the component provided that the entire set of assumptions holds. If 
assumptions and guarantees are formal properties, which means they are specified in a formal language such 
as some specific kind of temporal logic, the architectural decomposition can be verified by checking that the 
contract refinement is correct: this consists of checking that, for all composite components, the contract of 

                                                             

1 CHESSML is implemented as UML, SysML and MARTE profile. 
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the composite component is ensured by the contracts of the subcomponents – considering their 
interconnection as described by the architecture - and that the assumption of each subcomponent is ensured 
by the contracts of the other sibling subcomponents and the assumption of the composite component. 

The contract specification can further be enriched by categorising contracts into strong and weak [82] to 
allow for better support for specification of reusable components behaviour. Such components are intended 
to work in different environments, and often exhibit environment-specific behaviours and assumptions. They 
have also been proven useful for specifying different behaviours or levels of quality for different 
configurations, operation modes or degradation levels, which can in particular help specifying safety 
properties of Systems-of-Systems that reconfigure at runtime (e.g. vehicle platoons), as outlined in [72]. 

A strong contract, denoted by <A, G>, requires the environment to satisfy the assumption A so that the 
component cannot be used in an environment violating A. On the contrary, a weak contract, denoted by <B, 
H>, is equivalent to the strong contract <True, B => H>: the component can be used in all environments, 
while the guarantee H is specific for the environments that satisfy B. In other words, strong contracts must 
always hold (if their assumptions are violated, the behaviour of the system is completely undefined and the 
system can even be destroyed), whereas the weak contract may hold or not in certain environments (i.e. in 
any given environment, only the guarantees will be assured that belong to a contract set of which all 
assumptions are fulfilled in this environment). In fact, the assumptions of weak contracts may be even in 
mutual exclusion and only some of them are satisfied by the same environment.  

The effectiveness of the contract-based design approach applied to complex cyber-physical systems is faced 
with several challenges. CPS are heterogeneous systems – they combine software and hardware and even 
optical or mechanical components, exhibit a combination of discrete event interactions with (often non-
linear) continuous control dynamics and interact with an unpredictable physical environment. Application of 
contract-based design at the system-level of complex CPS requires addressing their heterogeneity, knowing 
that many basic operations from contract-based design, such as the refinement, are in general undecidable 
in presence of continuous dynamics. The recent survey [39] on contracts for system design provides an 
overview of this versatile approach to rich domains, such as real-time and probabilistic systems. More 
specifically, a contract-based design methodology for developing controllers in CPS is proposed by Nuzzo et 
al [73]. In this work, the contracts are expressed in Signal Temporal Logic (STL), a temporal assertion 
language designed to express system-level properties of CPS. In a related work [74], the complexity of CPS is 
tackled by considering probabilistic contracts (expressed in stochastic variant of STL) and developing 
algorithms for checking contract operations such as contract compatibility, consistency, and refinement, in a 
stochastic setting. The contract-based design is increasingly gaining attention in industry, especially in the 
automotive domain, where companies such as Toyota, Volvo Cars, Bosch, and Boeing used contract 
languages such as LTL and STL to formalize their functional CPS requirements, and build a rigorous testing 
methodology around it to check violations of implementation and refinement [75][76][77][78][79][80][19]. 
To summarize, the adaptation from contract-based design in software to contract-based design in CPS is a 
vivid area of research, which is also actively studied in AMASS. 

The AMASS platform supports the specification and analysis of contracts where assumptions and guarantees 
are expressed in Linear-time Temporal Logic [52] (LTL with future and past operators [53], first-order 
constraints [54] such as linear constrains over integer and real numbers, discrete or super-dense time model 
[55][56]) or Hybrid extension of LTL (HRELTL) [57]. Finally, the external tool AMT2.0 uses contracts specified 
in Signal Temporal Logic (STL) [59]. 

2.1.3 Semi-formal Specification of Requirements and Contracts 

Because formal expressions are hard to write and understand by non-experts, they tend to be avoided in 
practice. That turns out to be very unfortunate as they provide many striving characteristics, from which 
requirements engineering processes would benefit. A well-defined syntax and semantics offer only one way 
to interpret statements, making e.g. automatic verification and tracing possible. Expressions in 
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unconstrained natural language might be easier to read, but have no constraints in syntax and semantics, 
resulting in ambiguous statements which make automated processing or verification nearly impossible. In 
many cases, it takes an expert with appropriate domain knowledge to interpret and validate the expressions 
correctly, and even then, different experts might disagree on the exact meaning. This can even be caused by 
the fact, that some relevant details are simply not addressed at all in the human-made natural language 
specification. 

Template Languages [5] can close the gap between purely formal expressions and unconstrained natural 
language. They provide a well-chosen set of allowed sentence patterns, which results in a constrained 
natural language featuring a well-defined syntax. Ideally, the template language also has unambiguous 
semantics, leaving only one way to interpret an expression. 

There exist various attempts to semi-formalize requirements. Requirement Boilerplates [5][6][7] offer a set 
of predefined sentence patterns with placeholders that must be substituted by keywords such as 
component, interface or function names. Advanced semi-formal specification languages [8][9] feature not 
only syntactical rules but also semantical meaning to the expressions built. The Requirement Specification 
Language (RSL) [8], developed in the Artemis project CESAR (Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems) [10], allows the semi-formal specification for various types of requirements, 
such as functional, safety, architecture, etc. The Goal and Contract Specification Language (GCSL) [9] which 
has been developed during the DANSE (Designing for Adaptability and evolutioN in System of systems 
Engineering) project [11] considers the contract paradigm and allows a formal contract structure with semi-
formal assumption and guarantee notation. Building on the aforementioned pattern language and some 
additional considerations inspired by industrial experience, a new pattern language called System 
Specification Pattern Language (SSPL) [71] has been developed during the AMASS project and applied onto 
some of the AMASS case studies (in particular, the DC Drive system). 

An integration of semi-formal languages and specifications with system modelling tools can greatly improve 
the development process. Online expression checks on requirements or assertions can be made based on the 
existing system model used as ontology. If a semi-formal specification is fully translatable to a verifiable 
formal language such as LTL or HRELTL (perhaps not for all, but just for some of the assertions it can express), 
the system model can be verified against the specification enabling early V&V. 

The current AMASS platform supports the OCRA grammar2 to formalize requirements. This has a formal 
semantics, corresponds to LTL and HRELTL but with English words instead of mathematical symbols.  

2.1.4 Requirements Validation 

Requirements validation is a fundamental step in the development process of software and system design. In 
fact, requirements are typically specified in natural language, and flaws and ambiguities in the requirements 
can lead to the development of correct systems that do not do what they were supposed to.  The role of 
requirements validation is to check if requirements are specified correctly. Possible faults in the 
requirements are conflicts, ambiguities, incorrect values, incomplete cases, missing assumptions, over-
specification, etc. Formal methods for requirements validation are being devoted increasing interest (e.g., 
[43][44][45][46]). 

The AMASS platform provides different techniques to validate the requirements either based on quality 
metrics or on formal semantics analysis (provided that requirements are formalized into formal properties).    

                                                             

2 http://ocra.fbk.eu 

http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://ocra.fbk.eu/
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2.1.5 Verification and Validation of Behavioural Models 

A behavioural model describes the internal dynamics of a component. The model can describe how the 
internal state of a component is updated or the functional update of outputs based on the inputs. These 
behavioural models can be verified by means of model checking [47] against some formal properties in 
different temporal logics. The formal properties can represent some requirements (e.g., functional or safety-
related requirements) or some validation queries such as the reachability of states. Model checking performs 
an exhaustive search of the state space. However, it suffers of the well-known state space explosion 
problem. Thus, modern symbolic model checking techniques combine search and deductive techniques.  

In combination with contract-based design, the verification can be performed compositionally: state 
machines are verified separately against the local contracts of the corresponding components and the 
correctness of the system is implicitly derived by the correctness of the contract refinement and the local 
state machines. 

As an alternative and complementary approach, the properties can be compiled into monitors that observe 
individual execution traces and check whether they satisfy or violate the specification during simulation or 
test runs. This pragmatic approach provides a scalable, yet rigorous technique to reason about systems that 
are too complex for formal verification and model checking. In addition, property-based monitoring 
techniques can be applied to assess the correctness of black-box systems. 

In AMASS, the behaviour of components is specified with either state machines or other external modelling 
languages such as Simulink. The AMASS platform provides model checking techniques supported by the 
nuXmv model checker [17] and contract-based reasoning supported by the tool OCRA [16]. These tools are 
integrated in CHESS as backends. Monitor compilation is instead supported by AMT2.0, which is integrated 
with the Simulink models. 

2.1.6 Model-Based Safety Analysis 

Model-Based Safety Analysis (MBSA) [51] provides a set of techniques aimed at analysing the safety of a 
system based on the models used for system design and development (also referred to as “nominal 
models”). A key step of MBSA is fault injection, i.e. the deliberate introduction of faults into the system 
nominal model [21] [22] [23]. This enables the validation (e.g., by means of simulation), verification (e.g., 
model checking or monitoring), or, more in general, safety analysis (e.g., minimal-cut-sets analysis) of fault-
tolerance mechanisms. It basically consists of introducing faults into a system, analysing its behaviour with 
respect to the introduced faults and determining which kind of actions or measures must further be taken, 
until a stage is reached where the system can cope with all reasonably foreseeable failure cases. MBSA 
contributes to the safety analysis phase, which includes the verification and validation of safety concepts and 
requirements. Some of its most remarkable aims are to support the assessment of implemented safety 
requirements, and the correct implementation and the effectiveness (diagnostic coverage) of safety or fault 
tolerant mechanisms. Traditional safety analysis methods such as Fault Tree Analysis (FTA) or Failure Mode 
and Effect Analysis (FMEA) are typically performed manually and are often not sufficient. Manual reviews are 
normally needed to prove the completeness and the correctness of those analyses [24]. Furthermore, the 
failure logic or the effects of certain faults cannot easily be determined by those analysis techniques. A 
promising approach to overcome this limitation is to combine traditional analysis with MBSA approaches. It 
is important to understand that MBSA mitigates the new challenges, but cannot replace safety assessments 
such as FTA or FMEA done in the traditional way. Therefore, MBSA and traditional safety analysis techniques 
complement each other. 

There are different MBSA techniques like symbolic MBSA or simulation-based MBSA. Symbolic MBSA arises 
as an attempt to introduce formal methods into the area of fault injection in order to evaluate the 
dependability of safety-critical computer systems. Meanwhile, simulation-based MBSA realises a controlled 
testing experiment to evaluate the behaviour of the system in the presence of faults. 
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Fault Injection requires, on the one hand, a formal or an executable design model from which an undesired 
behaviour is modelled with the system model. On the other hand, safety analysis techniques based on model 
checkers (e.g. xSAP [25] [26]) or on simulation (e.g. Sabotage [27]) [13], help to analyse the system model 
extended with faulty behaviour. This helps, for example, to find inconsistencies between the modelled and 
the safety requirements. As explained in D3.3 [28], when setting up the fault injection environment, it is 
important to define the fault injection policy which is called fault list [34]. This configuration process includes 
the definition of fault locations, fault injection times, fault durations, and the input data for the system. 

Figure 2 depicts the role of applying multi-techniques with the intention of completing an early safety 
assessment, showing how they contribute to architecture-driven assurance. The novelty of this approach lies 
in the combination of simulation and model-checking to automate the safety analysis construction, define 
the needed safety measures, verify the safety mechanisms and validate if the required level of safety is 
achieved.   

 

Figure 2. MBSA techniques for early safety assessment 

2.1.6.1 Simulation-Based MBSA 

Among the different MBSA techniques, simulation-based approaches emerge as a promising solution to 
provide an early safety evaluation and V&V of a system. 

Simulation-based MBSA involves the construction of a behavioural model of the system [35]. The simulation 
models can be developed on different level of abstractions such as Simulink/SCADE or using hardware 
description languages like Very High speed integrated circuit Hardware Description Language (VHDL). In the 
context of AMASS, only the first category is considered. 

In order to identify differences in the system´s behaviour and to automate the fault injection campaigns, the 
simulation results of a faulty system under test (faulty SUT) or extended system model with faulty behaviour 
are compared versus a fault free system (golden SUT) under the same workload. Extra model blocks 
(saboteurs) are injected into the component inputs, which reproduce a certain failure mode. After that, the 
effect of that fault can be observed in the output by including extra read-out blocks or monitors. These fault 
injectors simulate failures at input ports and the inclusion of monitors in the output ports in order detect 
whether and in which ways an output assertion is violated in consequence.  

The results can be stored as part of the safety case as applies to the conventional safety analysis techniques. 

2.1.6.2 Symbolic MBSA 

Symbolic MBSA [51] searches for all the possible combinations of faults (minimal cut sets) that may lead to a 
system failure. The result can be presented in form of a fault tree, where the system failure represents the 
top-level event and the injected faults are the basic events. 

If the system architecture is enriched with contracts, a fault tree can be generated semi-automatically to 
represent how the failures of components can be propagated and result in a system failure, based on an 
analysis of the contract refinement. In this case, the failure of a component represents the inability of the 
component to fulfil any of its guarantees although all assumptions about its environment hold, while the 
failure in the component’s environment represents a violation of any of the component’s assumptions. At 
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every level of the contract refinement, minimal cut sets (or minimal cut sequences in the case of timed 
behaviour) can be computed to see how the failure of the composite component depends on the failure of 
the environment and the failure of the subcomponents. The results can be integrated into a hierarchical fault 
tree that respects the architectural decomposition of the system. 

2.1.7 Safety Case 

In most industries, a well-structured Safety-Case, i.e. a concluding argument that the system to be released 
for public usage is sufficiently safe, is required by safety standards and certification authorities. Standards 
mentioning the obligation for a Safety Case include IEC 61508, ISO 26262 and many more. A more 
comprehensive list and a compilation of notions of Safety Case (and problems with informal definitions what 
a Safety Case exactly is) is given in [58][65]. The notion of a Safety Case is not formally defined by the 
standards and therefore varies among different standards, regions and industry branches – it can even 
depend on the company who creates it or on the safety assessor or local certification authority. Where this 
term is in use, it refers at least to a collection of all relevant output documents from the safety process, from 
which an external assessor can conclude that everything has been done to assure that the product is safe in 
its practical application. A more formal interpretation shaped by Tim Kelly is a structured representation of 
argument lines that show the fulfilment of every safety goal by providing evidences, see Figure 3. 

 

Figure 3. Safety arguments show the fulfilment of safety goals and other related safety requirements by providing 
evidences (e.g., ISO 26262 work products) 

The lines of argumentation may be long and winding, requiring a structured representation, e.g. using the 
popular Goal-Structuring-Notation (GSN). This way of thinking has influenced British aerospace industries as 
well as the automotive standard ISO 26262 (but only in its informative part, i.e. as a recommendation).  
Similar notations are the “Safety Concept Trees” [70] proposed by Fraunhofer IESE or the notation “Claims, 

Arguments and Evidence (CAE)” suggested by the tool company Adelard3, or the graphical structuring of 

safety concepts provided by the tool medini analyze4.  All of them have in common that they are tree-style 
notations that iteratively decompose the safety goal and graphically distinguish between different semantic 
items like claims, arguments and evidences (with varying terminology). 

Looking closer at safety cases from real industries, we can often notice that two levels of abstraction are 
involved: 

1. The process level, where the individual evidences are safety work products (e.g. a FMEA report, a 
test report, a review report), demonstrating that all necessary process activities have been arranged 

                                                             

3 See product website: https://www.adelard.com/asce/choosing-asce/cae.html 

4 See product website http://www.medini.eu/index.php/de/products/functional-safety  

https://www.adelard.com/asce/choosing-asce/cae.html
http://www.medini.eu/index.php/de/products/functional-safety
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in a way as to provide a gap-less argument (e.g. Why are we sure that we have considered all 
reasonably assumable hardware failures?  Because we have performed an FMEA and had it 
reviewed by independent experts!). 

2. The level of technical product development, where individual safety mechanisms (e.g. a range check, 
a watchdog), their describing requirements, the architectural items to which they are allocated and 
their corresponding individual verification artefacts (a passed test case, a formal proof for some 
property, etc.) are all linked to each other, allowing the reader to follow the argument on a technical 
level (e.g. Why are we sure that the power part is switched off in case that some software routine is 
trapped in an endless loop?  Because we have implemented a safety mechanism consisting of a 
software part that monitors the program flow and a hardware watchdog that disables the power 
part via a dedicated wire if the software is detected to be hanging). 

The usage of tree-style notations for safety argument structuring in a technical safety concept, belongs to the 
second category, whereas the usage of tree notations to structure the process argument in a safety case 
belongs to the first category. Notations like GSN are applicable for both purposes in industry.  

Other classification terminologies have been proposed in literature, all roughly addressing the same semantic 
difference, e.g. 

• Indirect evidences = process level 

• Direct evidences = verification (test) results on product level (right side of the V-model) 

• Immediate evidences = the design artefacts describing the product technically (left side of the V-
model) 

However, the distinction in left and right leg of the V-model can be seen problematic these days, because 
firstly, in the era of agile development and bottom-up system construction by reusing existing parts, the 
general applicability of the V-model can be doubted at all, and secondly, early prototyping, simulation, 
analysis and the like happen already in the left leg of the V-model, but provide similar kind of evidences as 
the test results in the right leg (see Figure 5). More contributions to this classification can be found for 
instance in [69]. 

In AMASS, both levels are linked to each other via the meta-model: the model-based artefacts from (1) 
contain the individual model elements from (2). This is depicted in Figure 4: in the upper section of the 
figure, the safety artefacts on process level can be seen, whereas the lower section shows architecture, 
requirements faults/failures and safety mechanisms. The links crossing the boundary between upper and 
lower section show the containment relationships. The AMASS tool chain adheres to this meta model (see 
CACM description in AMASS D2.8 “Integrated AMASS Platform (c)”) and allows navigable links in accordance 
to the meta model links, so traceability is assured from project artefacts constituting the safety case to 
individual modelling elements in the functional / technical product architecture. 
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Figure 4. Links between the safety case and the design model 

2.2 Architecture-Driven Assurance 

2.2.1 Main Idea 

The idea of architecture-driven assurance is: 

(1) on technical level: to exploit the architectural design in order to  

a. develop the product correct and dependable by construction, in particular by decomposing 
the requirements onto the architecture components using the contract-based approach 
while verifying the correctness of this refinement,  

b. by supporting safety analysis, in particular by semi-automatically deriving safety and other 
analysis results from the architecture, by establishing a safety concept with safety 
mechanisms on top of the architecture and, finally, by verifying the compliance of each 
component of the architecture with its contracts, using techniques like formal methods, 
simulation with observers, reviews or testing; 

(2) on process level:  to collect all artefacts produced during the early phases of the system design to be 
used as evidences in the safety case and to drive the assurance of the system with arguments that 
document why and in which context the artefacts were created.  
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The architectural design phase provides an enormous opportunity for the preparation of the safety case: 
most design choices, especially related to the safety measures to be included in the system, are made in this 
phase and it is of paramount importance to explain and justify these design choices in the argumentation, as 
well as the context in which they were taken; moreover, the availability of models enables the possibility to 
verify and validate the design earlier than the typical V&V phase; while the main purpose of early V&V is to 
reduce cost and time discovering problems before the system is implemented and deployed, the generated 
artefacts provide an amount of evidence for the safety case that is typically not present in the traditional 
workflow. 

The architecture-driven assurance proposes to develop the assurance case along the development process 
collecting the inputs of the system architecture modelling and early V&V as depicted in Figure 5. Note that 
the V-Model is a simplification and not meant to be the realistic workflow; moreover the picture does not 
show the iterations that are necessary in practice, in particular when safety needs to be considered (iterative 
cycle of design  safety analysis  additional safety requirements  design, until the remaining risk is 
considered acceptable). It rather highlights the overall idea of early model-based verification and validation, 
as well as the interaction of the system development with the construction of the assurance case thanks to 
the model-based system architecture. 

 

Figure 5. Modelling and Early V&V providing input to the assurance case 

The Prototype P2 of the AMASS platform supports the Architecture-Driven Assurance approach by: 

• Providing a rich set of early V&V and model-based safety analysis techniques, 

• Collecting the results of the analysis as evidence for the assurance case, 

• Linking the modelling elements to the corresponding elements of the assurance case, 

• Generating argument fragments from the models. 
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2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process 

As shown above, the main idea of AMASS is projected onto a V-model process that is the blueprint for most 
safety-related development process models in any industry. However, to explain how the methods and tools 
from AMASS fit together and to give an overview how they can be applied on the background of an industrial 
V-model process, the V-model will be shown again, with some more details and connections between the 
work products.  

To do so at the example of an ISO 26262 automotive process, let us start with Figure 6, which is a simplified 
interpretation of the standard workflow V from ISO 26262-2 Figure 1. It shows: 

• In the blue ribbon: the activities of normal development, as usual the constructive activities on the 
left leg, the verification and validation activities on the right leg (note that the system level from ISO 
26262 has been deliberately replicated: one vehicle level, which is normally done by the vehicle 
OEM, and one ECU/system level, which is normally passed to a supplier; in reality, there can even be 
more “system” levels). 

• In the red ribbon: the additional activities for functional safety, such as Hazard Analysis and Risk 
Assessment, or different kind of safety analysis. 

• In the thin white ribbon: the planning and tracking activities of the process. 

• In the thin green ribbon: the supporting processes, such as configuration management, change 
management etc. 

The sort of “wings” at the beginning and the end of the V symbolize the product definition phase and the 
production / operation / maintenance phase, which are not part of the core development activities, but also 
relevant to safety and therefore covered by ISO 26262 (and in similar way, by most safety standards from 
other industries).  
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Figure 6. Generic ISO 26262 V-model 

What is not shown in the V model is the fact that all practical processes in industry contain iterations (loops 
within the V-model) and incremental execution (like several V-models following each other, the early ones 
with more emphasis on concept and requirements, the later ones with more focus on testing activities). To 
be industrially applicable, the AMASS process must be adaptable to this way of proceeding.  

Also, not shown are the “models + early V&V” branches from the AMASS V model in Figure 5, which are a key 
feature of the AMASS proceeding. When zooming into the details, we will show how exactly these activities 
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are enabled by the specification, modelling, analysis, verification and validation activities proposed in this 
methodological guide. 

Let us now come one step closer and have a more detailed look on the left leg of the V model, see Figure 7. It 
is obvious, that the foundations for model-based analysis and V&V are laid on the left leg of the V model. The 
activities on the left leg are concerned with the transformation of an initial, coarse and informal product idea 
and item definition (maybe just a list of functions or use cases, maybe a requirements collection in natural 
language) to more and more detailed models and more formal requirements, which are decomposed onto 
the subsystems, components, subcomponents etc. of the system-to-be. The quality and degree of formality 
of these requirements and the models is key for efficient or even automated verification of the refinement, 
but also of the compliance of the implemented blocks in the end with their specification, and also for 
systematic safety analysis (see Section 4 of [3]). The desired output of the whole chain of activities is clearly 
the technical implementation, laid down as mechanical drawings, part lists, electronic hardware circuit 
diagrams, and code for hardware and software, such as C or VHDL language. 

 

Figure 7. Zoom-in on left leg of the V-model 

To explain how this transition is performed in detail in the AMASS context, Figure 8 shows more details on 
the work products and interconnections. 
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Figure 8. Workflow in the left V-leg with normal function development and safety activities 

For the initial requirements capturing (e.g. as function lists or use cases) and for the preliminary architecture, 
no specific tools or notations are assumed (can be even standard office tools), but after that, the 
requirements will have to be captured in a structured way, allowing their atomization and identification 
(even if they are still written informally, in plain natural language) and the architecture on the highest level 
should be modelled in a semi-formal language like SysML, which has at least a well-defined syntax and some 
modelling guidelines that come with it. As these are standard activities, it does not come as a surprise that 
there are many different choices for appropriate tools from AMASS and from outside of AMASS, the AMASS 
tools even partly overlapping on this area. Possible tools for SysML architecture design are CHESS/Papyrus, 
SAVONA, SCADE Architect, and many commercial tools, and also for requirements capturing a variety of tools 
is on the market (IBM Doors, PTC, Jama, just to name a few of them). 

The next, very important step is the stepwise formalization, and the decomposition along with the 
architecture hierarchy.  Doing requirements refinement and architecture design in an intertwined way is one 
of the key success factors, and not yet supported a lot by commercially available tools. To do so, AMASS 
proposes the application of the contract-based design paradigm, and the application of template-based 
languages which allow first to restrict the syntax of the assertions (semi-formal representation) and then, 
wherever possible, specify them in a language that provides a formal semantics, enabling both 

(a) Verification of the refinement between the levels of the architecture, and 

(b) verification of the implementation at the end of the left V-leg with the respective contracts for each 
leaf component of the architecture. 
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When tending to apply formal methods, it should be noticed that the whole process of going from initial 
specification to technical implementation is often termed “refinement”, but in practice it consists of two 
different dimensions of refinement: 

1. decomposition (vertically going from components to subcomponents, sub-subcomponents, etc.), 
and 

2. concretization (horizontally going from a more abstract and implementation-independent 
specification to a more technical specification) 

 

Figure 9. Dimensions of Refinement 

In industrial practice, both dimensions are often mixed with each other, resulting in a walk roughly along the 
diagonal arrow in Figure 9. Note that, when choosing the appropriate level of formal vs. semi-formal 
specification of contracts and models, there is more than one way to go; therefore, the AMASS project 
partially applied early formalization with tools like the CHESS (allowing formal verification of the 
decomposition, but making requirements specification and validation sometimes hard for humans, in 
languages such as Othello) and partially applied late formalization, which means that the specification 
language (e.g. System Specification Pattern Language / SSPL, see [71]) can offer more expressiveness and 
flexibility, but at the price that the refinement verification must be performed in a (still computer-assisted) 
manual process due to the lack of formal semantics. The prototypical tool SAVONA that has been created 
during the AMASS project provides an assistant function to support manual decomposition verification. The 
difference is explained in Figure 10: Early formalization means branching to the right on system level (e.g. 
going from SAVONA tool to CHESS tool via the provided interface) and then decomposing, while verifying the 
correctness of the decomposition automatically using the CHESS tool. Late formalization, accordingly, means 
to stay with SAVONA and decomposing, using the decomposition checker assistant for manual 
decomposition, and only on a low level formalizing the contracts by switching to the CHESS tool (or, for 
instance, to SCADE suite, which allows generation of formally verified C code out of models). Note that the 
“hand” symbol in the figures represents manual activities, while the “tools” symbol represents activities that 
can be automated to a high extent. In some cases, the process must be performed manually, but tool 
support can help not to get lost in complexity, follow a structured approach and documenting the performed 
steps for the safety case. 

Having explained the details on the process chain from informal requirements to formally verifiable source 
code, let’s discuss the role of safety analyses in Figure 8: The models created during the described 
development process are used as a starting point for the different safety analyses, and the contracts that 
specify the nominal behaviour can be used for systematic analysis of any kind of deviation or malfunction. 
The top-level system specification, for instance, can take the role of an Item Definition acc. ISO 26262.  The 
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top-level function definitions initially specified in the Item definition, if modified by HAZOP-style guidewords 
like “more”, “less”, “early”, “late”, “unexpectedly”, “not at all” etc. help the analyst to systematically derive 
the potential hazards from the nominal functions. From the hazard list, the top-level safety requirements 
(termed “Safety Goals” in ISO 26262 language) are derived, which are then refined in the same way as the 
nominal function requirements, using the contract-based approach (see Section 4.1 of [3]). The causes and 
sub-causes for the hazards can be recursively investigated by means of Fault Tree Analysis, referencing the 
function blocks of the abstract levels of the model-based architecture. The more detailed and more technical 
architecture at the lower levels of refinement is usually analysed using the FMEA technique, which can, 
again, be semi-automatically derived from the technical architecture (e.g. the tool medini analyze automates 
this step already today). Details on the architecture-focused safety analysis can be found in Section 4.2 of 
[3]).  

As the top-level claim of the safety case (decomposed using the GSN technique) is to prevent any reasonably 
foreseeable failures from violating a Safety Goal, it is obvious that the safety process will generate new safety 
requirements (in the AMASS project denoted as safety contracts, in the same way as functional requirements 
had been denoted as ordinary functional contracts). The safety contracts look similar to the functional 
contracts, but consider that there might be failures present in the system, and are qualified with a safety 
integrity level (e.g. ASIL, SIL or DAL) coming from the hazard they are supposed to prevent. These 
requirements are fed back into the normal development path (blue ribbon in Figure 6), where they augment 
the existing requirements set and lead to an enhancement of the architecture by additional blocks that 
represent safety mechanisms (e.g. a plausibility check for a sensor signal) or paths of redundancy (e.g. a 
second sensor for the same physical quantity, allowing cross-checking to detect failures), see Section 4.3 of 
[3]. This is where the iterative proceeding within the V-model becomes visible (loop between red and blue 
ribbon in Figure 8). This process continues until the analyses show that an acceptable risk level has been 
reached and the safety case can therefore be completed. Of course, the new requirements not only need to 
be added to the architecture models iteratively, but also must be implemented and verified (by testing, 
review, model checking, simulation, etc.) on a maturity level that is described by the safety standard (e.g. ISO 
26262) for the applicable safety integrity level (the higher the SIL or ASIL gets, the higher the requirements 
regarding deeper testing, more formal notations and more independent reviewers and assessors). 

Natural Language 
Requirements

Semi-formal contracts 
(system)

Formal contracts 
(system)

Semi-formal contracts 
(sub-systems)

Formal contracts 
(sub-systems)

/(     )

/(     )

/(     )

formalize

formalize

Program Code

 

Figure 10. Early vs. late formalization 
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The whole argument, based on the provided artefacts centred around the architecture, is finally captured in 
the safety case for the product. As evidences to support the safety case, not only the safety analyses, but all 
other verification and validation results are attached to the elements of the architecture, including test and 
simulation results or reports from model checkers. We will have to accept that many properties of the 
implementation still cannot be proven formally today. Yet it must be demonstrated in particular that all 
designed safety mechanisms actually prevent the supposed failures from causing a hazard. Therefore, 
besides formal verification of the decomposition and implementation, the AMASS proceeding also considers 
an appropriated semi-formal way of verifying the effectiveness of the safety mechanisms: a combination of 
monitor generation (again from semi-formal contracts) and fault injection and simulation (or testing), as 
shown by the additions in Figure 11. The cornerstones of this proceeding, which is supported by the tools 
AMT and Sabotage from AMASS consortium partners AIT and Tecnalia is built on the following cornerstones 
in an efficient and tool-integrated combination: 

• From Safety Analysis and Safety Concept, the failure mode hypotheses and the specifications of the 
safety mechanisms (acc. Section 4.3 of [3]) as contracts are exported. 

• From the contracts (describing the nominal behaviour or the behaviour in presence of failures), 
which are specified in certain classes of temporal logics (e.g. HRELTL, Othello, STL), monitors are 
automatically generated. These monitors observe the behaviour of a model (e.g. VHDL, Simulink) 
during all simulation runs, or they can even be applied to the actual system and observe test runs. 

• Test/simulation runs are specified and performed in a suitable model-based simulation framework. 

• For all test sequences that shall demonstrate the capability of a safety mechanism to prevent a 
failure from causing a hazard, the failure is simulated by fault injection at the interfaces of 
architecture components. 

• If all safety contracts hold, even in case of injected failures, the evidence is achieved for the claim in 
the safety case that all hazards have been sufficiently covered and this branch of the safety case can 
be considered complete. 

 

 

Figure 11. V-Model with Monitor Generation, Fault Injection and Simulation 
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2.2.3 Tool Support Overview 

The tool support is based on a collection of Eclipse plugins and external tools (also depicted in Figure 12) that 
provide the different functionalities necessary to perform the Architecture-Driven Assurance approach. In 
particular, it includes:  

• CHESS/Papyrus plugins to model UML/SysML diagrams and to perform contract-based design and 
different model-based analyses, and OpenCert/Capra plugins to create and link assurance argument 
fragments and evidences or other traceability links. These plugins are part of the AMASS platform, 
which provides the user a single user interface hiding the complexity of the underlying tool 
architecture.  

• External backend tools that interact with the AMASS platform to provide analysis results. These 
external tools include OCRA for contract-based analysis, nuXmv for model checking, xSAP and medini 
analyze for model-based safety analysis, and V&V Manager for requirements analysis and model 
checking. They run in background or remotely via OSLC and the user does not interact with them 
directly.  

• Other external tools that can be used for modelling with alternative languages to later import the 
models into the AMASS platform. These include SAVONA for semi-formal specification and 
refinement of contracts and SCADE or Simulink for specifying behaviour in their own formal or semi-
formal language with the purpose of finally generating the runnable software source code (formally 
verified in the case of SCADE).  

• Similarly, some further external tools can be used to perform external analysis, whose results must 
be then imported into the AMASS platform. These include RQA for requirements quality analysis, 
Sabotage for fault injection on Simulink models and AMT2.0 for contract-based offline monitoring of 
cyber-physical systems. Deliverable D3.6 “Prototype for Architecture-Driven Assurance (c)” [29] 
describes more in detail the design of the AMASS platform. In particular, Figure 3 of the D3.6 
illustrates the interaction among the different components. 
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Figure 12.  Internal and external tools involved in the Architecture-Driven Assurance 
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3. Methodological Guide 
This section contains the actual methodological guide. It first gives an overview of the activities by means of 
diagrams and then details the activities guiding the user to the usage of the related tool support. 

3.1 Workflow Overview 

The following activity diagrams describe a sequence of steps to perform the design and development of the 
system with the support of the AMASS platform for Architecture-Driven Assurance.  

The diagram shown in Figure 13 gives an overview of the main steps of the process. It starts with a first 
design of the system, including both nominal and faulty behaviours. It then applies safety analysis of the 
system design to determine if it contains a sufficient level of safety. Otherwise it refines the system design 
taking into account safety mechanisms to increase the safety level. These two steps are repeated until 
reaching a sufficient level of safety. The system safety is then validated with traditional testing techniques. 
They basically correspond to the inner V-cycles with early V&V shown in Figure 5.  

Finally, a safety case is produced to show how the product fulfils the safety goals. Each of these activities, 
apart from the safety validation which is not directly supported by the AMASS platform, is further expanded 
in subsequent diagrams. 
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Figure 13. Main Steps to perform the design and development of the system with the support of the AMASS platform 
for Architecture-Driven Assurance 

The system design shown in Figure 14 starts with the system definition, the system boundaries, the system 
requirements and the assumptions on the expected context, also taking into account the results of the 
preliminary hazards analysis. The design process then formalizes requirements into formal or semi-formal 
specifications. The process performs an early validation of such requirements by means of different 
techniques based on either formal semantics or quality metrics. The process then refines the system 
functions defining the architectural decomposition of components and contract-based refinement. Nominal 
and faulty behaviours are specified for the leaf components of the architectural decomposition. Finally, an 
early verification of the functional refinement is performed by means of contract-based reasoning, model 
checking, and simulation-based monitoring. 
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Figure 14. Steps for the System Design 

Figure 15 and Figure 16 complete the System Design workflow depicted in Figure 14 by adding information 
regarding definition of roles for each activity. The roles in italics define the ones already described in D2.4 
[32]. 



              

         AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0  

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 145 

 

 

Figure 15. Detailed steps for the System Design with the definition of roles (I) 



              

         AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0  

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 145 

 

 

Figure 16. Detailed steps for the System Design with the definition of roles (II) 

As depicted in Figure 8 and mentioned in Section 2.2.2, after performing the hazard analysis the top-level 
safety requirements are defined. Afterwards, the causes of those hazards are usually recursively investigated 
by Fault Tree Analysis, while FMEA technique is applied to analyse the more detailed and more technical 
architecture at lower levels. Thus, those high-level safety requirements are implemented by safety 
mechanisms which are then validated by means of the model-based safety analysis techniques tackled in the 
next paragraph.  

The safety analysis shown in Figure 17 and Figure 18 can apply different techniques to analyse the system 
when some components may fail. The current supported techniques are based either on: 

• the fault injection in the simulation models and the monitoring of the simulation traces,  

• the fault injection in the state machines and model-based fault-tree generation,  

• the contract-based fault-tree generation.  

These are alternative techniques that can complement each other to assess the safety level of the system. 
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Figure 17. Sub-activities related to the safety analysis currently supported by the AMASS platform 

 

 

Figure 18. Detailed Safety Analysis Process 

Finally, the activity of producing the safety case, shown in Figure 19, is supported with: 

• the generation of evidence from the system model early V&V and safety analysis,  

• the linking of the architectural models to the safety case,  

• the generation of reports on the system model and V&V and safety analysis results,  

• the automatic generation of safety fragments to be integrated and completed in a global safety case.  

The Safety Engineer, the Safety Manager and the Internal Assessor are the roles involved in this activity. The 
Safety Engineer is the responsible for executing the different assurance and V&V activities to demonstrate 
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that the product is acceptably safe. The Safety Manager is responsible to show compliance within a particular 
standard. The Safety Assessor is responsible for assessing the adequacy of the evidence and assurance 
‘package’, in terms of demonstrating the safety of the system under consideration. 

Note that this document focuses only on the architectural-driven support to the safety case. For a more 
general support to the creation of the safety case, the reader is referred to D2.5 [33]. 

 

Figure 19. Sub-activities related to the safety case currently supported by the AMASS platform 

3.2 System Design 

In the following, the System Design activities depicted in Figure 14 are detailed, one subsection for each 
activity. 

3.2.1 System Definition 

3.2.1.1 Requirements Specification/Import 

Requirements can be represented in the model by using the SysML standard support, i.e. by using the 
Requirements Diagram and Requirement SysML construct; no specific extension of the SysML support for 
requirement modelling is currently proposed as part of the AMASS solution. Of course, specific profiles for 
SysML regarding the modelling of requirements can be adopted, in particular to allow the modelling of 
adopted requirements attributes (e.g. the author, kind, priority, risk). 

CHESS comes with a dedicated view/package called “RequirementView”, where the SysML Requirement 
Diagram and then the requirements can be created. 
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In addition, Papyrus, which is the tool on which CHESS is based, allows importing requirements from external 

sources5 like excel, csv files, or by using the ReqIF6 (requirement interchange format), the latter supported 

by most of the commonly used requirement management tools, like DOORS7. 

Requirements available in the CHESS/Papyrus model can then be linked to other architectural entities by 
using the standard SysML support, so in particular by allocating requirements to components (see section 
3.2.1.2) using the Satisfy relationships. 

As alternative to the aforementioned usage of SysML to represent and link requirements, Capra can be used 
to directly trace requirements available in model/repository external to CHESS/Papryus (like DOORS or 
ReqIF) to the CHESS system architectural elements; in this case the import of the requirements in the 
CHESS/Papyrus model is not required and the information about the satisfy relationships between system 
components and requirements is stored in the Capra dedicated traceability model. 

Moreover, requirements can be traced to the assurance case model, the latter available from the OpenCert 

assurance case editor; for this goal, the feature of Capra8 can be used: so, for instance, a safety requirement 
can be linked to the assurance case reasoning about why the system satisfies the requirement itself. In this 
case, the requirement can be selected from the Papyrus/CHESS model, the assurance case can be selected 
from the OpenCert editor and a trace can be created with the Capra features (see AMASS user manual, 
available as annex of the AMASS D2.5 [33], about how to work with Capra in the context of the AMASS 
platform). 

3.2.1.2 System Component Definition 

During this activity the architecture of the system, i.e. its constituent components and their relationships, is 
produced. The definition of the system architecture foresees the design of components in isolation, i.e. 
components designed out of any particular context (to exploit their reuse), or the identification (reuse) of the 
components from existing libraries/models. The hierarchical modelling of the entire system architecture is 
supported to be able to manage the complexity of the system itself, where the hierarchy can be obtained by 
using a top-down or bottom-up design process, where the later in particular can be realized by following a 
design by reuse approach. 

A component must come with typed input/output ports representing the boundary of the component itself, 
where ports represent interaction points through which the component can exchange information with the 
context. It is worth noting that the modelling of the component boundary cannot be limited to the 
identification of the input/output ports of the component itself; additional information about the possible 
(functional and extra-functional) behaviours of the component and the expected behaviours of the context 
must be provided, e.g. to be able to evaluate if a given component can collaborate in a given scenario. This 
relevant part of the specification of the component boundary can be performed by using the contract-based 
approach, as discussed in Section 3.2.2. 

When a component has been defined, then it can be instantiated as part of the given system under design 
and connected to the other instances already identified (via the ports, see Section 3.2.5.1). The system is 
modelled, i.e. it is decomposed, as a collaboration of instances of components. The decomposition of the 
architecture can proceed at any level, i.e. a system component can be also decomposed, according to its 

                                                             

5 
https://www.eclipsecon.org/france2016/sites/default/files/slides/EclipseConf2016%20sysml%20and%20requirements.
pdf, https://www.youtube.com/watch?v=edHAxb8-1Io 

6 www.omg.org/spec/ReqIF/About-ReqIF/  

7 https://www.ibm.com/software/products/it/ratidoor  

8 Capra is an Eclipse project for traceability management (https://projects.eclipse.org/proposals/capra); it has been 
extended in the context of AMASS. 

https://www.eclipsecon.org/france2016/sites/default/files/slides/EclipseConf2016%20sysml%20and%20requirements.pdf
https://www.eclipsecon.org/france2016/sites/default/files/slides/EclipseConf2016%20sysml%20and%20requirements.pdf
https://www.youtube.com/watch?v=edHAxb8-1Io
http://www.omg.org/spec/ReqIF/About-ReqIF/
https://www.ibm.com/software/products/it/ratidoor
https://projects.eclipse.org/proposals/capra
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complexity. Different instances of the same component (and different ports with the same type) can be 
represented as a single instance with multiplicity greater than 1.  

SysML [66], the OMG general-purpose modelling language for systems engineering, is proposed in AMASS 
(by using the Papyrus/CHESS editor) for the modelling of the system and its constituent components. In 
particular, SysML Block Definition Diagram is used to model the system and its components, while a SysML 
Internal Block Diagram can be associated to the system or component and used to model its input/output 
ports, its decomposition into parts and how the parts are connected.  

CHESS modelling language (CHESSML)[61] is based upon SysML and UML. This guide focuses on the usage of 
the SysML language for what regards the system definition; however, the same approach presented here can 

be followed by using UML diagrams and entities corresponding to the SysML ones here addressed9 (the 
choice of using UML instead of SysML is typically dictated by the fact that the system under design is a pure 

software one). The reader can refer to the CHESS user guide10  to understand the UML support for software 
specification available with CHESS.  

To define the system components, perform the following steps: 

1. Prepare the graphical editor environment: In the “Model Explorer” view, go to the package 
“modelSystemView”, create a Block Definition Diagram and open it.  

2. Define the system components: Using the palette of the diagram editor, select the “Block” element 
and drag it in the editing space, see Figure 20. The “Block” element becomes visible also in the 
“Model Explorer” view. Analogously, it is possible to create the “System” element, that is specified as 
a special block. 

 

Figure 20. A generic component and the system component created in the Block Definition Diagram 

                                                             

9 In UML the user can use Class/Component Diagram (in place of the SysML Block Definition Diagram) to model the 
software system, its components and the software interfaces (as collection of operations). Composite Structure 
Diagram can be associated to the system or component (in place of the SysML Internal Block Diagram) and used to 
model its ports (input/output or service port providing or requiring interfaces), its decomposition into parts and how 
the parts are connected. 

10 https://www.polarsys.org/chess/publis/CHESSToolset_UserGuide.pdf  

https://www.polarsys.org/chess/publis/CHESSToolset_UserGuide.pdf
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3.2.2 Hazard Identification 

After the system (or “item” in ISO 26262 terminology) has been defined, the first actually safety-specific 
process step is to identify the hazards of the item in terms of accident risks that the system can cause to 
humans. This activity is common to all major safety standards, but the naming and the proceeding in detail – 
in particular which influence factors to be considered when ranking the hazards - are quite different: in 
automotive ISO 26262, it is named “Hazard Analysis and Risk Assessment (HARA)”, in industrial IEC 61508 it is 
called “Hazard and Risk Analysis”, in aerospace ARP4761 it is called “Functional Hazard Analysis (FHA)”.  

In industrial settings, influence factors like the probability of people being in the danger zone is considered, 
whereas in automotive applications there is no explicit measure for that (up to now, it can be assumed, that 
at least one human - the driver – is in the danger zone, in most cases many more). In automotive, however, 
the probability of exposure to some driving situations is considered as the “E” (for exposure) factor, and the 
possibility for the driver or other traffic participants to prevent the accident after a failure has occurred is 
rated by the “C” (for controllability) factor. Also, the severity ratings are different, ranging up to “many 
people killed” for industrial plants, whereas for passenger cars the highest rating for the “S” (for severity) 
measure is S3, which translates as “severe or fatal injuries” (of at least one human – catastrophic 
consequences are not assumed for a single passenger car). The way of arranging, analysing and rating the 
hazards is slightly different among different standards (in tabular form, in most cases), and so is the way of 
determining the final rating for each hazard, which may be called SIL (safety integrity level), ASIL (automotive 
safety integrity level), DAL (design assurance level) or otherwise. These levels are usually ranked on a scale 
comprising 4 to 6 levels, designated by letters or numbers (e.g. ASIL A is the lowest in ISO 26262 and ASIL D is 
the highest – whereas in ARP 4761 it is in the opposite sense, A is the most severe and meaning 
“catastrophic”.) But despite all the differences, all safety standards have in common that hazards are 
understood as the effects of a system failure (specification violation due to design error or due to part failure 
occurring at runtime) and a usage or environmental situation (e.g. platoon driving on highway). Also, it is a 
commonality that the hazards are ranked on a scale according to their risk, which is in some sense a 
combination of severity and occurrence probability. 

The AMASS workflow and toolchain does not define any novel method for hazard identification, but refers to 
the standards in place. From the selection of AMASS tools, the tool medini analyze, that comes with different 
profiles for different industries and standards, is the general recommendation for performing the hazard 
identification and has been used for some of the case studies in the AMASS project; however, other tools can 
be used as well. What is important is the export capability for hazards, safety goals and rankings (e.g. ASIL) 
into the AMASS tool chain, because the hazard identification is the most important starting point for all 
safety activities, as it determines as an output: 

a) The hazards, which are the ultimate failure effects and can therefore serve as top-level events in a 
Fault Tree Analysis or other type of safety analysis. 

b) The safety goals, which are the top-level requirements, with the meaning that a given hazard shall be 
prevented even in presence of failures, and therefore are the starting point for refinement into 
safety requirements (or safety contracts, respectively) that add to the normal functional 
requirements for the product. 

c) The hazard risk levels or safety integrity levels (like SIL, ASIL, DAL etc.), which determine the 
subsequent effort to be spent on (semi)formal specification, implementation according to certain 
rules and guidelines, and verification, such as depth of testing or application of formal verification 
techniques for higher hazard risk levels. They are also an important input parameter for setting up 
the safety plan (selection of methods to be applied, in particular) and the safety case. 

In the following, the proceeding is exemplified for an automotive HARA acc. ISO 26262 with the tool medini 
analyze, based on an excerpt from Case Study 2 (Driver assist function with electric powertrain). To exploit 
synergies between the AMASS case studies, we were focusing on hazards that can be applied similarly to 
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Case Study “DC Drive” and Case Study 3 (Collaborative fleet of vehicles), e.g. “self-acceleration”, 
“unauthorized braking”, “unauthorized start” or “acceleration in the wrong direction”. 

The process of an ISO 26262 HARA can be explained as in Figure 21 (the explanations below refer to the 
number labels in the diagram). 

 

Figure 21. ISO 26262 HARA Process Flow 

Input (1) is the System Description from Item Definition Phase (for corresponding AMASS step see 3.2.1), 
showing the outer interfaces and main functions of the system.  

 

Figure 22. Example of system description in SysML 

From these, in step (2) the malfunctions are derived. This can be performed in a systematic way by applying 
the HAZOP method that uses guidewords like “higher than”, “lower than”, “unintendedly”, “other”, “early”, 
“late”, etc. to modify the intended behaviour to produce a description of potential unintended behaviour 
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(e.g. function: “control vehicle speed such that the correct distance to the predecessor vehicle is kept” × 
guideword: “higher than”  malfunction: “the system sets the vehicle speed to a value that is higher than 
specified”). Note that, the more formal the nominal functions are specified (e.g. using template language for 
semi-formal assumptions and guarantees), the higher are the chances to semi-automate malfunction 
derivation (see Section 4.2 of [3]). 

 

Figure 23.  Example of HAZOP Analysis 

To judge the potentially resulting accidents, it is necessary to discuss the malfunction in different 
environmental contexts or usage scenarios, e.g. driving in city traffic with vulnerable road users nearby, 
manually driving on a highway at high speed, automatically driving on a highway as part of a platoon at 
moderate speed, waiting at a red signal with pedestrians crossing in front of the vehicle, etc. This requires 
the presence of a catalogue of situations (3) as an auxiliary input. The process of creating and managing this 
catalogue is often underestimated, because when combining all road types with all speed ranges and 
weather conditions and all light conditions and all types of manoeuvres and all kinds of other traffic 
participants around etc., one will usually be overburdened by the combinatorial explosion, resulting in ten 
thousand cases to be discussed for each of the malfunctions. We can expect that this will get even worse for 
automated vehicles in the future, as they require to discuss not only malfunctions due to failures, but also 
due to limitations of the nominal functionality (termed “SOTIF” for “Safety of the intended functionality”), 
and to judge this, even more parameters of the environmental situations are of relevance, e.g. pose, clothing 
colour and movement speed of a pedestrian (perhaps one out of many that are present in the scenario), that 
is supposed to be detected by the automated driving function (e.g. to trigger a braking maneuver). A lot of 
experience and advanced tool support is required to keep the number of situations manageable, e.g. by 
forming equivalence classes or by exploiting subsumption relationships or mutual exclusion relationships 
(e.g. driving at 200 km/h should normally not occur in city scenarios). 

In the next step (4), the effects of the malfunctions are determined for certain environmental and usage 
scenarios, which finally leads to the definition of the hazard (4c), e.g. malfunction: “the system sets the 
vehicle speed to a value that is higher than specified” × usage scenario “driving on a highway as part of a 

platoon”  potential immediate effect: “too low distance to predecessor vehicle”  potential hazard11: 
“rear-end collision with predecessor vehicle”. This is today a manual and usually table-based process. In the 
future, simulation together with fault-injection and monitoring techniques (which is one of the main goals of 
AMASS) could automate a part of this work. 

                                                             

11 ISO 26262 makes a fine distinction between “hazard” and “hazardous event” – only the latter being the combination 
of a malfunction and an operational situation. In practice, this distinction is seldom made, and to avoid confusion we 
will also not make this distinction, as it has no relevance for the AMASS approach. 
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Figure 24.  Example of scenario analysis 

Associated with step (4) is the rating of the hazard in terms of ASIL. The ASIL is calculated out of the factors: 

• E for exposure (3a), which depends only on the usage scenario and can therefore be provided along 
with the situation catalogue. 

• S for severity (4a), which depends on the type of injuries that can be expected to any humans – 
inside or outside of the car – when the described type of accidents happened. These must be 
manually ranked by experts from S0 – no injuries – to S3 – severe injuries, survival not probable. 

• C for controllability (4b), which rates the probability that the driver or other affected people (e.g. 
pedestrians, that could in some cases jump aside) can prevent the accident, ranking from C0 – 
normal control operations that every driver does all the time, like slightly adjusting the speed to C3 – 
almost uncontrollable. Note that for automated driving functions that allow the driver to perform 
side tasks, or that run vehicles in close distance to each other in a platoon, C3 must be assumed in 
most cases. 

From these factors, the ASIL can be automatically calculated (4d) according to the Table 4 in ISO 26262-
3:2018, e.g. S2, E4, C3  ASIL C. 

The remaining steps are (5a) the naming of a corresponding safety goal (= top-level safety requirement), 
normally by just adding “prevent” to the hazard name (hazard: “self-acceleration”  safety goal: “prevent 
self-acceleration”) and (5b) the specification of additional parameters, e.g. 

• Safe state (e.g. in case of failure leading to a self-acceleration  switch propulsion off completely). 

• Fault Tolerant Time Interval (e.g. in the range of 100 ms to 500 ms for typical powertrain-related 
failures). 

• Defining parameters (e.g. self-acceleration is any acceleration generated by the electric powertrain 
which is greater than the driver’s demand by more than 4 m/s2). 

The output of the HARA are the rated hazards that will serve as root events for safety analysis and the rated 
safety goals that will be refined into more detailed safety requirements (or safety contracts) according to the 
further steps of the AMASS methodology. 

3.2.3 Requirements Formalization 

3.2.3.1 Requirements Formalization in CHESS 

This activity has the goal of translating the informal requirements allocated to system components into 
formal properties. Formal properties are textual expressions specified in a restricted grammar so that their 
semantics is formally defined (in rigorous mathematical terms). Such expressions refer to the elements of the 
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system component interface defined in the previous activity. The AMASS platform supports the specification 
of well-formed formal properties with the help of an automated completion feature that suggests the 
possible continuations of a partial specification.  

In order to formalize a requirement previously allocated to a component, perform the following steps: 

1. Create a formal property associated to a component: Navigate the elements of the model using the 
“Model Explorer” view, and create a new diagram (class diagram or block definition diagram) or open 
an existing one. Using the palette of the diagram editor, select the formal property element and drag 
it inside a component already created, see Figure 25. The formal property element becomes visible 
also in the “Model Explorer” view. The same result can be achieved following Step 2 and 3. 

 

Figure 25. Formal property created in the diagram editor. The property is associated to one component 
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2. Create a formal property: Navigate the elements of the model using the “Model Explorer” view, and 
create a new diagram (class diagram or block definition diagram) or open an existing one. Using the 
palette of the diagram editor, select the formal property element and drag it in the editing space, see 
Figure 26. The formal property element becomes visible also in the “Model Explorer” view.  

 

Figure 26. Formal property created in the diagram editor. The property is not associated to any component 

3. Set the owner component of the formal property: Select the formal property (in the “Model 
Explorer” view) or the corresponding graphical representation (in the diagram editor) and open the 
tab “UML”. In the “context” area, browse the model and set the owner component of the formal 
property, see Figure 27. This step is not mandatory but is required to enable the “completion 
assistance”, see step 4. 

 

Figure 27. Owner component set in the UML tab 
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4. Edit the formal property: Open the tab “CustomPropertyEditor” in the “Properties” view tab. Write 
the formal property in LTL. By pressing CRTL + SPACE it is possible to have a list of supported 
keywords of the LTL to define the formal property. If the owner component is set correctly (see step 
2), the “completion assistance” can suggest also the input/output ports and the attributes of the 
owner component to type. Moreover, it notifies whether a typed word does not belong to a 
keyword/port/attribute, see Figure 28. 

 

Figure 28. Property Editor with “completion assistance” 

Note that in case the formalized requirements are not available in the CHESS model, Capra 
traceability tool can be used to create a trace between the FormalPoperty and the requirements 
available in the external source. 

Note that, according to the previous steps, the formalized requirements should have been allocated 
to the current component (see section 3.2.1.1). 

5. Link the requirement to the formal property: Open the tab “Profile” in the “Properties” view tab. In 
the area “Applied stereotypes” select “Formal Property” – “Formalize”. Then, browse the model and 
set one or more requirements that are formalized by the current property, see Figure 29.  

 

Figure 29. Requirements set in the Profile Tab 

Formal properties can be further structured into contracts, performing the following steps: 

1. Select the component to assign the contract. The element can be selected in the “Model Explorer” 
view or in the graphical editor. 

2. Create the contract. Open the tab “custom property editor” in the “Properties” view, type the name 
of the contract in the “new contract's name” area and click the “Add Contract” button. A popup 
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appears to choose if a new contract must be created or if an existing one must be instantiated, see 
Figure 30. 

 

Figure 30. Popup related to the contract definition process 

3. Edit the contract. In the tab “CustomPropertyEditor”, it is possible to assign existing formal 
properties to the assumption and guarantee fields of the contract or create new ones. Then it is 
possible to edit the properties with “completion assistance”, see Figure 31. 

 

Figure 31. Contract editor with “completion assistance” 

3.2.3.2 Requirements Formalization Using SAVONA 

As users might not be familiar with formal expressions to define contracts, SAVONA supports a custom text-
based editor with syntax checks and auto-completion, and a wizard to set up assertions with pre-defined 
templates for the most common assertion patterns. 

In SAVONA Assertions are the equivalent to CHESS’ Formal Properties which can later be used as assumptions 
or guarantees within a contract. Assertions are bound to a model element, so the system component which 
shall be specified needs to be selected either in the Model Explorer or the Diagram Editor. The “Assertions 
tab” of the Properties View shows all defined assertions of the selected model element. To create a new 
assertion either use the right click context menu of the Assertion Table or press the green “Add”-button on 
the upper right-hand corner of the Properties View (see Figure 32). 
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Figure 32. Assertion section of the properties view in SAVONA 

Assertions are defined in a constrained natural language called System Specification Pattern Language 
(SSPL)[71]. Using this semi-formal language guarantees certain qualities of the built expressions like high 
readability, unambiguity and the option for automated verification. 

As it cannot be expected that the user either knows SSPL or can write such expressions free-hand SAVONA 
offers two options to define assertions with tool guidance which will be described in the following 
paragraphs. 

Assertion Wizard 

As applying a template language can be quite difficult without any guidelines, SAVONA features a wizard that 
guides the user through the process of choosing and filling out an appropriate pattern structure for their 
system’s specification. The first page of the wizard shows the three main pattern types of SSPL: Global 
Invariant Pattern, Simultaneity Pattern, and Trigger-Reaction Pattern (see Figure 33). A short description and 
a usage example for each one is provided.  

http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
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Figure 33. Assertion-Wizard: Selection of a General Pattern Type to formulate an assertion 

After selecting the main pattern type, several possible pattern instances of the type are presented to the 
user. Each of them features an example to demonstrate a possible application. If an appropriate pattern 
instance is chosen, the user will be directed to the last page of the wizard, where the patterns construct 
needs to be customized. The user can now replace non-terminals by simply clicking on them. A drop-down 
menu shows possible substitutions and the option to use a macro. If a terminal that must be replaced by an 
event name is selected, a list containing all event interface names of the currently selected component 
appears (see Figure 34). That way the user can only choose and use model elements that are in scope. The 
same holds for terminals that must be replaced by variable names except that the suggested names come 
from all available ports except the event ports. A set of time units is provided to the user can choose from 
when specifying timed behaviour. Only if no non-terminals remain in the pattern instance and all terminals 
are replaced by actual interface names, values, units, etc., can the assertion be assigned to a selected 
component. Otherwise, the wizard will give a hint to the user about the remaining non-terminals or 
terminals. 
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Figure 34. Assertion-Wizard: Refine the pattern instance with names of available model elements 

Assertion Editor 

If the user has already gathered some experience with our template language, the use of the Assertion 
Wizard might include too many unnecessary steps to formulate a valid assertion. The right pattern structure 
is already known by the user, so going through the wizard seems inefficient. The Assertion Editor allows the 
user to directly type in the desired assertion. As writing valid assertions free-hand can be difficult and error-
prone, the tool supports an online syntax check and suggestions for auto-completion of the statement, as 
one might expect from various programming IDEs. Figure 35 shows the Assertion Editor suggesting valid 
possibilities to continue the current statement. 

 

Figure 35. Pattern-suggestion feature of the Assertion Editor 

3.2.3.2.1 Macro Definition 

Sometimes it is unavoidable to use complex expressions within a pattern language, where a natural language 
expression would be much shorter or easier to read and understand. That is why we introduce the concept 
of Macros, which allows the use of natural language expressions within our pattern language. The user 
defines a meaning for each natural language phrase by specifying a corresponding pattern language 
expression. This way we ensure that even with natural language elements, all built expressions within our 
pattern language have unambiguous semantics. 
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As Macros are used to create assertions, they can be created on the same types of model elements. To add a 
new macro, click the Add-Button on the upper right-hand corner of the Macros Section (see Figure 36). 

 

Figure 36. Macros Section of the Properties View in SAVONA 

In the wizard, a keyword of the template language is selected for which a macro shall be defined. 
Additionally, macro name must be defined.  

Macros can only replace a non-terminal from the (semi-) formal syntax, as the semantics are only guaranteed 
to be specified on that level. Terminals (such as port names) can have different meanings due to their 
context and can therefore not be used as a macro definition. 

The subsequent macro wizard pages allow the customization of the selected keyword. Therefore, the same 
page layout is used as the Assertion Wizard. 

3.2.3.2.2 Data Dictionaries 

When specifying (semi-)formal assertions, there needs to be a way to define custom variables such as 
constants or units. SAVONA offers a Data Dictionary View (see Figure 37), where several model elements can 
be defined that can later be used within the definition of assertions: 

• Enumerations and Enumeration Members can be defined 

• Constants of a certain type (Integer, String, etc.) with or without a Unit 

• Units (a predefined set of Units is available from start-up) 

• Datatypes to use as types on ports (a predefined set of Units is available from start-up) 

 

Figure 37. Data Dictionary View in SAVONA 

Each SAVONA project/model features one Global Data Dictionary whose entries are available through the 
entire project. Additionally, each component type (block) has its own Local Data Dictionary whose entries 
are only available to this exact same component and its owned ports. 
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3.2.4 Requirements Early Validation 

3.2.4.1 Requirements Semantic Analysis 

The goal of this activity is to increase requirement quality by detecting and removing requirement defects. 
Currently detected requirement defects are logical inconsistency, redundancy, and non-realizability. 

A set of requirements is considered to be logically consistent when no subset of requirements is 
contradictory. If the set is inconsistent, then the tool Remus is used to identify the minimal inconsistent 
subsets, i.e. the sources of the inconsistency. A requirement is redundant if it is implied by another 
requirement. In such a case, the redundant requirement is reported to the user. The redundancy is currently 
checked using the SPOT tool. Requirements are realizable by a non-trivial system and relatively complete 
when a system can be created that satisfies all requirements, does not restrict any input on top of the 
restrictions already introduced by the requirements, and no output could remain constant forever from the 
very beginning. The realizability checking is implemented using the tool Acacia+. All these background tools 
are integrated on verification servers and are controlled by V&V Manager using OSLC. 

This activity assumes that the requirements are formalized already as described in the Section 3.2.2. 

The formalized requirements are stored as the formal assumptions and guarantees in the contracts, see 
Figure 38.  

 

Figure 38. Formal assumptions/guarantees in the contract of a component 

In order to submit these formal properties to the appropriate V&V tool(s), the user selects a set of the formal 
properties and sends them through the V&V Manager to the connected tools. The selection of the formal 



              

         AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0  

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 145 

 

properties is performed manually e.g. in the Block Definition Diagram, either at the level of individual 
properties, or at the level of contracts, where all formal properties related to the contract are included in the 
set, or similarly at the level of components, via the related contracts. The validation is invoked from a 
contextual menu as depicted in the Figure 39. 

 

Figure 39. Invocation of the V&V Manager 

After the validation tools return the results of their semantic analysis to the V&V Manager, these results will 
be presented in a “V&V Result” view to the user, see Figure 40. The user can examine the results and remove 
any detected defects of the formal properties. 

V&V Manager supports contracts with formal properties only. Formal properties are supported in Linear 
Temporal Logic (or some expressively equivalent Bounded First-Order extension). While some V&V tools 
have restrictions and support for example only subset of LTL, the V&V Manager in general supports it 
completely. 
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Figure 40. V&V Result view 

3.2.4.2 Validation of contracts 

This validation is done by checking if a specific guarantee of the contract satisfies the assumption of another 
contract. To verify the contract property, perform the following steps: 

1. Choose the component that owns the property to check: Select a component (in the “Model 
Explorer” view) or the corresponding graphical representation (in the diagram editor). The properties 
available to check will be the assumptions and guarantees of contracts owning to the selected 
component and to its sub components. This operation includes recursively all the properties from 
the root to the leaves of the selected component. 

2. Perform the validation: right click on the selected component, then go to “AMASS” – “Validation” – 
“Check Validation Property” on the Selected Component. A popup appears to set the parameters of 
the command (see [16] for more details). 

3. Receive the result of the validation: when the check is completed, the status of the check is shown in 
the “Trace” view.  

3.2.4.3 Requirement Quality Analyser in the AMASS platform 
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The tool Requirement Quality Analyser (RQA) implements connectors to different environments providing to 
the AMASS platform evidences of the quality of the projects. These evidences are the quality assessed by the 
quality metrics included in RQA. Following, the different steps to connect to a CHESS project, assess the 
quality of the model and store the evidence in AMASS are detailed: 

1. Create a new OSLC-KM connection in RQA to reference the CHESS project. Figure 41. 

 

Figure 41. RQA Connection Window 

2. In the OSLC-KM Connection window select the project and complete the rest of configuration values. 
Figure 42 (to detail information of the different parameters see the deliverable D5.6 “Prototype-for-
seamless-interoperability (c)” [31] section 2.2.3.5). 
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Figure 42. OSLC-KM Connection (SysML CHESS sub-type) 

3. When the configuration is created it is possible to connect to the project and the artefacts of the 
model are imported to RQA tool (see Figure 43). 
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Figure 43. RQA Connection Window 

4. In order to assess the quality of the model, it is necessary to select a template that stores the set of 
metrics, For further information of the metrics [63] (Figure 44 and Figure 45). 

 

Figure 44. Information message to select a set of metrics 
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Figure 45. Window with the templates store in RQA that contains the set of metrics 

5. When the template is selected, RQA is ready to assess the quality of the model. It is possible assess 
the quality for correctness, completeness and consistency metrics (see Figure 46 and Figure 47).  

 

Figure 46. RQA ready to assess the quality 
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Figure 47. Detail of the assessment options  

6. Once the model has been assessed, the quality of the different artefacts of the model is shown in 
RQA tool (see Figure 48). This quality measure can be exported as evidence to an AMASS repository. 
For this it is necessary to include the location of the server and select the project (see Figure 49 and 
Figure 50). 

 

Figure 48. Quality information of the model in RQA. 
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Figure 49. Connection window to export the evidence in an AMASS repository 

 

Figure 50. Information message of the stored process 

7. Following the detail with the evidence stored in the assurance project is shown (see Figure 51). 
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Figure 51. Evidence stored in the assurance project 

3.2.4.3.1 Requirements Formalization for analysis of Temporal Realizability – Requirement Quality 

Analyser approach 

The goal of this activity is to perform a consistency quality assessment in requirements specifications, by 
detecting temporal elements and analysing its realizability. 

As explained in D3.6 “Prototype-for-architecture-driven-assurance (c)” [29] (Section 2.2.3.1), the 
implementation consists of a NLP software mechanism applied to textual requirements in order to make a 
quality assessment, in terms of temporal consistency. To summarize, the metric looks for elements 
representing time in the requirements and then checks that they do not present temporal conflicts. This 
process starts by formalizing requirements using certain writing patterns, these patterns are a structure used 
to detect sentence based on the position of the words with the goal to recover relevant information. The 
resultant LTL is being processed by Acacia+, an open source tool with algorithms to check the realiability, 
syntehisis and optimization of LTL specifications. Thus, Acacia+ will check the temporal consistency and 
return if the resultant LTL is realiable (high quality) or not (low quality). The deployment and configuration of 
the temporal consistency metric in RQA will perform these steps: 

In the first place, for the deployment of the new metric, it is necessary to get into the “Consistency” section 
in Requirement Quality Analyser (RQA), and select the addition of a new Custom-coded quality metric, see 
Figure 52. 
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Figure 52. Creation of a new custom-coded consistency metric 

The following window will pop-up, Figure 53. It requests a metric name and description (optional) of the new 
metric, a requirements filter (optional), the suitable patterns or patterns group (set of patterns) from the 
System Knowledge Base, and the implemented library information. The System Knowledge Base (SKB) is the 
Ontology of the system managed by the Knowledge Manager (KM) tool. 
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Figure 53. Custom-coded configuration step 

For more details, according to the RQA’s available API, it requests the library (assembly name and location, 
class name and method name) where the Configuration and Evaluation function are implemented (Figure 
54).  

 

Figure 54. Assembly, class and method selection 

Second, it is time for the configuration step, Figure 55. In one hand, it is necessary to establish the only 
Acacia+ configurable parameter. Precisely, it is the K number of accepted states, setting a range from 0 to 5, 
with an incremental coefficient of 1, which restricts the number of iterations in case the problem is hard to 
be computed. 
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Figure 55. Range of values of K 

On the other hand, it is also necessary to setup the suitable patterns or pattern groups that will match the 
requirements for the LTL translation, see Figure 56. 

 

Figure 56. Pattern groups selection 

The deployment and configuration steps are done and the metric is ready to be applied against the 
requirements specification, see Figure 57. Of course, the objective is to either tune the metric configuration 
or modify the requirements specification according to the metric results. 

 

Figure 57. Metric ready to assess quality 

By double-clicking on the metric, the results will show up. Notice that there are only two possible final states: 
temporally realiable specification or not (with the selected configuration). Thus, for the realiable case, the 
result is high quality (3 stars), Figure 57, or low quality (1 star) for the case it is not possible to demostrate 
the realiable. Additionally, there is a result window showing the final translation and Acacia+ result, see 
Figure 58. 
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Figure 58. Metric results 

3.2.4.3.2 Requirements Quality Metrics 

Correctness metric: 

With the activity related to the correctness metrics, the requirements in the specification are analysed with 
the System Knowledge Base (SKB) detecting correctness issues, for further information: about SKB [64], and 
about correctness metric [63].  

Correctness summarizes the set of desirable individual characteristics of a correct requirement: 

• Understandability: requirements are clearly written and can be properly understood without difficulty. 

• Unambiguity: there is one and only interpretation for each requirement (unambiguity and 
understandability are interrelated; they could be even the same characteristic). 

• Traceability: there is an explicit relationship of each requirement with design, implementation and 
testing artefacts. 

• Abstraction: requirements tell what the system must do without telling how it must be done, i.e. excess 
of technical details about the implementation must be avoided in the specification of the requirements. 

• Precision: all used terms are concrete and well defined. 

• Atomicity: each requirement is clearly determined and identified, without mixing it with other 
requirements.  

Following, it is shown the different metrics implemented, see Figure 59 and Figure 60. To create one of these 
metrics it is only necessary to select the proper metric. 
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Figure 59. Correctness metrics related to nouns 
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Figure 60. Correctness metrics related to verbs 

Following, an explanation of the correctness metrics is shown: 

In-System Conceptual Model Nouns 

The RQA tool allows to create this metric to check if each term in the requirement belongs to the SCM view 
or any semantic. The SCM describes a (usually) partial model of the system universe, exclusively at 
conceptual level. Everything regarding the System universe can/should/must be represented in the SCM and 
stored in the SKB. 

Out-of-System Conceptual Model Nouns 

This metric checks if each term does not belong to any SCM view or any semantic cluster. 

In-Semantic Clusters Nouns 

The metric checks if each term of the requirement belongs to one or more semantic clusters. 

Out-of-Semantic Clusters Nouns 

The metric checks if each term does not belong to any semantic cluster. 

In-Hierarchical Views Nouns 
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It is allowed to create this metric to check that each term in the requirement belongs to one or more SCM 
view. 

Out-of-Hierarchical Views Nouns 

The RQA tool allows to create this metric to check that each term in the requirement does not belong to one 
or more SCM view. 

The metrics related to the verbs are similar that those about nouns but focused on verbs. 

3.2.4.3.3 Applying machine learning to improve the quality of requirements 

The objective of this activity is to generate a classifier to analyse the correctness metrics of a requirement 
and to predict their quality in function of a set of requirements previously classified in function of their 
quality. For further information, see D3.3 “Design of the AMASS tools and methods for architecture-driven 
assurance (b)” [28]. The process uses machine learning techniques to analyse the correctness metric of the 
set of requirements and to generate the classifier. For further information, use the reference [62]. 

Following the steps to create the classifier are shown: 

1. Connect to database, Figure 61. 

 

Figure 61. Database connection 

2. Select the specifications and the correctness metrics that the Requirements Quality Analyser (RQA) 
tool recovers for each requirement, Figure 62. 
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Figure 62. Correctness metrics selection 

3. Configure parameters of machine learning algorithms, Figure 63. 

 

Figure 63. Parameters configuration  

4. Generate classifier, Figure 64. 
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Figure 64. Generate classifier 

3.2.4.3.4 Metrics for models 

The objective of the activity is to create metrics for models to evaluate completeness and consistency. To 
extend the knowledge of this kind of metrics use the document D3.3 “Design of the AMASS tools and 
methods for architecture-driven assurance (b)” [28]. A configuration process is necessary in order to define 
the elements that will be analysed along with the information of the models. Once the configuration is 
defined it is possible to create the metric and to assess the quality.  

Following, as an example, the steps for creating and evaluating a terminology coverage metric are shown: 

1. Select the systems and subsystems from the (SKB), Figure 65. 

 

Figure 65. Selecting systems and subsystems from SCM 
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2. The metric is executed to assess the quality of the model, Figure 66. The information of the models is 
extracted in the evaluation time.  

 

Figure 66. Assessing the quality metrics 

3.2.4.3.5 Quality evolution 

This activity has the goal to save a snapshot with the quality of the project and to represent, in a graphical 
way, the quality of the project over the time. Following the steps to save and to recover the information are 
shown: 

1. Save a snapshot with the information of the quality of the project, Figure 67.  

 

Figure 67. Saving snapshot with the quality of the project 

The qualities of the different snapshots saved are graphically represented, Figure 68.  
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Figure 68. Graphical representation of the quality evolution 

2. Select the snapshot to show the quality information of the project saved at some point, Figure 69. 
The snapshot contains all the information of the quality of the metrics and requirements that were 
included when the snapshot was saved. 

 

Figure 69. Information of the snapshot 

3.2.4.3.6 Correctness metric for models 

The objective of this activity is to create correctness metrics in order to assess the quality of models. The tool 
RQA includes 8 correctness metrics for 3 kinds of models: class models, package models and sequence 
models. For further information see the deliverable D3.3 “Design of the AMASS tools and methods for 
architecture driven assurance (b)” section “2.4.4.3 Metrics for models”. 
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Following the steps for assigning and evaluating one of these metrics are shown: 

These metrics are grouped in a template in RQA, Figure 70.  

 

Figure 70. Correctness metrics for model template 

1. This template is assigned to the model to be assessed, Figure 71. 

 

Figure 71. Assign template to the model 

 
2. Assess the quality of the model: 

Once the metrics are assigned, it is possible to assess the quality of the model based on these 
correctness metrics, Figure 72. 

 



              

         AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0  

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 145 

 

 

Figure 72. Assess quality of the model. 

3.2.4.3.7 Checklist metrics 

The goal of this activity is to create a new kind of metrics based on checklists. There are two types of 
checklist metric: 

• Correctness checklist metric: the question included in this metric must be answered by each work 
product of the specification. 

• Completeness checklist metric: the questions included in this metric must be answered at the 
specification level. 

For further information see the deliverable D3.3 “Design of the AMASS tools and methods for architecture 
driven assurance”. 

Following, as an example, the steps for creating and evaluating a correctness checklist metric is shown: 

1. Create a checklist metric and define the questions, Figure 73: 
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Figure 73. Creation the checklist metric 

2. Once a checklist metric is created, it is possible to complete the checklist for each requirement, 
Figure 74, Figure 75: 
 

 

Figure 74. Complete checklist metric 
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Figure 75. Window to answer the questions 

3. Once the checklists metrics have been completed for each requirement, the quality of the 
specification must be assessed giving the possibility to analyse the quality report, Figure 76, Figure 
77. 
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Figure 76. Checklist results statistics 
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Figure 77. Checklist results for each requirement 

3.2.5 Functional Refinement 

3.2.5.1 Architectural Refinement 

3.2.5.1.1 Architectural Refinement in CHESS 

The architectural refinement defines in detail how the different parts of the system are connected and 
interact in order to fulfil the system requirements. 

To refine the architecture, the sub requirements and subcomponents of the system must be identified. 

Allocation of requirements/sub-requirements to subcomponents must be managed (see section 3.2.1.1), as 
well as formalization of sub-requirements (see section 3.2.2). 

In case of reuse of components (as subcomponents), associated satisfied requirements and implemented 
contracts are reused. 

Information about requirements refinement can be managed in Papyrus/CHESS by using the SysML standard 
support, in particular by using the DeriveReqt relationships from the child to the parent requirement. 

Then, subcomponents must be connected through their interfaces. To refine the system, perform the 
following steps: 

1. Prepare the graphical editor environment: In the “Model Explorer” view, go to the package 
“modelSystemView” and open the previously created Block Definition Diagram, see Section 3.2.1.  

2. Define the instances of the components: Using the palette of the diagram editor, select the 
“DirectedComposition” element and respectively select first the component to refine (e.g. C1) and 
then the chosen subcomponent (e.g. C2) in the editing space, see Figure 78. As result, in the “Model 
Explorer” view a property of type C2, that is an instance of C2, is created in C1. It is possible to create 
more than one instance of C2 in C1. 
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Figure 78. Two instances of the component Block1 compose the System component 

To connect the input/output ports among components, perform the following steps: 

1. Prepare the graphical editor environment: In the “Model Explorer” view, go to the package 
“modelSystemView” and create and open an Internal Block Diagram belonging to the component to 
refine. If the component to refine is hardware, then create a Composite Diagram instead. As result, a 
representation of the component to refine is shown in the graphical editor. 

2. Select subcomponents: In the “Model Explorer” view, navigate through the elements that belong to 
the main component and drag the component instances (also called component parts, created in 
step 2 of the previous process), into the graphical editor. Ports already defined for the 
subcomponents can be shown in the Internal Block/Composite Structure Diagram by drag and drop 
them from the “Model Explorer” to the given component part available in the diagram. New ports 
can also be created through the Internal Block/Composite Structure Diagram for a given part: it is 
worth noting that in the model, ports are actually attached to the definition of the component, not 
just to the component part/instance itself. So, creating a port for a part actually changes the 
definition of the component represented by the part; this also means that other parts of the same 
component, if defined somewhere in the hierarchical refinement, will “inherit” the new created port. 

3. Connect the components: Using the palette of the diagram editor, select the “Connector” element 
and connect the ports, see Figure 79. Note that: 

a. input ports of the main component must connect with input ports of subcomponents, 

b. output ports of subcomponent must connect with input ports of subcomponents or with 
output ports of the main component. 

Alternatively, it is possible to connect the ports using the “DelegationConstraint” element. With this 
element, the user can define an assignment in the OSS language, enabling the possibility to connect 
more ports with one port.  
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Figure 79. Internal Block Diagram used for architectural refinement 

3.2.5.1.2 Architectural Refinement in SAVONA 

Defining the system’s architecture in SAVONA completely relies on the creation of the system model using 
SysML’s Internal Block Diagrams. A Block is automatically refined by its sub-components, called Parts which 
are connected through Ports and Connectors. SAVONA thereby extends the default Papyrus diagram editor 
by the following functions: 

• Check for cycles: Before a new part is being created, SAVONA checks whether a cycle in the 
architecture will arise. Since a cycle in the architecture definition results in an invalid system model, 
SAVONA will notify the user and forbid the creation of such refinement. 

• System model consistency: A valid system model hierarchy is essential to the model’s validity. 
SAVONA therefore restricts the operations on the model hierarchy that its validity is always 
preserved. Figure 80 shows a valid model hierarchy: System Blocks or Types can only be defined at 
the top level of the system model. Ports, Parts and Connectors are only associated to a Block. Any 
other hierarchical order of elements is forbidden per default; although reuse of model elements is 
allowed (see Reuse of elements). 

 

Figure 80. Model Explorer showing a valid system architecture hierarchy in SAVONA 

• Reuse of elements: The copy&paste functionality in the Model Explorer and Diagram Editor have 
been enhanced to support the idea of a valid system model hierarchy. Model elements such as ports, 
parts etc. can easily be copied over to other blocks. SAVONA automatically inserts the copied 
elements at the correct hierarchy level.  

• Full-Whitebox Diagrams: Since the hierarchical view of a block in the Model Explorer is often not 
enough to give a sufficient overview of a system component, SAVONA maintains a full whitebox 
diagram for each component. The diagram is automatically updated on any related model change 
and allows a quick view on the current architecture of a component, regardless of any specific view. 

3.2.5.1.3 Architectural Pattern-based support 
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A design pattern is a reusable solution to a commonly occurring problem within a given context in the system 
design. It is not a finished design that can be transformed directly into source or machine code. It is a 
description or template for how to solve a problem that can be used in many different situations. Design 
patterns are formalized best practices that the programmer can use to solve common problems when 

designing an application or system12. 

A useful aspect of a design pattern is that a solution comes with advantages and inconveniences. These could 
for instance relate to non-functional properties likely reliability, performance and resource consumption and 
are therefore interesting for embedded and cyber-physical systems. In some cases, design patterns can also 
describe undesired solutions, for instance ad-hoc solution with known disadvantages that are also known as 
anti-patterns. 

Pattern integration 

CHESS-Papyrus supports the design pattern integration, i.e. the use of design patterns in an application or 
system model according to the logical approach described in D3.3 [28]. The process of integrating a pattern is 
split into several parts. 

1. Identify which pattern should be applied   

Select a suitable pattern for a problem that needs to be solved in a certain context. Figure 81 shows the 
pattern selection dialog once the pattern library coming with the CHESS editor is imported in the user 
model (see "Pattern Libraries" section).  

 

                                                             

12 https://en.wikipedia.org/wiki/Software_design_pattern  

https://en.wikipedia.org/wiki/Software_design_pattern
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Figure 81. Design pattern selection dialog 

2. Role binding 

A design pattern describes a set of roles that elements play in a pattern. In many cases, elements that 
play a certain role do already exist in the application model. Therefore, it is important to identify these 
and declare a binding to role in the pattern (i.e. a role binding). This information is used to determine 
which elements of a pattern need to be copied into the application and which don't. 

The following Figure 82 shows one of the role binding dialogs available for the Triple Modular 
Redundancy pattern. The upper part shows the roles defined by the pattern, while the lower part shows 
the available candidates for binding in the system under design. Candidate matching simply relies on the 
meta-model kind, i.e. components match components, components parts to components parts, ports to 
ports, connections to connections; dedicated binding dialogs are available for each kind of meta-model 
entity by using the “Next” button of the main dialog window. In order to declare a binding, select a pair 
in the upper and the lower part of the dialog, respectively and then click on the "Create mapping" 
button. 
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Figure 82. Role binding interface 

3. Integrate the pattern 

This automatic step implies that elements that are in the pattern but not already in the model are 
copied. 

Pattern libraries 

CHESS is released with a pattern library including some safety patterns. 

Each pattern comes with a set of information like the description of the problem, the intention behind 
possible solutions, roles within the pattern and a solution description; moreover assumption-guarantee 
properties are captured, in the contracts style; this can serve as the basis for assuring that the application of 
the architectural pattern adequately addresses the problem that is trying to solve (see D3.3 [28] section 
2.5.1). 

The library can be imported in application models and will then be available in the design pattern catalog 
that is presented when you choose to apply a design pattern via the designer context menu. Also, the library 
can be enriched with additional patterns; please refer to the AMASS user manual [33] for more information 
about importing pattern libraries and new patterns definition. 
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3.2.5.1.4 Parameters and Configurations 

The parameterization of an architecture is the procedure to define and use a (possibly infinite) set of 
parameters to set the number of components, the number of ports, the connections, and the static 
attributes of components.  

To parameterize an existing architecture, perform the following steps: 

1. Create the parameter: In the Model Explorer View or in the BDD Editor, create a static FlowPort. The 
static attribute can be set to “true” in the “SysML” tab of the “Properties” view. 

2. Give an assignment to the parameter (optional step). In the Model Explorer View or in the IBD Editor, 
select the owner of the parameter, create the “DelegationConstraint” element (see Section 3.2.5.1) 
and set a value or an expression to the parameter. 

3. Give a constraint to the parameter (optional step). In the Model Explorer View, select the owner of 
the parameter, create the “Constraint” element and write a boolean expression in the OSS language. 

The instantiation of an architecture is the procedure to assign the values of the parameters used in the input 
parameterized architecture. The outcome is an architecture with a fixed number of components, ports, 
connections, and static attributes of components.  

To instantiate a parameterized architecture, perform the following steps: 

1. Select the root component of the parameterized architecture: Select the root component (in the 
“Model Explorer” view) or the corresponding graphical representation (in the diagram editor) and 
open the menu using the right-button of the mouse. Select “Instantiate the parameterized 
architecture”, then a wizard appears.  

2. Select the parameters used in existing instantiated architecture (optional step).  

3. Assign a value to each parameter, see Figure 83. This step may require more iteration; a parameter 
may depend on another parameter, so the latter needs to be set first.  

4. Import the instantiated architecture into the project, see Figure 84. Select the destination package 
on the right side of the wizard page. 

 

Figure 83. Wizard to set the parameters of the parameterized architecture 
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Figure 84. Last page of the wizard to import the instantiated architecture into the current project 

3.2.5.2 Contract Refinement 

3.2.5.2.1 Contract Refinement in CHESS 

The contract refinement requires one prior phase, the definition of the contract (see Section 3.2.2).  

Contracts refinement must follow the requirements refinement. Indeed, a contract is implicitly linked to the 
formalized requirements (via its assumption and guarantee properties); so, the requirements referred by 
contracts appearing in a refinement relationship should also have a corresponding refinement traced (see 
section 3.2.5.1).  

To refine the contract, perform the following steps: 

1. Select the contract to refine: Select the contract instance (in the “Model Explorer” view) or the 
corresponding graphical representation (in the diagram editor) and open the menu using the right-
button of the mouse. Select “Contract-Set contract refinement”. A popup appears showing the list of 
contracts that belong to the subcomponent of the current component. Select the refining contracts. 

2. Edit the refining contracts: Select the contract instance (in the “Model Explorer” view) or the 
corresponding graphical representation (in the diagram editor) and open the tab “Profile” in the 
“Properties” view. In the area “Applied stereotypes” select “ContractProperty – Refined by”. Then, 
remove the contracts or browse the model and set one or more refining contracts. 

 

Figure 85. “Profile” tab to edit the refining contracts 

3.2.5.2.2 Contract Refinement in SAVONA 

To specify a contract within SAVONA, assertions must be gathered that are later used either as assumptions 
or guarantees. The Assertions Section of the Properties View (see Figure 32) shows assertions that are 
defined for the currently selected SysML block, interface or connector. As contracts can only be defined on 
SysML blocks via the Contracts Section (see Figure 86), the Contracts section shows an overview of all 
contracts assigned to the currently selected type and allows the editing, creation and deletion of contracts. 
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Figure 86. Contracts Section in the Properties View of SAVONA 

When defining a new contract in SAVONA, the Contract Wizard is used to ease the process of assigning 
assertions as assumptions or guarantees. Previously defined assertions can be used to create a contract for a 
component. The wizard offers assertions that are defined on the currently selected SysML block and the 
owned ports of the block (see Figure 87). To use one of the offered assertions in a contract, simply assign a 
type (either assumption or guarantee) to it. At least one guarantee is needed to create a contract. Multiple 
assumptions as well as multiple guarantees are conjunct. Assertions without any type assignment will not be 
considered in the contract definition. 

 

Figure 87. Contract Wizard of SAVONA: Assignment of assumptions and guarantees 

The contract refinement can be defined at the last page of the Contract Wizard (see Figure 88). Contracts 
from parts can be selected that refine the currently selected component. 
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Figure 88. Contract Wizard of SAVONA: Definition of contract refinements 

3.2.6 Component’s Nominal and Faulty Behaviour Definition 

System component static definition, i.e. its properties, ports, contracts, can be enriched with behavioural 
models by means of UML state machine diagrams. In particular, in CHESS, state machine diagrams can be 
used to model the nominal and the faulty behaviour of the component.  

Nominal state machine are basically standard UML ones. In CHESS, by using a subset of the UML support for 
state machine modelling, it is also possible to use model transformation to automatically generate an SMV 
(the input language of nuXmv) representation of the modelled nominal state machines, together with the 
components structure definition (this is then used to perform automatic generation of fault tree, see Section 
3.3.2.2). 

Figure 89 below is an example of component with its properties (input and output ports), while Figure 90 
shows its nominal state machine which follows the restriction needed to run the CHESS to NuSMV3 
generation: basically, only UML initial, final, basic states and transitions are considered for the current 
implemented transformation (e.g., no UML concurrent regions, history states, choice or junction transition). 
A transition comes with a guard and an effect. The guard is a boolean condition upon the values of 
components properties. The effect must be expressed by using the SMV language, to model component 
properties assignment. 

 

Figure 89. Example of component 
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Figure 90. Example of nominal state machine (using SMV as action language) 

The behavioural model of the component can be enriched with the faulty behaviour. Faulty behaviour is 
modelled in CHESS by using the dedicated dependability profile. The CHESS dependability profile enables 
dependability architects to model dependability information necessary to conduct dependability analysis, 
basically by allowing the modelling of failure modes and criticality, the failure behaviours for a component in 
isolation (so how events can lead to components failure modes) and the failure modes propagation between 
connected components (via components ports). More information about this is provided in Section 3.3.2. 

3.2.7 Functional Early Verification 

3.2.7.1 Contract-Based Verification of Refinement 

As an early verification of the architectural decomposition, the user can use the tool to verify if the contract 
refinement is correct (see Section 2.1.2). This verification step requires to have specified a contract 
refinement. 

To verify that the contract refinements are done correctly, perform the following steps: 

1. Choose which contract refinements must be checked: select a component (in the “Model Explorer” 
view) or the corresponding graphical representation (in the diagram editor). The contract 
refinements considered will be the ones associated to the selected component and the ones 
associated to its sub components. This operation includes recursively all the contracts along the 
subcomponents, from the root to the leaves of the system. 

2. Perform the check contract refinement: right click on the selected component, then go to “AMASS-
Functional Verification” – “Check Contract Refinement on Selected Component”, see Figure 92. 
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Figure 91. Dedicated menu to perform the check of the contract refinements 

3. Receive the result of the analysis: when the analysis is completed, it is possible to see the status of 
each refinement in the “Trace” view.  

4. If the check fails, it is possible to see the counter example, i.e. the instances of values to assign to the 
ports that cause the failure of the contract refinement. For example, the Figure 92 shows that the 
refinement of the contract “System_Brake_time” of the component “system” is failed. Looking at the 
list of values of the counter example, the user is facilitated to figure out whether the error is caused 
by the assumption or guarantee of the involved contracts, or by the choice of the refining contracts. 

 

Figure 92. An example of the result of the check contract refinement shown in the Trace View. In this case, it is possible 
to see that one refinement is failed, and the counter example. 

3.2.7.2 Contract-Based Verification of State Machines 

As a further early verification step, the user can use the tool to verify that the behavioural specification of 
the system is compliant with the contract specification. This is currently restricted to behaviours specified by 
state machines. 

To verify that the state machines defined in the model satisfy the contracts, perform the following steps: 
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1. Choose which contracts and state machine are involved: Select a component (in the “Model 
Explorer” view) or the corresponding graphical representation (in the diagram editor). The contracts 
and state machines considered will be the ones associated to the selected component and the ones 
associated to its sub components. This operation includes recursively all the contracts and state 
machines along the subcomponents, from the root to the leaves of the system. 

2. Perform the validation: right click on the selected component, then go to “AMASS-Functional 
Verification” – “Check contract implementation on Selected Component”. 

3. Receive the result of the analysis: when the analysis is completed, the status of the check for each 
contract is shown in the “Trace” view. If the check fails, it is possible to see the counter example, i.e. 
instances of values to assign to the ports that cause the not satisfiability of the contract for the 
specific state machine, see Figure 93. 

 

Figure 93. An example of the result of the check contract implementation shown in the “Trace” view. It is possible to see 
that four contracts are not satisfied by the state machines of their associated component and one contract not. 

3.2.7.3 Model Checking  

Besides the verification of contracts, the user may want to verify other properties on the state machine. 

The specifications to be checked on the FSM can be expressed in temporal logics like Computation Tree Logic 
(CTL), Linear Temporal Logic (LTL) extended with Past Operators, and Property Specification Language (PSL) 
that includes CTL and LTL with Sequential Extended Regular Expressions (SERE), a variant of classical regular 
expressions. It is also possible to analyse quantitative characteristics of the FSM by specifying real-time CTL 
specifications.  

CTL and LTL specifications are evaluated by nuXmv in order to determine their truth or falsity in the FSM. 
When a specification is discovered to be false, nuXmv constructs and prints a counterexample, i.e. a trace of 
the FSM that falsifies the property. 

There are three possible model checking available (see [16] for more details): 

• check ctlspec: it performs fair CTL model checking. A CTL specification is given as a formula in the 
temporal logic CTL. A CTL formula is true if it is true in all initial states. 

• check invar: it performs model checking of invariants. Invariants are propositional formulas which 
must hold invariantly in the model. 

• check ltlspec: it performs LTL model checking. An LTL formula is true if it is true at the initial time t0. 

To execute the model checking, perform the following steps: 
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1. Choose the components behaviour to check: Select a component (in the “Model Explorer” view) or 
the corresponding graphical representation (in the diagram editor). The components behaviour to 
check will be the behaviour of the selected component and the behaviour of its sub components. 
This operation includes recursively all the behaviours from the root to the leaves of the selected 
component. 

2. Perform the check: right click on the selected component, then go to “AMASS-Functional 
Verification” – “Model Checking on Selected Component”. 

3. Analyse the results of the verification 

3.2.7.4 Contract-Based Monitoring 

The contract-based monitoring technology can be used as a functional early verification technique that 
provides confidence in the models obtained during the concept design phase. This section describes how the 
AMT2.0 tool can be used to check the correctness of STL contracts with respect to MATLAB/Simulink 
simulation traces. The tool offers the following main functionalities: 

• Checking the correctness of the simulation traces with respect to requirements formalized in STL in 
an offline fashion. 

• Explaining contract violations in terms of temporal implicants – small simulation trace segments that 
are sufficient to imply the contract violation. 

• Property-driven measurements from simulation traces. 

In this section we focus on the first two features of the tool and on its GUI interface. The user first needs to 
formalize functional requirements in the form of STL contracts. The tool provides an STL editor with syntax 
highlighting for expressing the temporal properties (see Figure 94). Then the user executes the 
MATLAB/Simulink model and save the simulation traces in the Comma Separated Value (CSV) format. The 
generation of test inputs can be done according to some coverage criteria. However, the test generation 
strategy is outside the scope of the tool. 

The user then creates a new Evaluation view in the AMT2.0 tool and import both the contract and the 
simulation traces.  Note that STL is interpreted over continuous-time signals while the simulation traces 
consist of a finite collection of (timestamp, value) pairs. As a consequence, the user needs to interpret the 
signal values that are in between two consecutive sample points. The tool allows the user to choose between 
the Step and the Linear interpolation. The user can also choose whether the real numbers are represented 
using Floats (more efficient representation) or Rationals (more precise representation). 

 

Figure 94. AMT2.0 STL contract editor 
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After setting up the evaluation options, the user clicks the “Evaluate” button that triggers the offline 
monitoring of the property. In the Property View of the Evaluation tab, the tool displays the parse tree of the 
contract and highlights which assertions were satisfied and which were violated. The user can expect the 
satisfaction signal for each sub-formula of the contract indicating at what times the sub-formula was true 
and at what times it was false. The Evaluation view is depicted in Figure 95. 

 

Figure 95. AMT2.0 Evaluation view 

Finally, for the contract that was violated, the user can get the fault explanations in a graphical form. In 
particular, the tool highlights (red vertical bands) the input signal segments that were responsible for the 
violation of the contract. An example of the diagnostics outcomes is shown in Figure 96. 

Finally, note that AMT2.0 can be also run in a batch mode. This allows to automate the testing and 
monitoring tasks on large numbers of simulations. 
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Figure 96. AMT2.0 diagnostics results 

3.2.7.5 Contract-based Verification of Refinement for Strong and Weak Contracts 

As presented in Section 2.1.2, strong and weak contracts are introduced to support out-of-context reasoning 
and component reuse across variety of environments. While strong contracts must hold in all environments, 
the weak ones are environment-specific. Prior to performing the refinement check using strong and weak 
contracts, contracts must be created and allocated to the component types, which represent out-of-context 
components. At the component type level, the user indicates if a contract is strong or weak. When the 
component type is instantiated in a particular system to a component instance, all the strong, and a subset of 
weak contracts can be identified as relevant in the particular system in which the component is instantiated 
[83]. As discussed in Section 2.1.2, identifying which are those relevant weak contracts can be done manually 
on the component instance level. For example, Figure 97 depicts the selected weak contracts for the 
Select_Switch_Impl component instance. 

The “Contract Refinement Analysis (OCRA)”[16] command transforms the CHESS model into Othello System 
Specification [16] (.oss) file readable by OCRA, then it runs the OCRA refinement check and outputs the 
results. Since .oss format does not explicitly distinguish between strong and weak contracts, but treats all 
contracts as strong, the weak contracts need to be accordingly transformed to strong contracts for .oss 
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format. To perform the refinement check with strong and weak contracts, the user first creates a class 
diagram in the “DependabilityAnalysisView”, which is a part of the “AnalysisView”. Then, the user creates a 
new “ContractRefinementAnalysisContext” by selecting it from the Palette.  She selects the newly created 
“ContractRefinementAnalysisContext” and go to the properties view, in particular the Profile tab. There, the 
user can select the platform that should be analysed (e.g., the system block), and set the attribute 
“checkAllWeakContracts” to true or false (Figure 98).  If the “checkAllWeakContract” attribute is set to false, 
the refinement check will be performed such that the selected weak contracts will be treated equally as the 
strong contracts in the generated .oss file. In this case the user needs to manually ensure that we do not 
select contradictory weak contracts, otherwise the refinement check will prompt an inconsistency error.  

Alternatively, the user can set the “checkAllWeakContracts” to true, where the selection will not be needed, 
but all weak contracts will be included in the generated .oss file such that they will be transformed to 
implications within the strong guarantees, as described in Section 2.1.2. In this case, to identify which 
contract is relevant in this particular context, an additional step is needed after running refinement analysis. 
The user needs to run the command “Validate Properties (OCRA)” (found in the menu under CHESS-
>Analysis->Formal Verification, as shown in Figure 98). This command will check validity of each weak 
contract assumption and identify which weak contracts are relevant in the given system. Upon running the 
weak contract assumption validity check, the contract status is updated accordingly. It should be noted that 
the “Validate Properties (OCRA)” command can be run only with discrete-time specification, hence the usage 
of continuous variables or operators in the contracts disables the validity property check.  

 

Figure 97. Weak contract selection for a component instance 

 

Figure 98. Performing refinement analysis with strong and weak contracts 
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With this adapted usage of OCRA from the CHESS environment, the AMASS platform is capable of 
automatically verifying contracts for reusable components, i.e., not only strong, but also the weak contracts 
[67]. Instead of manually selecting the weak contracts, the CHESS environment executes different OCRA 
commands to identify which weak contracts should be selected and whether the refinement holds. 

3.3  Safety Analysis 

In the following, the Safety Analysis activities depicted in Figure 17 are detailed, one subsection for each 
activity. 

3.3.1 Simulation-based Fault Injection 

Fault injection emerges as a way to perform a simulation-based safety analysis at the same time that helps 
verifying and validating the safety of a certain design. Figure 99 illustrates what kind of role this technique 
plays in terms of architecture driven assurance. The user starts by modelling the system architecture with its 
corresponding components in Papyrus/CHESS or in SAVONA. After doing so, traditional safety analysis 
techniques and fault injection are put together in order to perform a combined analysis of the system.   

The simulation-based fault injection process starts by calling the Sabotage framework [27]. This framework 
helps the user to define some failures in the system model by adding in the Simulink environment some 
extra blocks that reproduce a failure effect on a component and visualize its effects. In contrast to xSAP [26], 
where the so-called error injection blocks are already included inside CHESS tool, in Sabotage these extra 
blocks are included in the Simulink environment afterwards [12]. At present, the user needs to fill the fault 
list table or the fault injection policy (see Section 2.1.6) by means of a custom fault list. The fault list stands 
for the Fault Target, Fault Injection Trigger, Fault Duration and Fault Model [28].  

Figure 99 presents the integration methodology to unify the current fault injection approach with 
component-based design and the inclusion of monitors in the component outputs. 
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Figure 99.  Integration workflow: from contract-based design to the generation of saboteurs and monitors 

The system architecture can be modelled in CHESS or SAVONA; however, if it is modelled in SAVONA the user 
has the option to later import it into CHESS tool. After modelling the system architecture, the information 
coming from contract specification could be used to set specific faults in the fault list. This allows completing 
information regarding where to inject a fault, which failure modes need to be provoked (fault model) and 
what faulty values should be inserted in place of the correct ones. As explained in [3], Component Fault Tree 
(CFT) frames are generated for each component and automatically linked according to the signal links. Based 
on the data types at their ports and the description of the expected (correct) behaviour by assertions from 
the contracts, it is even possible to automatically derive all applicable failure modes (e.g., too high, too low 
for continuous signals) and to specify their value and timing ranges by assertions (formal failure model). 
However, the inner failure propagation logic inside the CFT blocks had to be filled in manually so far. Fault 
injection can automatically derive or verify at early development process the behaviour of the fault 
propagation, which helps further formalizing the safety analysis activities. 

Other values such as fault injection triggering by time and fault duration have no interconnection with the 
CHESS/SAVONA environment, thus, they need to be set by the user in the fault list.   

By implementing the previous process, the user reproduces all the possible failure modes for the inputs by 
violating the assumption. For instance, if an assumption states that a certain voltage value should be 
between Value 1 and 2, a “too low” failure mode would be reproduced by reading Value 1 and setting it to a 
too low stuck-at value.  

Including AMT 2.0 monitors (see Section 3.2.7.4) in the outputs of the components, it is possible to observe 
the behaviour of the signals related with the guarantees of system contracts. The analysis of these results is 
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done after the simulation of the experiments where the results are saved in a MLDATX file. AMT 2.0 tool is 
able to read and examine them.  

After performing the first set of simulations, the results can be used as feedback by CHESS/SAVONA in order 
to refine the architecture as follows: refine the guarantees and define the safety measures by safety 
contracts. There is no doubt that these results could be exploited directly in Simulink as well to define the 
safety measures and come up with the most appropriate safety concept. For example, these results can 
include information regarding the failure logic or fault tolerant time interval. 

Once the safety mechanisms are included in the design, the user runs a second set of experiments getting 
different results.  Thanks to the AMT 2.0 monitors the user analyses the experiments results and checks if the 
guarantees hold. If the guarantees hold, the required level of safety is achieved. If not, the architecture 
would need to be redefined as needed. 

The Figure 100 illustrates a global overview of the implementation of all the steps mentioned above on the 
different tools. 

 

Figure 100. Sabotage: global vision of the implementation with different tools 

As depicted in the deliverable D3.6 [29], originally, the work was implemented within the Matlab 
environment. This means that both the configuration (fault list) and the fault injector scripts (matlab code 
generation) were directly coded in Matlab. The configuration of those experiments was performed by means 
of Matlab GUI. 

During the second prototype, the creation of an experiments configuration view in Eclipse framework and 
code templates was developed. In addition, the goals of the Sabotage tool for the last prototype are the 
improvement of the configuration view, automatization of the experiments from Eclipse framework and the 
integration with other tools of AMASS platform. 

D3.3 [28] highlighted how the Sabotage framework for simulation-based fault injection is constituted. As 
major steps, the workload generator, fault injector and monitor/controller need to be mentioned. From the 
user perspective, the configuration of the fault injection experiments, which is part of the workload 



              

         AMASS Methodological guide for architecture-driven assurance (b) D3.8 V1.0  

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 97 of 145 

 

generator, needs to be completed. After doing so, a set of scripts are automatically called and the resulting 
data obtained.  

3.3.1.1 Original solution: Simulink environment 

• Configuration of the fault injection experiments and fault list creation 

In order to run the simulation-based FI experiments, the user should perform the system modelling first (see 
Section 4.2) in Simulink which is directly related to its corresponding SysML model. 

Afterwards, the fault injection experiments need to be configured through the “Fault List” GUI. The 
information this list holds is necessary to configure the (extra blocks) saboteurs. These configuration values 
are manually included by the user. 

Follow the next steps in order to carry out fault injection simulations: 

1. Open analysis context option for Sabotage, which will open Matlab and run the “SabotageGUI.m” 
script. After that, the main GUI configuration window opens (“FaultList GUI”). 

2. Select the Simulink file (.mdl/.slx) that contains the system model under test. Figure 101 depicts an 
example for the Adaptive Cruise Control. 

 

Figure 101. Select the Simulink file 

3. Create the fault list. A fault list is completed according to the following properties: 

a. “Fault Target Column” shows all the possible injection blocks of the system which are obtained by 
parsing the loaded system (See Figure 102). Select the block where to inject the saboteur. 
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Figure 102. Fault Target Block Selection 

b. “Number of Inports” depicts the number of potential input injection points. Choose one by typing 
the selected value in the “Selected Inport” column. 

c. “Fault Injection Trigger”: include the time to trigger the injection of the fault in milliseconds (ms). 

d.  “Fault Duration”:  

i. 0: represents a permanent fault  

ii. <value>: set a duration by the user 

iii. Random: sets a random duration value 

e. “Fault Model”: stuck-at<0>, stuck-at<lastvalue>, stuck-at<value>, random, delay, noise, inverted, 
other. 

f. “Fault Value”: optional. It is used to set a specific faulty value to a signal.  

 

Figure 103. Fault List Creation 
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Follow this process to include the required number of faults in the same list. By doing so, the final fault list is 
constituted (see Figure 103).  

• Faulty System Generation (Fault Injector) 

After having created the fault list, click “Create Faulty System” button. This creates the faulty system under 
test with its corresponding observation points included into the design. The user can click on to open the 
created faulty system. The file can be opened through the “Faulty system view” (see Figure 104). 

 

Figure 104. Faulty System Generation 

• Fault Injector Controller 

After having created the faulty system under test, click on the “Run” button. This allows running the fault 
free and the faulty simulations as well as the comparison between the simulation results.  

3.3.1.2 Eclipse solution: Integration with the AMASS Platform 

As mentioned above, the user should perform the system modelling in Simulink, which is the equivalent of its 
corresponding system model in SysML. This equivalence allows the integration of system contracts in the 
configuration of the fault injection view. 

• Configuration of the fault injection experiments 

Before filling the fault list, it is necessary to transform the Simulink model to a Matlab Eclipse Modelling 
Framework model to obtain all the information of the system. 

1. Add the .slx/.mdl file to the workspace. 

2. Right click on the Simulink file and select import model. It is important to take into account that the 
workspace must be refreshed after the importation. A new simulink file will be created.  

The fault injection experiments are configured through the fault list. To configure the fault, list the next steps 
should be followed: 

1. Create a new Sabotage model. 

2. Load the generated .simulink file on the Fault list property view. 
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If it is wanted, the user can load the CHESS file to integrate the contracts in the fault list so that the faults can 
be specified as the violation of its assumptions. To do so, the user should load the UML file on the System 
Contracts attribute defined in the Fault List property view as shown in Figure 105. 

 

Figure 105. Loading the CHESS file in Sabotage Framework 

3. Complete the fault list filling the properties. 

a. Fault model: Select stuck-at<0>, stuck-at<lastvalue>, stuck-at<value>, delay or inverted. 
b. Connection (Fault Target): shows the possible connections of the system which are obtained 

by loading the .simulink file. Figure 106 addresses all the possible connections to the system. 
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Figure 106. The possible connections of the system model 

c. Assertion and Component: To define a violation of a certain assertion of the system the user 
should first select a certain component of the system and then the user will be able to 
proceed to the selection of one of its assertions. In Figure 107 all the assertions related with 
the component Plant are shown.    

 

Figure 107. Assertions of a specific component 

• Faulty System Generation and simulations executions 

The next step after filling the fault list is to right click on the Sabotage model and click on Create Faulty 
system. This step creates a Matlab code file automatically ready for creating the Golden and Faulty Simulink 
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model files. The last step is to right click again on Sabotage model and click on Run Faulty System. This action 
will open Matlab/Simulink tool, create the aforementioned files, run all the simulations and visualize the 
results.  

3.3.2 Model-Based Safety Analysis 

3.3.2.1 Fault injection 

The faulty behaviour for a component is provided through a state machine, the latter tagged with the 

<<ErrorModel>> stereotype defined in the CHESS dependability profile
13

. 

In the error model, the information about the error states can be provided by using the <<ErrorState>> 
stereotype. Then, for a given error state, the effect upon a property of the component, and so the effect on 
its nominal behaviour, can be also provided by using pre-defined effects: 

• StuckAt: models the effect of being stuck at a fixed value. 

• StuckAtFixed: models the effect of being stuck at a fixed random value. 

• Inverted: models the effect of being stuck at the inverted last value.   

• RampDown: models the effect of decreasing the value of a property by a certain value. 

The state machine shown in Figure 108 represents the error model for the component depicted in Figure 89. 
In particular, in case of an internal fault, the component enters in an error state where the property energy is 
stuck at 0 value. The optional probability assigned to that transition is 5 x 10-2. 

 

Figure 108. State machine modelling faulty behaviour 

3.3.2.2 Fault-tree generation 

Once the system architecture has been provided, by mean of components definition and their nominal and 
error models, the fault tree generation can be obtained by invoking the xSAP symbolic model checker 
through the CHESS environment. Please refer to the AMASS User Manual [33] for instructions on how to 
configure the analysis. To execute the FTA, perform the following steps: 

1. Select a component (in the “Model Explorer” view) or the corresponding graphical representation (in 
the diagram editor). The component can be any element in the active package. 

2. From the CHESS menu select: Analysis – Dependability – FTA with xSAP. 

3. From the Select Analysis Context for FTA/FMEA analysis window select the AnalysisContext from 
which the analysis has to be started: the FTA condition defined for the selected AnalysisContext 
appears in the window; 

                                                             

13 CHESS dependability profile is a part of the CHESS profile [61]  
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4. Select OK to run the transformation. 

Once the analysis is executed, the fault tree is automatically shown in a dedicated panel in the frontend; see 
Figure 109 for an example of a resulting fault tree. If fault probabilities have been specified during the 
configuration of the error model, the fault tree will report their combination. The fault tree can be examined, 
in particular the minimal cut-set and so the basic fault conditions which can led to the top-level failure. 

 

Figure 109. A fault tree visualized in the CHESS Editor View; note the  
probabilities associated to the top and basic events 

3.3.2.3 FMEA generation 

Along with the fault-tree generation, it is possible to generate the FMEA table. FMEA analysis is configured in 
a similar mode as the fault-tree analysis, see the AMASS User Manual [33] for details. Steps to perform the 
analysis are the following: 

1. Select a component (in the “Model Explorer” view) or the corresponding graphical representation (in 
the diagram editor). The component can be any element in the active package. 

2. From the CHESS menu select: Analysis – Dependability – FMEA with xSAP. 

3. From the Select Analysis Context for FTA/FMEA analysis window select the AnalysisContext from 
which the analysis has to be started: the FMEA condition defined for the selected AnalysisContext 
appears in the window. 

4. Select OK to run the transformation. 

Once run, the resulting table is visualized in a specific view inside CHESS, see Figure 110. 
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Figure 110. The FMEA table in the CHESS view 

3.3.3 Contract-Based Safety Analysis 

The contract-based safety analysis identifies the component failures as the failure of its implementation in 
satisfying the contract. When the component is composite, its failure can be caused by the failure of one or 
more subcomponents and/or the failure of the environment in satisfying the assumption. 

As result, this analysis produces a fault tree in which each intermediate event represents the failure of a 
component or its environment and is linked to a Boolean combination of other nodes; the top-level event is 
the failure of the system component, while the basic events are the failures of the leaf components and the 
failure of the system environment (see [15] for more details). 

To execute the contract-based safety analysis, perform the following steps: 

1. Choose which contracts must be considered in the analysis: Select a component (in the “Model 
Explorer” view) or the corresponding graphical representation (in the diagram editor). The contracts 
considered will be the ones associated to the selected component and the ones associated to its sub 
components. This operation includes recursively all the contracts along the subcomponents, from the 
root to the leaves of the system. 

2. Perform the analysis: right click on the selected component, then go to “AMASS” – “Safety Analysis” 
– “Compute Contract-based Fault Tree on selected component”, see Figure 111. 

3. Receive the result of the analysis: when the analysis is completed, the fault tree is shown. The 
representation is the same as the ones used for the Model-based Safety Analysis, see Figure 109. 
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Figure 111. Dedicated menu to perform the compute the contract-based fault tree 

3.4 Safety Case 

In the following, the Safety Case activities depicted in Figure 19 are detailed, one subsection for each activity. 

3.4.1 Evidence Generation 

When a given analysis has been executed, and the analysis results have been inspected, the assurance 
engineer can decide to collect the artefact(s) containing the analysis results as evidence; this is typically done 
when the analysis results are satisfactory, i.e. the requirements under validation are satisfied. In this case the 
evidence editor coming with OpenCert (the base tool for management of assurance and compliance adopted 
in AMASS) is used to create a new evidence entity linked to the artefact(s) owning the analysis result. The 
architect can then trace the new produced evidence with the analysis context entity, the latter available in 
the CHESS model, that has been used to run the given analysis; this will allow to implicitly link the context 
that has been analysed (e.g. system elements, specific analysis parameters values) to the obtained results. 
This traceability link between the “AnalysisContext” entity in the CHESS model and the corresponding 
evidence in the evidence model (i.e. the evidence referring the artefact created by the analysis invoked 
through the same AnalysisContext) can be specified by using the Capra facilities (see AMASS user manual 
[33] about how to work with Capra in the context of the AMASS platform). 

The just created evidence can then be used to support the assurance case, for instance to demonstrate that 
a given process step required by the process model has been executed. The evidence can also be used to 
support the assurance case, and can be referred directly in the assurance case editor.  

If the analysis has been performed to validate a contract (and so the associated formalized requirements), 
the evidence has to be associated to the contract itself (see the AMASS user manual [33] about how to trace 
a Contract to an evidence): this information can then be used while editing the assurance case, see Section 
3.4.2 about link to assurance case, or it will be used during the argument fragments generation. 
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Before the assurance case is available, the evidence can also be used to support a given contract or that a 
requirement is properly satisfied by the architecture; the traceability link between the evidence and the 
architecture (via the AnalysisContext) can be used to demonstrate what has been actually analysed and 
verified. If the executed analysis supports the validation of a given contract, the obtained evidence can also 
be linked to the contract itself. 

Table 1 below summarizes the artefacts that can be generated by the analysis within the AMASS platform. 

Table 1. Artefacts produced by analysis 

Analysis (Default) Location of the produced Artifact  Note 

Validation of contracts Under the NuSMV-OCRA/Results folder of the 
CHESS project (file name: 
selected_component_name + ”_ 
property_result.xml”) 

 

Requirement Semantic 
Analysis 

Under the NuSMV-OCRA/Results folder of the 
CHESS project (file name: 
“output_”+selected_component_name + ”_ 
property_result.xml”)  

 

Requirement Quality Metrics   

Contract-Based Verification 
of Refinement 

Under the NuSMV-OCRA/Results folder of the 
CHESS project (file name: 
selected_component_name+”_oss_refinement_re
sult.xml”)  

 

Contract-Based Verification 
of State Machines 

Under the NuSMV-OCRA/Results folder of the 
CHESS project (file name: 
selected_component_name+”_oss_implementatio
n_result.xml”) 

 

Model Checking Under the NuSMV3-XSAP/Results folder of the 
CHESS project (file name : 
output_selected_component_name+”_modelChec
king_result.xml”) 

 

Contract-based Verification 
of Refinement for Strong and 
Weak Contracts 

Under the NuSMV-OCRA/Results folder under the 
CHESS project (file name xxx_result.txt and 
xxx_consistency_result.txt)  

 

Fault Tree Generation (xSAP) Under the CHESS project folder.  .aird is a representation 
file used by the Sirius 

graphical tool14. 

Contract-Based Safety 
Analysis 

Under the NuSMV-OCRA/Results folder of the 
CHESS project (file name: 
selected_component_name + ”_oss_ 
faultTree_result.xml”) 

The file .xml is the result 
of the analysis 

Contract-Based Safety 
Analysis 

Under the CHESS project folder. The file .aird is a 
representation file used 
by the Sirius graphical 
tool. It is used to 
graphically represent the 

                                                             

14 https://www.eclipse.org/sirius/doc/user/general/Modeling%20Project.html  

https://www.eclipse.org/sirius/doc/user/general/Modeling%20Project.html
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file .xml produced by the 
analysis. 

Document Generation Chosen by the user via GUI.  

3.4.2 Link to Architectural Entities 

One important result of the architecture-driven assurance is the possibility to have an adequate traceability 
between the assurance case and the architectural entities, e.g. to allow assurance architect and assurance 
manager/assessor to easily navigate all the available information. 

The approach of contract-based design proposed in AMASS plays an important role on this aspect; e.g. the 
assurance case has to elaborate on each safety contract validity and upon the composition of contracts 
(derived from the composition of the associated components). So, traceability links can be provided between 
assurance case entities elaborating upon a contract and the contract itself.  

According to the envisaged approach (see D3.3 [28] Section 3.2.2.5 and 3.2.2.6), traceability links between 
the following entities have been identified as useful: 

• Contract and Assurance Case Package, the latter owning the assurance case entities related to the 
contract. 

• Contract and Assurance Case Agreement, the latter owning the arguments about how the 
assumptions of a contract are fulfilled in the context of the system. 

• Contract and Assurance Case Claim, the latter elaborating on the contract itself, e.g. that the contract 
is derived from some analysis or is based on some specification. 

• System component and Argumentation element, the latter owning all the assurance case fragment 
information related to the associated component. 

• Contract and Evidence, the latter supporting the contract statement, in particular its guarantee, e.g. 
by using some verification/test result 

Evidences associated to a contract can then be reused and referred from the assurance case. 

Some of the aforementioned links are automatically managed in case of argument fragment generation; for 
the parts of the assurance case not currently supported by such automatism, the links have to be created 
manually by using the Capra tool support (see the AMASS User manual [33]).  

In addition to the aforementioned links between the architecture and assurance case related elements, 
traceability links should also be provided between the system model and the executed process, the latter 
also modelled in OpenCert e.g. as an evidence model listing all the artefacts to be produced according to a 
given standard/process step; these relationships can then be reused to support the demonstration of the 
compliance of the architecture with respect to a given process. Again, the links to the executed process can 
be manually managed by using the Capra tool support. 

3.4.3 Document Generation 

As part of the evidences to be used at support of the safety case, the tool can generate a document 
summarizing the modelling of the system components and the verification, validation, and analysis results. 

The generated document is composed by a list of sections. The first section includes the diagrams that are 
not associated to a specific component, such as the block definition diagrams, an instance is shown in Figure 
112. 
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Figure 112. Block Definition Diagram exported as vector image 

The other sections describe in detail every component. Each section contains: 

• Name of the component  

• Table of input ports with name and type 

• Table of output ports with name and type 

• Table of subcomponents with instance name and type name 

• Table of interface assertions 

• Table of refinement assertions 

• Table of connectors between ports 

• Table of contracts 

• Table of contract refinements 

• Table of uninterpreted functions 

• Table of parameters 

• Table of parameters assumptions 

• Zero, one or more internal block diagrams, see Figure 113. 
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Figure 113. Instance of an Internal Block Diagram exported as vector image 

To automatically generate the documentation, perform the following steps: 

1. Select the root component: Select a component (in the “Model Explorer” view) or the corresponding 
graphical representation (in the diagram editor). The information used to generate the 
documentation will be related to the selected component and to its sub components. This operation 
includes recursively the information from the root to the leaves of the selected component; 

2. Perform the document generation: right click on the selected component, then go to “CHESS” – 
“Safety Case” – “Document Generation” – “Generate documentation from selected component”. 

a. A popup appears to set the options related to the format of the document and to the style of 
the diagrams, see Figure 114. For this prototype the supported formats are HTML and Latex.  

b. A popup appears to select the folder that will contain the document and the diagrams. 

 

Figure 114. Popup to set the preferences of the generated document and diagrams 

3.4.4 Argument Fragments Generation 

As mentioned in Section 2.1.7, safety argument is the backbone of a safety assurance case, which aims at 
assuring that the system is acceptably safe to operate in a given context. Argument-fragments represent 
parts of that safety argument focused on assuring a specific aspect of the system, e.g., a particular 
component or requirement [67]. The Argument Generator plugin is implemented in CHESS. It generates a set 
of argument-fragments from the selected CHESS model and stores them in the corresponding destination 
assurance case in the Connected Data Objects (CDO) repository stated in the OpenCert preferences. Note 
that the whole safety case is not generated automatically and the generated fragments should be reviewed 
and integrated with the rest of the assurance case. 

The Argument Generator assumes that the CHESS model is enriched with contracts and that contract 
refinement has been performed such that contract status is updated to indicate if the contract is validated in 
the given context or not [83]. Moreover, the Argument Generator assumes that the analysed model and the 
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refinement check results are stored in the refinement analysis context. The attached screenshots (Figure 115 
- Figure 119) illustrate the usage of the Argument Generator plugin. First, the plugin prompts selection of the 
OCRA refinement analysis context (Figure 115 - Figure 116). Then, the user needs to indicate to which 
assurance case on the corresponding CDO server the argument-fragments should be generated (Figure 117). 
The argument-generation is performed for each component and for each validated contract (Figure 118). The 
set of argument-fragments for each component can be viewed in the selected assurance case (Figure 119). 

 

Figure 115. Initiating the argument-fragment generation 
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Figure 116. Selecting the source analysis context 
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Figure 117. Selecting the destination assurance case folder on the CDO repository 
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Figure 118. Generation successfully completed with argument-fragments for each block 
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Figure 119. An example of the generated argument-fragment 

3.5 Summary 

The following Table 2 summarizes the modules supporting the different activities: 

Table 2. Summary of modules supporting the different phases of the AMASS architecture-driven assurance 

PHASE SUPPORTED ACTIVITIES 

1. System definition Using SysML BDD, IBD and Requirements Diagrams, possibility to import 
requirements from external tools, formalization of requirements supported 
with syntax-driven editors. 

2. Requirements early validation Formal semantic analysis of formal properties, analysis of requirements 
quality with machine learning techniques and requirements quality metrics. 

3. Functional refinement Using SysML IBD extended with contracts. 

4. Component’s nominal and faulty 
behaviour definition 

Using State Machines or Simulink models extended with fault injection. 

5. Functional early verification Contract-based Verification of refinement and state-machines, Model 
Checking, Contract-based Monitoring of Simulink models, Contract-based 
Verification of Refinement with Strong and Weak Contracts. 

6. Safety Analysis Simulation-based Fault Injection, Model-Based Safety Analysis, Contract-
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Based Safety Analysis. 

7. Safety Case Evidence Generation, Link to Architectural Entities, Document Generation, 
Argument Fragments Generation. 
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4. Case Studies 
In this section, three case studies applying the methodological guide are described. These case studies are 
not meant to cover completely the methodology, but they have been chosen based on the past experience 
of the partners involved in the development of the Architecture-Driven Assurance approach. 

4.1 AIR6110 

4.1.1 Case Study Description 

4.1.1.1 AIR6110 and the FBK-Boeing Case Study 

AIR6110 [18] is an informational document issued by the SAE that provides an example of the application of 

the ARP4754A15 and ARP476116 processes to a specific aircraft function and implementing systems. The non-
proprietary example of a Wheel Brake System (WBS) in this AIR, demonstrates the applicability of design and 
safety techniques to a specific architecture. In this example, The WBS comprises a complex hydraulic plant 
managing two landing gears each with four wheels and controlled by a redundant computer system with 
different operation modes. The WBS provides symmetrical and asymmetrical braking and anti-skid 
capabilities. 

The joint case study between FBK and Boeing, presented in [19], enhances the AIR6110 with formal methods. 
First, WBS architectures in AIR6110 formerly using informal steps are recreated in a formal manner. Second, 
methods to automatically analyse and compare the behaviours of various architectures with additional, 
complementary information not included in the AIR6110 are presented. Third, an assessment of distinct 
formal methods ranging from contract-based design, including model checking, to model-based safety 
analysis is provided. 

The models are imported into CHESS and perform the early V&V and safety analysis supported by the AMASS 
platform to trace the results and link them to the safety case. The AIR6110 document details the 
development of the WBS system architecture in four versions, each obtained after design choices of different 
types. The AMASS platform will enable to trace and compare the different architectures. 

The git repository17 (branch master) contains the 5 CHESS projects: AIR6110, AIR6110Arch2, AIR6110Arch3, 
AIR6110Arch4, AIR6110Arch5. They respectively describe the modelling of the first version of the WBS 
architecture Arch1, Arch2, Arch3, Arch4, Arch5, all described in [18] and formalized in [19]. Currently, in 
reference to the Table 2, this case study covers the following phases:  

• System definition: creation of the System element of the model using the BDD, see Section 3.2.1.2. 

• Requirement Formalization: creation of formal properties and contracts, see Section 3.2.3.1. 

• Requirements Early Validation: Requirement Semantic Analysis, see Section 3.2.4.1 and Validation of 
Contracts, see Section 3.2.4.2.  

• Functional refinement: definition of the sub-components and their interactions using IBDs, see 
Section 3.2.5.1.1. Refinement of contracts, see Section 3.2.5.2.  

• Functional early verification: execution of the Check Validation Property and the Verification of 
Contract Refinement, see Section 3.2.7.1  

• Safety Analysis: Execution of the Contract-based Fault-Tree Generation, see Section 3.3.3.  

                                                             

15 http://standards.sae.org/arp4754a/ 

16 http://standards.sae.org/arp4761/ 

17 https://gitlab.fbk.eu/CPS_Design/CHESS_SystemArchitectureProjects 

http://standards.sae.org/arp4754a/
http://standards.sae.org/arp4761/
https://gitlab.fbk.eu/CPS_Design/CHESS_SystemArchitectureProjects
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• Safety Case: Automatic generation of documentation, see Section 3.4.3.  

4.1.1.2 Overview of the Aircraft 

The WBS is part of a hypothetical aircraft, designated model S18. The S18 is a passenger aircraft, with a 
capacity of 300-350 passengers, capable of a flight duration of approximately five hours. The S18 comprises 
two engines, two main landing gears and a nose landing gear. Each main landing gear contains four wheels. 

The S18 aircraft systems manage nine basic functions: 

• provide structural integrity; 

• provide stability and control; 

• provide control of energy; 

• provide operational awareness; 

• provide a controlled environment; 

• provide power generation and distribution; 

• provide loading, maintenance, ground handling and occupant accommodation; 

• provide control on the ground; 

• provide control in the air. 

4.1.1.3 Overview of the WBS 

4.1.1.3.1 Functions 

The WBS manages part of the “provide control on the ground” aspect of basic aircraft function. In particular, 
it fully implements the subfunction “provide primary stopping force,” which decelerates the aircraft on the 
ground. The WBS must ensure the behaviour of four leaf functions: 

• decelerate using wheel braking; 

• provide directional control on the ground through differential braking; 

• stop main landing gear wheel rotation upon gear retraction; 

• prevent aircraft motion when parked. 

An overview of the functions covered by the WBS is given in Figure 120, based on the understanding of 
AIR6110. 

The case study used in this document takes into account two leaf functions: “Decelerate using wheel 
braking” and “Provide directional control on the ground through differential braking”. 

 

Figure 120. Functional decomposition of the AIR6110 case study 
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4.1.1.3.2 Structure 

The WBS manages the brakes on the eight wheels of the two main landing gears. The nose gear has no 
brakes. The WBS receives hydraulic and electric power, and displays information to the crew (e.g. the validity 
of the brake signal produced by the Control System). To enable these features, it interfaces with systems 
associated to other functions: 

• the hydraulic and electric power plants, which cover the “provide power generation and distribution” 
function; 

• the display system, which covers the “provide operational awareness” function. 

An overview of the WBS is given in Figure 121. 

4.1.1.4 WBS Architecture evolution 

The development of the WBS in the AIR6110 document is described through four evolutionary steps, each 
step resulting in a specific architecture: 

• Arch1: The highest view of the architecture of the WBS comprises one BSCU and one hydraulic circuit 
backed by an accumulator. This is the first step in the architecture decomposition by defining the 
main functional elements of system. 

• Arch2: This is the basic architecture of the WBS. It includes redundancy principles: There are two 
BSCUs, a green circuit and a blue circuit. At this step multiple braking modes are introduced. 

• Arch3: This evolution of Arch2 replaces the two BSCUs of the control system by one dual channel 
BSCU. 

• Arch4: This evolution of Arch3 modifies the placement of the accumulator and adds a link from the 
control system validity to the selector valve in the physical system. 

Evolution from one architecture to the next occurs as a result of assessment activities during the 
development process. 
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Figure 121. WBS architecture overview (MV=Meter Valve; ASV=AntiskidShutoff Valve; W=Wheel) 

4.2 ETCS Linking function 

The present case study is intended to provide the final user with an example related to railway domain of the 
use of the AMASS platform for Architecture-Driven Assurance. The case study is mainly focused on the 
following activities: 

• System Definition (see Section 3.2.1 of the present deliverable) 

• Requirements Formalization (see Section  3.2.2 of the present deliverable) 

• Functional Refinement (see Section  3.2.4 of the present deliverable) 

• Functional Early Validation (see Section 3.2.6 of the present deliverable) 

Furthermore, an example of Evidence Generation, as described in Section 3.4.1 of the present deliverable, is 
provided, even if Safety Case activities are not directly in the scope of the present case study.  

The git repository18 (branch master) contains the CHESS project ETCS_linking_02_ParamArch, which is up to 
date version of the model of the linking function.  

4.2.1 Case Study Description 

The case study focused on the ERTMS/ETCS sub-system aims to model the Linking function through the 
AMASS platform.  

                                                             

18 https://gitlab.fbk.eu/CPS_Design/CHESS_SystemArchitectureProjects 

https://gitlab.fbk.eu/CPS_Design/CHESS_SystemArchitectureProjects
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The European Rail Traffic Management System (ERTMS) is the system of standards for management and 
interoperation of signalling for railways within the European Union. 

The main target of ERTMS is to promote the interoperability of trains in the European Union. It aims to 
greatly enhance safety, increase efficiency of train transports and enhance cross-border interoperability of 
rail transport in Europe. This is done by replacing former national signalling equipment and operational 
procedures with a single new Europe-wide standard for train control and command systems. 

ETCS, acronym for European Train Control System, enables information to be transmitted to the driver 
related to line status, permitted speed and to continuously check that this information is being complied 
with. Together with the GSM-R, radio system based on the GSM mobile phone standard and used in the 
railway field to exchange information between the trackside equipment and the train, it forms the so-called 
ERTMS. 

The ETCS system can be developed at four application levels. For the purpose of this model, the architecture 
will be focused on Level 1, where data transmission to the train is mainly performed discontinuously via 
EUROBALISE. 

EUROBALISE is the European system for the transmission of information relevant to safety between the train 
and the trackside equipment. It’s a function of ERTMS and one of the ETCS sub-systems.  

The EUROBALISE system consists of: 

• Balise: beacons, fixed or controlled type, located along the railway track, which are energized and 
enabled to transmit only when the train antenna is above them. 

• On-board transmission system: consisting of the antenna unit and BTM (Balise Module Transmission) 
function. 

• Trackside signalling system: consisting of the lineside electronic units and other external equipment 
involved in the signalling process constantly communicating with controlled Balise. 

The requirements for the train ETCS on board subsystem and trackside are defined in the System 
Requirements Specification UNISIG Subset-026, [20] and, in particular the linking function, the model it refers 
to, is defined in section 3.4.4 of [20]. 

A balise is linked when its linking information containing location, location accuracy and direction is known in 
advance. 

In general, the aim of linking can be summarized in the following targets: 

• To determine whether a balise group has been missed or not found within the expectation window 
and take the appropriate action.  

• To assign a co-ordinate system to balise groups consisting of a single balise. 

• To correct the confidence interval due to odometer inaccuracy. 

On the basis of this statement, a model of a simple railway system constituted by trackside and on-board 
components has been defined. In parallel, all the requirements related to linking function defined in UNISIG 
Subset-026 [20] as set of natural language has been imported in a UML model. 

The Figure 122 depicts the architecture developed with focus on linking function implementation. 

https://en.wikipedia.org/wiki/European_Union
https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/Rail_transport_in_Europe
https://en.wikipedia.org/wiki/Railway_signal
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Figure 122. Pictorial view of the Linked Balises on the track 

4.2.2 System Definition 

The first phase of the modelling activity consisted in the specification of the requirements related to linking 
function as defined in UNISIG Subset-026 [20]. The requirements were represented in the model by using the 
SysML standard support, creating the Requirements Diagram illustrated in Figure 123. In particular, two 
subsets of requirements were graphically created: one related to train ETCS on board subsystem, which 
means requirements that the ETCS on board system has to meet and the other to trackside, which means 
requirements that the signalling trackside infrastructure has to meet. 

The requirements were imported manually from the standard and the following fields of the SysML tab were 
filled: 

• “Id” – the number of the requirement as defined in Subset-026 [20] 

• “Name” – the name “Req.” followed by a progressive number  

• “Text” – the requirement in natural language as defined in Subset-026 [20] 

The requirements applicable to the model were then linked to the related formal properties, as described in 
the following sections. 

 

Figure 123. ETCS Linking model - Requirements Diagram 
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4.2.2.1 Basic assumptions 

In the present section the basic assumptions and main constraints related to the creation of the model are 
reported. The model aims at the application of AMASS platform to model only partially a real railway 
scenario and consequently has some limitations and simplifications that must be taken into account by the 
end user. 

The main assumption are the followings: 

• The movement of the train is considered only in one direction (forward). 

• The Balise Group are constituted by only one Balise. 

• The Linking information cannot be iterated: only the next expected Balise is announced by the 
previous one. 

4.2.2.2 Architecture 

In order to model the linking function, a simplified railway system has been implemented in the AMASS 
platform. The architecture of the system was designed by means of SysML Block Definition Diagram in which 
the system components and their relationship were produced.  

The basic concept of the model consists in defining the core block, called “Linking_System”, which is 
constituted by the trackside component block, called “Trackside”, and on-board component block called 
“Train”. These blocks can be considered as the logic functions related to linking with the apportionment of 
the linking requirements at on board and trackside level. The “Trackside” constitutes the signalling 
infrastructure of the railway line, which, for the purpose of this model, is only composed of the EUROBALISE 
system. The “Train” constitutes the group of real equipment normally installed on board, which receives 
input from external sources and acts on the train dynamic behaviour. 

On the other hand, a physical part of the system has been defined by means of the block called “Physical” 
which is divided, as done for the block “Linking_System”, in trackside and train components. This part of the 
system represents the physical behaviour of a real system: the block “Physical_Trackside” contains the 
balises located along the route, while the block “Physical_Train” contains the train location information 
during its journey along the route. 

The blocks “Braking_System” and “Driver” represent the third part of the model. The definition of these 
components is based on the consideration that the output of the elaboration performed by the on-board 
subsystem can be thought mainly oriented to the driver, by means of the display of icons and text in the DMI 
(Driver Machine Interface) located in the cabin in front of the driver, and to the train brake sub-system, by 
means of the command of emergency and/or service brakes. 

A modelization of the braking sub-system and of the driver machine interface could be very complex and are 
considered out of the scope of the present model. As reported in next sections, the only interface 
implemented in the model consists in the reception of the brake triggers for the braking system and the 
reception of the icon and text to be displayed to the driver.  

Figure 124 illustrates the complete SysML Block Definition Diagram of the model. 

For each component, including the System component, designed in the SysML Block Definition Diagram a 
SysML Internal Block Diagram was created in order to model components input/output ports, its 
decomposition into parts and how the parts are connected. 

In the following section, a description of each part of the model is reported together with a description of the 
main assumptions at the basis of the model. 
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Figure 124. SysML Block Definition Diagram of the parameterized model 

4.2.2.3 Physical part 

Physical part is composed by the block “Physical” and its sub-components, “Physical trackside” and a 
“Physical train”, as defined in its Internal Block Diagram, reported in Figure 125. 
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Figure 125. Internal Block Diagram of parameterized Physical block 

In particular, Physical trackside is composed by the Balises (components “BG”) and provides to the model the 
location of each Balise along the route. The model is parametrized: a vector of BG is defined and in each 
instantiation of the general architecture the number of BG can be defined actualizing the value of the 
variable “n_balise_group”. 

Physical train represents the real train with its movement along the route; it provides to the model the 
travelled distance of the train together with the odometric error data related to the travelled distance. 

4.2.2.4 Linking system part  

Linking system part is composed by the block “Linking system” and its sub-components, “Trackside” and 
“Train”, as defined in its Internal Block Diagram, reported in Figure 126.  

 

Figure 126. Internal Block Diagram of parameterized “Linking system” block 
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The Trackside is composed by the Balise groups and, as done for the Physical part, the model is 
parametrized: a vector of BG is defined and in each instantiation of the general architecture the number of 
BG can be defined actualizing the value of the variable “n_balise_group”.  

The Trackside provides to the model the Linking information composed by a set of variables related to the 
next Balise to be overpassed by the train (distance to the next Balise, location accuracy of the next Balise, 
etc.). A main assumption of the model consists in considering that the Linking information refers only to the 
next Balise to be overpassed by the train: no iteration of this information related to further Balise is 
implemented. In this way, each Balise provides Linking information related to the next one.  

Every time the location of the train is equal to the location of a Balise a Message is generated and the Linking 
information is transferred by the Trackside to the Train. 

The Train is composed by the Control system block which represents the core of the ETCS on board 
subsystem, it constitutes the vital computer of the train, the processing unit that elaborates the inputs and 
determines the output in accordance to the requirements. As consequence, Control system block 
implements the following features: 

• It receives in input the Linking information provided by trackside each time a Message is generated. 

• It implements the on board Linking requirements formalized in dedicated formal properties. 

• It provides as output triggers of the brakes and triggers of the text and icon to be displayed on the 
DMI. 

4.2.2.5 Brake and Driver part 

The blocks “Braking_System” and “Driver” are block which receive as input from the Train block respectively 
the trigger of service and emergency brake and the text and icon to be displayed to the driver on the DMI. A 
more detailed modelization of the braking sub-system and of the driver machine interface could be very 
complex and are considered out of the scope of the present model. 

4.2.3 Requirements Formalization 

Once the system architecture was defined, the requirements of the Linking function were allocated to the 
corresponding components and translated into dedicated Formal properties. The Formal properties, defined 
by means of CHESS platform, belongs to three different categories: 

• Formal Properties which express the formalization of requirements. 

• Formal Properties which formalize the assumptions defining the model boundary, domain 
knowledge and working hypothesis. 

• Formal Properties which defines specific scenarios. 

Formal properties which express the formalization of requirements were linked to the related requirement 
defined in the Requirements Diagram using the tab Profile, as illustrated in Figure 127.  

 

Figure 127. Tab Profile to link formal properties to requirements 
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An example of this type of properties is the one called Exepctation_window defined in “ControlSystem” 
block, reported in Figure 128, which defines the distance expectation window in which the on board shall 
expect the next linked Balise. 

 

Figure 128. Exepctation_window formal property 

Formal Properties which formalize the assumptions defining the model boundary, domain knowledge and 
working hypothesis are constraints of the model related to the specific implementation. An example is the 
Formal properties defined in the “Physical_Train” block formalizing that the movement of the train in the 
present model is considered always in positive direction. 

Formal Properties which define specific scenarios are created after the instantiation of the architecture (see 
Section 4.2.4), because they represent the formalization of the specific instantiation of the general model 
with the attribution of specific values to the input variables. At the date of issue of the present deliverable, 
three scenarios were defined. Figure 129 illustrates the value of the basic variables and the expectation for 
each scenario. 

 

 

 

Figure 129. Scenarios formalization 
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Scenarios definition has the scope to create a specific implementation of the Linking model on which 
validation checks can be performed, see Section 4.2.6. The scope of these tests is to evaluate the correctness 
and coherence of the requirements formalization and to check if the expected behaviour is compatible with 
the requirements. 

4.2.4 Parametrization of the Architecture 

The present model has been designed with a parametric architecture in order to be able to create easily a 
specific scenario as a particular implementation of the railway system.  

The parametric structure involves the definition of the number of Balise group located along the route.  
Instead of creating a finite number of Balise Groups, with the scope to reach a high degree of flexibility, only 
one Balise Group was defined both in Physical part and in Linking system part as a vector of Balise group with 
a multiplicity equal to the value of the variable “n_balise_group”. This variable has been defined as a static 
flow port and was replicated in each required block. 

The procedure adopted to create the parametrization follows the description reported in Section 3.2.5.1.4 of 
the present deliverable. 

The parametrized architecture was then instantiated assigning the value 5 to the variable “n_balise_group”, 
obtaining an architecture with a fixed number of components, ports, connections, and static attributes of 
components. Figure 130 shows the DBB of the instantiate architecture. 
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Figure 130. SysML Block Definition Diagram of the instantiated model 

The parametrization of the architecture can be considered very suitable to the modelization of a railway 
infrastructure, that can be extremely various. Furthermore, with this feature, the AMASS platform allows the 
end user to define a reference architecture against which all the specific instantiation are compliant for 
definition. 

In this sense, the parametrization of the architecture can be considered as an example of architecture driven 
assurance. 
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4.2.5 Error Parametrization 

The parametric architecture has been extended also to the modelization of the odometric error. In a real 
train, the estimation of the travelled distance is derived by the signals provided by a set of sensors measuring 
speed and acceleration by different methods. This estimation is affected by an error which becomes higher 
more distance is travelled. Every time the train overpasses a linked Balise group, the odometric error is reset 
and the estimation of train position becomes more accurate being affected only by the accuracy of Balise 
group location. 

The maximum error (given in percentage of the travelled distance) that train odometric function can do is 
defined by the reference standard: if the error entity is below this limit, the linking requirements can be met 
by the on board system and the expected behaviour of instantiated scenario is coherent with the defined 
formal properties; if the error entity is above this limit, the inaccuracy related to the estimation of the real 
location of the train is too high and the expected behaviour becomes no more coherent. 

In order to enable the simulation of the two scenarios above mentioned, one with the odometric error inside 
the assurance range and the other outside the assurance range, a Boolean variable “odoerror” and related 
formal properties defining the assurance range of the odometric error value has been defined in the 
“Physical_train” block. 

4.2.6 Result Analysis 

On the instantiated architecture, the check validation property (described in Section 3.2.4.2) was performed 
to check if the formalized scenarios are consistent with the other properties of the model. 

The 3 scenarios mentioned in Section 4.2.3 are translated in LTL expressions as follows: 

Scenario 1:  

always(physical_1.physical_trackside.balisegroup[0].LocationBG=0 and 
physical_1.physical_trackside.balisegroup[1].LocationBG=100 and 
physical_1.physical_trackside.balisegroup[2].LocationBG=200 and 
physical_1.physical_trackside.balisegroup[3].LocationBG=300 and 
physical_1.physical_trackside.balisegroup[4].LocationBG=400 and 
linking_system_1.trackside_1.balisegroup[0].LinkingReaction=NoReaction and 
linking_system_1.trackside_1.balisegroup[1].LinkingReaction=NoReaction and 
linking_system_1.trackside_1.balisegroup[2].LinkingReaction=NoReaction and 
linking_system_1.trackside_1.balisegroup[3].LinkingReaction=ServiceBrake and 
linking_system_1.trackside_1.balisegroup[4].LinkingReaction=ServiceBrake and 
linking_system_1.trackside_1.balisegroup[0].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[1].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[2].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[3].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[4].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[0].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[1].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[2].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[3].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[4].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[0].QDir=true and 
linking_system_1.trackside_1.balisegroup[1].QDir=true and 
linking_system_1.trackside_1.balisegroup[2].QDir=true and 
linking_system_1.trackside_1.balisegroup[3].QDir=true and 
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linking_system_1.trackside_1.balisegroup[4].QDir=true) and  in the future 
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[0].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[1].LocationBG and not 
physical_1.MissBG and in the future 
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[2].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[3].LocationBG and not 
physical_1.MissBG and in the future 
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[4].LocationBG and 
physical_1.MissBG))))) 

Scenario 2: 

always(physical_1.physical_trackside.balisegroup[0].LocationBG=0 and 
physical_1.physical_trackside.balisegroup[1].LocationBG=100 and 
physical_1.physical_trackside.balisegroup[2].LocationBG=150 and 
physical_1.physical_trackside.balisegroup[3].LocationBG=300 and   
 physical_1.physical_trackside.balisegroup[4].LocationBG=400 and 
linking_system_1.trackside_1.balisegroup[0].LinkingReaction=NoReaction and 
linking_system_1.trackside_1.balisegroup[1].LinkingReaction=TrainTrip and 
linking_system_1.trackside_1.balisegroup[2].LinkingReaction=NoReaction and 
linking_system_1.trackside_1.balisegroup[3].LinkingReaction=ServiceBrake and 
linking_system_1.trackside_1.balisegroup[4].LinkingReaction=ServiceBrake and  
linking_system_1.trackside_1.balisegroup[0].D_LINK=100 and   
linking_system_1.trackside_1.balisegroup[1].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[2].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[3].D_LINK=100 and   
linking_system_1.trackside_1.balisegroup[4].D_LINK=100 and   
linking_system_1.trackside_1.balisegroup[0].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[1].QLocAcc=12 and    
linking_system_1.trackside_1.balisegroup[2].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[3].QLocAcc=12 and    
linking_system_1.trackside_1.balisegroup[4].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[0].QDir=true and 
linking_system_1.trackside_1.balisegroup[1].QDir=true and 
linking_system_1.trackside_1.balisegroup[2].QDir=true and 
linking_system_1.trackside_1.balisegroup[3].QDir=true and 
linking_system_1.trackside_1.balisegroup[4].QDir=true ) and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[0].LocationBG and not 
physical_1.MissBG and in the future 
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[1].LocationBG and not 
physical_1.MissBG and in the future 
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[2].LocationBG and not 
physical_1.MissBG and in the future 
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[3].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[4].LocationBG and not 
physical_1.MissBG ))))) 

Scenario 3: 
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 always(physical_1.physical_trackside.balisegroup[0].LocationBG=0 and 
physical_1.physical_trackside.balisegroup[1].LocationBG=100 and   
 physical_1.physical_trackside.balisegroup[2].LocationBG=250 and 
physical_1.physical_trackside.balisegroup[3].LocationBG=300 and   
 physical_1.physical_trackside.balisegroup[4].LocationBG=400 and 
linking_system_1.trackside_1.balisegroup[0].LinkingReaction=NoReaction and    
linking_system_1.trackside_1.balisegroup[1].LinkingReaction=TrainTrip and 
linking_system_1.trackside_1.balisegroup[2].LinkingReaction=NoReaction and 
linking_system_1.trackside_1.balisegroup[3].LinkingReaction=ServiceBrake and 
linking_system_1.trackside_1.balisegroup[4].LinkingReaction=ServiceBrake and 
linking_system_1.trackside_1.balisegroup[0].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[1].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[2].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[3].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[4].D_LINK=100 and 
linking_system_1.trackside_1.balisegroup[0].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[1].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[2].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[3].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[4].QLocAcc=12 and 
linking_system_1.trackside_1.balisegroup[0].QDir=true and 
linking_system_1.trackside_1.balisegroup[1].QDir=true and 
linking_system_1.trackside_1.balisegroup[2].QDir=true and 
linking_system_1.trackside_1.balisegroup[3].QDir=true and 
linking_system_1.trackside_1.balisegroup[4].QDir=true) and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[0].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[1].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[2].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[3].LocationBG and not 
physical_1.MissBG and in the future ( 
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[4].LocationBG and not 
physical_1.MissBG ))))) 

4.2.7 Evidence Generation  

At the end of the model implementation and result analysis, the collection of the artefacts containing the 
evidence of the model architecture and analysis results was performed: a document summarizing the 
modelling of the system components was generated through the AMASS platform, in accordance to the 
description reported in Section 3.4.3 of the present deliverable, see Figure 131. 
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Figure 131. Screenshot of a part of the documentation generated in HTML format 

4.3 DC Motor Drive 

4.3.1 Case Study Description 

As a simplified version of the electric powertrain of the Velox Model Car (see [68]) this case study features a 
standalone direct current (DC) motor drive system. This system is so simple that it allows easy understanding 
and verification according to the process described in this document, while still exhibiting all relevant 
properties of a typical embedded system, in particular the combination of discrete-state logic (e.g. simple 
run/stop state machine) with event typed input signals (e.g. “Run” button pressed) and continuous-value 
dynamics (e.g. proportional and integral (PI) speed controller) with continuous input and output signals (e.g. 
speed actual, current actual). So, it allows exploiting our approach in a nutshell, before porting the approach 
to the much more complex small-scale model car.  

The DC drive case study is described by a set of natural language requirements and an architecture 
specification in SysML, followed by Simulink/Stateflow models (partner B&M) or SCADE Architect / SCADE 
Suite models (partner ANSYS medini) from which the actual-time C-code for the application software has 
been generated (a simple base software consisting of hardware abstraction layer, scheduler, signal pool and 
parameter system has been provided). Also, the circuit diagrams, part lists and mechanical drawings are 
available. 

Using tools like SCADE Suite or Simulink/Stateflow for behavioural description and subsequent code 
generation accelerates the software development, and allow assessing the system behaviour in advance. In 
case of SCADE, even the code generation is performed by a formally verified code generator, certified for the 
highest safety integrity levels in automotive and aerospace industries, so that some verification steps on 
code level become obsolete.  

The scientific considerations in the AMASS project regarding this case study are mainly based upon the 
models. For the purpose of safety assurance, a top-level hazard (unauthorized acceleration) has been 
defined, and safety analysis in terms of Fault Tree Analysis and FMEA has been performed, examining 
different typical examples of sensor failures, e.g. speed sensor wire break, and their causal relationship to 
the top-level hazard if no safety mechanism is built in. Subsequently, the case study is extended by a modular 
safety concept, including practical implementation of some of the resulting safety mechanisms (e.g. runtime 
wire break diagnosis for the speed sensor, based on motor voltage and current measurement and a model of 
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the physical laws governing the DC motor) in the actual software that runs on the DC motor drive 
demonstrator. 

The DC motor drive system comes in several variants: 

1. A very simple version with minimal hardware, allowing just operation in one sense of rotation. It 
features a RUN and a STOP button, a potentiometer for speed selection, a green status LED and all 
necessary sensors. 

2. An extended version with an integrated circuit motor driver (full Transistor H-bridge) allowing 
accelerate/decelerate operation in both senses of rotation (clockwise and counter-clockwise), and 
consequently a slightly extended user interface (RUN_FORWARD, RUN_REVERSE, STOP). Version 1 
and 2 do not include any safety features. 

3. A version enhanced with some functional safety mechanisms (as a result of a FMEA safety analysis 
and contract-based safety concept creation), allowing to demonstrate the effectiveness of safety 
mechanisms that detect certain examples of a (provoked) sensor failure and reacts by putting the 
drive system into its “safe state” (power stage switched off and red indicator LED switched on) 

4. A version that further enhances the simple safety mechanisms (allowing just shutting off the DC 
motor in case of any failure) towards a degradation cascade, referring to model-based replacement 
values in case of sensor failures, so that a continuation of operation with slightly degraded 
performance is still safely possible, even in presence of a single sensor failure. This latter version 
comes close to the degradation cascades we will have to implement for vehicles forming a platoon 
(CS3) for the case of communication loss or failures in a remote vehicle (in loosely coupled systems-
of-systems, unreliable communication is a standard use case, and due to the partial “fail operational” 
requirements such systems usually exhibit, degradation cascades are a necessity in this case, see 
[72]). 

All variants of the DC motor drive case study have not just been specified as models and specifications, but 
have been actually built up in a lab demonstrator (see Figure 133), which allows Hardware in the loop (HIL) 
testing as an additional verification method and comparison of model predictions with real-world 
observations. Of course, the lab demonstrator has been constructed in a way that there is no actual danger 
to the operator: it contains a small toy motor, is surrounded by a transparent, but massive housing, and 
operates at a supply voltage of 12V. 

The case study has been described in some of our publications before [2][3], so that the rough description 
can be quoted from there: “The DC motor drive system consists of a DC motor, a power electronics board, a 
microcontroller board and a small user terminal with Run and Stop (in case of variant 1) push buttons, an 
operation mode LED and a potentiometer to select the target speed. The power board contains a metal-
oxide-semiconductor field-effect transistor (MOSFET) to modulate the power supply voltage that is fed to the 
motor armature circuit according to the Pulse Width Modulated (PWM) signal generated by the 
microcontroller. The control software implements a state machine for the operation modes and a cascaded 
PI controller, implemented in Simulink. The outer speed controller generates a current target value for the 
inner current control loop. It evaluates the actual rotational speed, measured by an incremental encoder. 
The current controller reads the motor current from a sensor via an Analog to Digital Converter (ADC) and 
generates a target PWM signal for the power electronics corresponding to the required motor voltage. The 
Run and Stop buttons (BTN_RUN and BTN_STOP) are evaluated by a simple discrete state machine (the state 
machine containing just two states, namely Running and Stopped) that enables or disables the controller 
output. An overview is given in Figure 132. The extension to the more advanced versions works analogously, 
adding more buttons for forward/reverse operation and for reset of detected failures, and additional LEDs 
for failure and degraded status.” 
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Figure 132. Architecture Overview of DC Drive Case Study (simplest version)  

The case study has been physically implemented in version 2 to 4 (which one of them depends only on 
software), enabling forward/reverse operation and some exemplary safety features (e.g. a detection for a 
wire break of the speed sensor, which is an incremental encoder). To enable a test of the safety mechanisms, 
the hardware test rig offers possibilities for failure injection (by pulling some bridges on the front panel), as 
well as a multi-pin socket for connection with a HIL (hardware-in-the-loop) system, as shown in Figure 133. 
This case study allows execution and validation of many of the AMASS methods explained in this document, 
such as specification and architecture refinement, model-based safety analysis and enhancement of the 
architecture with safety mechanisms, as well as fault injection testing. 
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Figure 133. The physical implementation of the DC Drive Case Study as an experimental setting in AMASS 

4.3.2 Experience gained with DC Drive Case Study at the stage of AMASS P2 

The DC Drive has been modelled hierarchically with the prototypical tool SAVONA [12] which allows contract-
based system modelling; the technical architecture has, in parallel, been modelled using SCADE Architect 
(the automated interface between both tools has not yet been implemented at the time of the experiments 
carried out). Based on Papyrus, SAVONA aims at an easy creation and validation of static system models 
(SysML Internal Block Diagrams) and offers support for specifying and decomposing system behaviour 
contracts with template expressions [12]. Several features have been added to the base functionality of 
Papyrus to simplify development and enhance the user experience, such as automatic creation of white-box 
internal block diagrams (IBD), tabular model representation with edit support, etc.  

In a stepwise decomposition process, one system level is modelled after another. Starting at the top level, 
the system is modelled as a component (SysML Block) and its interfaces to the environment are represented 
as input and output ports (SysML FlowPort). At this point assertions on the system inputs, outputs and their 
dependencies can be expressed with semi-formal expressions in the language SSPL. By using the system 
model as an ontology, the tool assists the user by providing names of existing model entities to complete 
template based system specifications (the name of every object present in the SysML model can be 
referenced in a requirement or assertion). An integrated Assertion Wizard guides the user through possible 
pattern constructs until a matching template is found. For the more advanced users an Assertion Editor 
(Xtext Editor) is offered, with which assertions can be typed in as free text, but with “completion assistance”. 
A more detailed description of the Assertion Wizard and Assertion Editor can be found in deliverable D3.6 
“Prototype for architecture-driven assurance (c)” [29]. The semi-formal assertions can be used as 
assumptions or guarantees in contracts of the systems components.  
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At the beginning, only the top-level architecture with the external interfaces were modelled in SysML. In a 
session with experienced engineers, a set of requirements to a typical drive system was collected and written 
down in natural English language, managed by a usual requirements tool (DOORS in this case). From these 
requirements, a selection of requirements dealing with the system’s behaviour was picked for further 
formalization with the SAVONA tool. These requirements covered discrete-state behaviour (e.g. that the 
drive shall start operating when the RUN FORWARD button is pressed), continuous-signal behaviour (e.g. 
that the speed shall drop under a limit specified as “standstill speed limit” at max. 2000 ms after the STOP 
BUTTON has been hit), performance requirements (e.g. that the actual speed shall enter in a tolerance range 
around the selected target speed after 500 ms and stay in this range unless the target speed is changed or 
the STOP BUTTON is hit), and, after completion of a simplified HARA and Safety Concept, also some safety 
requirements (e.g. that wire break failure of the speed sensor shall not lead to self-acceleration hazard). 
These requirements have been put into the semi-formal specification language SSPL (an example is shown in 
Figure 134, the creation using a macro wizard in the AMASS tool SAVONA is shown in Figure 135). The xtext 
based specification wizard of SAVONA featuring syntax highlighting and auto-complete as well as dropdown 
boxes, in combination with the full access to the SysML architecture model as an ontology and to the 
parameter and signal tables, helped the analyst specifying the requirements. 

  

Figure 134. A semiformal requirement for the DC Drive 

The final requirements were then interpreted as guarantees (w.r.t contract-based design) of the top-level 
system, whereas the assumptions came from given assumptions about the usage context (e.g. that the 
supply voltage is always between 11V and 13V, or that the motor runs without external load torque). 
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Figure 135. Example of a macro expansion wizard allowing specification of semantically correct requirements 

After the design and specification of the systems outer layer, the refinement process continues with creating 
subcomponents, their respective interfaces and their connections to each other and the upper system level. 
At this point the model can automatically be validated by detecting inconsistent ports and invalid 
connections to reduce system errors early during development. Semi-formal contracts are also created in the 
same way as for the upper system layer and assigned to the subcomponents. The stepwise refinement is 
then repeated for all of the subcomponents until the static functional architecture model is complete and a 
sufficient level of detail is reached. As we were opting for late formalization (see Section 2.2.2), the 
refinement from one level of the SysML architecture to the next lower level had to be performed manually, 
supported by the refinement check wizard. An alternative solution could be to formalize the requirements on 
top level (as far as they are expressible in one of the offered languages, in particular, Othello) and then 
export them into the CHESS tool (a filter from SAVONA is available). In CHESS, the system architecture and 
semi-formal contract specifications serve as a foundation for various V&V techniques of the AMASS tool 
platform, such as contract verification with OCRA [16] and fault injection via Sabotage [27]. 

Currently, in reference to the Table 2, this case study covers partly the phases System definition (IBD) and 
Functional refinement (IBD and Contracts).  
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5. Conclusions 
The Architecture-Driven Assurance approach of AMASS aims at enriching the architectural design with a 
variety of model-based techniques that provide evidence and argument fragments to the assurance case. 
These model-based techniques are mainly based on SysML diagrams and various analysis techniques that 
comprise requirements semantic analysis, requirements quality analysis, contract-based reasoning, model 
checking, runtime verification, simulation-based fault-injection and monitoring, and model-based safety 
analysis (including FTA and FMEA), and analysis based on parametrized architectures. 

This document defines a methodological guide to use the AMASS Architecture-Driven Assurance approach 
and the related tool support by the AMASS platform. It describes the workflow, the steps to perform each 
activity, and some case studies that are provided with the AMASS platform prototype.  

This guide refers to the final Prototype P2 of the AMASS platform.  
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Abbreviations and Definitions 

Abbreviation Explanation 

ACC Adaptive Cruise Control 

ADC Analog to Digital Converter 

API Application Programming Interface 

ARP Aerospace Recommended Practice 

ASIL Automotive Safety Integrity Level 

BDD Block Definition Diagram 

BSCU Braking System Control Unit 

BTM Balise Module Transmission 

CAE Claims, Arguments and Evidence 

CHESSML CHESS Modelling Language 

CDO Connected Data Objects 

CFT Component Fault Tree 

CPS Cyber-Physical Systems 

CSV Comma Separated Value 

CTL Computation-tree Temporal Logic 

DAL Design Assurance Level 

DC Direct Current 

DMI Driver Machine Interface 

DOORS Dynamic Object-Oriented Requirements System 

ERTMS European Rail Traffic Management System 

ETCS European Train Control System 

FHA Functional Hazard Analysis 

FI Fault Injection 

FMEA Failure Mode and Effect Analysis 

FTA Fault Tree Analysis 

FSM Finite-State Machine 

GCSL Goal and Contract Specification Language 

GSM Global System for Mobile communications 

GSN Goal-Structuring-Notation 

GUI Graphical User Interface 

HARA Hazard Analysis and Risk Assessment 

HAZOP Hazard and Operability study 

HIL Hardware in the loop 

HRELTL Hybrid LTL 

HTML HyperText Markup Language 

IBD Internal Block Diagram 

IEC International Electrotechnical Commission 

IESE Institute for Experimental Software Engineering 

ISO International Organization for Standardization 
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Abbreviation Explanation 

KM Knowledge Management  

LTL Linear-time Temporal Logic 

MARTE Modeling and Analysis of Real Time and Embedded systems 

MBSA Model-Based Safety Analysis 

MIL Model in the Loop 

MOSFET Metal-oxide-semiconductor field-effect transistor 

NLP Natural-Language Processing 

OCRA Othello Contracts Refinement Analysis 

OMG Object Management Group 

OSLC Open Services for Lifecycle Collaboration 

OSS Othello System Specification 

PI Proportional and Integral  

PSL Property Specification Language 

PWM Pulse Width Modulated 

RSL Requirement Specification Language 

RQA Requirement Quality Analyzer 

SAE Society of Automotive Engineers 

SCM System Conceptual Model 

SERE Sequential Extended Regular Expressions 

SIL Software in the Loop 

SKB System Knowledge Base 

SMV Symbolic Model Verifier 

SOTIF Safety Of The Intended Functionality 

SSPL System Specification Pattern Language 

STL Signal Temporal Logic 

STO Scientific Technical Objective 

SUT System Under Test 

SW Software  

SysML System Modelling Language 

UML Unified Modelling Language 

V&V Verification and Validation 

VHDL Very High speed integrated circuit Hardware Description Language 

WBS Wheel Brake System 

XSAP eXtended Safety Assessment Platform 

 

http://127.0.0.1:52271/help/topic/com.berner_mattner.savona.help/html/77955216.html
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Appendix A: Document changes respect to D3.7 
New Sections:  

Section Title 

2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process 

3.2.3.2 Requirements Formalization Using SAVONA 

3.2.4.3.6 Correctness metric for models 

3.2.4.3.7 Checklist metrics 

3.2.5.1.2 Architectural Refinement in SAVONA 

3.2.5.1.3 Architectural Pattern-based support 

3.2.5.1.4 Parameters and Configurations 

3.2.5.2.2 Contract Refinement in SAVONA 

3.3.2.3 FMEA generation 

3.3.1.2 Eclipse solution: Integration with the AMASS Platform  

Modified Sections: 

Section   Title Change 

 Executive Summary Updated 

2.1.2 Contract-Based Design Rephrased some parts. 

2.1.5 Verification and Validation of 
Behavioural Models 

Added note on AMASS support 

2.1.6.1 Simulation-Based  Revised section including simulation-based analysis 
and minimal cut sets analysis into one section on 
model-based safety analysis.  

2.2.3 Tool Support Overview Extended with clearer overview of external tools 

3.1 Workflow Overview Figure 13 and 14 changed 

3.2.1.1 Requirements Specification/Import Added info about requirements traceability 

3.2.4.3 Requirement Quality Analyser in the 
AMASS platform 

Extended section of the integration of RQA with 
AMASS.  
Included new metrics developed: correctness 
metrics for models and metrics of checklists. 

3.2.5.2.1 Contract Refinement in CHESS Added info about requirements refinement 

3.2.6 Component’s Nominal and Faulty 
Behaviour Definition 

Updated with extended support for state machines 
and error model. 

3.3.1 Simulation-based Fault Injection Introduction modified and figure 88 changed 

3.4.2 Link to Architectural Entities Minor updates. 

3.4.3 Document Generation Updated with new features added to the reports. 

4.2 ETCS Extended section with the description of the model 
and link to the methodological guide.  

4.3 DC Motor Drive Minor updates. 

5 Conclusions Minor updates. 

 


