
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation
programme and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Prototype for Architecture-Driven Assurance (c)

D3.6

Work Package: WP3: Architecture-Driven Assurance

Dissemination level: PU = Public

Status: Final

Date: 31st August 2018

Responsible partner: B&M

Contact information: Peter M. Kruse <peter.kruse@berner-mattner.com>

Document reference: AMASS_D3.6_WP3_B&M_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited
as source.

Contributors

Reviewers

Names Organisation

Stefano Puri Intecs (INT)

Peter M. Kruse, Markus Grabowski Assystem Germany (B&M)

Eugenio Parra, José Luis de la Vara, Gonzalo Génova,
Valentín Moreno

Universidad Carlos III de Madrid (UC3)

Luis Alonso The REUSE Company (TRC)

Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Garazi Juez, Estibaliz Amparan Tecnalia Research & Innovation (TEC)

Tomáš Kratochvíla, Vít Koksa Honeywell (HON)

Jaroslav Bendík Masaryk University (UOM)

Names Organisation

Marc Sango (Peer review) ALL4TEC (A4T)

Zoë Stephenson (Peer review) Rapita Systems (RPT)

Alejandra Ruiz (TC review) Tecnalia Research & Innovation (TEC)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 82

TABLE OF CONTENTS

Executive Summary .. 6

1. Introduction (*) ... 7

2. Implemented Functionality ... 10

2.1 Scope (*) .. 10

2.2 Implemented Requirements (*).. 11

2.2.1 System Component Specification.. 15

2.2.2 System Architecture Modelling for Assurance... 32

2.2.3 V&V-based Assurance Impact Assessment .. 37

2.2.4 Contract-based Assurance Composition.. 59

3. Installation and User Manuals .. 66

4. Implementation Description ... 67

4.1 Implemented Modules ... 67

4.1.1 System Component Specification Block .. 67

4.1.2 Architecture-Driven Assurance Block .. 67

4.2 Source Code Description .. 68

4.2.1 System Component Specification Block .. 68

4.2.2 Architecture-Driven Assurance Block .. 70

5. Conclusions(*) ... 79

Abbreviations .. 80

References (*) .. 82

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 82

List of Figures

Figure 1. AMASS Building blocks .. 8

Figure 2. Layered structure of AMASS tool modules ... 10

Figure 3. Description of main building blocks ... 11

Figure 4. Papyrus editor ... 17

Figure 5. SysML IBD showing multiple system layers .. 18

Figure 6. Revised Context Menu of the Model Explorer .. 18

Figure 7. Model Table showing all signals of a SysML Block .. 19

Figure 8. Properties View in SAVONA ... 19

Figure 9. CHESS Export function of SAVONA ... 20

Figure 10. Modelling FormalProperty .. 21

Figure 11. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion.
Each selection features a short description and example to offer the user an easy decision. 23

Figure 12. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously
selected general pattern type .. 23

Figure 13. Last step of the Assertion-Wizard: Refine the pattern instance with names of available
model elements. Only element names which are valid for the corresponding placeholder
can be used ... 24

Figure 14. Pattern-suggestion feature of the Assertion Editor .. 24

Figure 15. Macros Section of the Properties View in SAVONA .. 25

Figure 16. The first page of SAVONA's Macro Wizard ... 26

Figure 17. Data Dictionary View in SAVONA ... 27

Figure 18. Contract and FormalProperty example .. 28

Figure 19. After the creation of a ContractProperty, a Popup appears to decide whether a new
contract has to be created or an existing one has to be instantiated .. 29

Figure 20. Assign Contract to Component .. 30

Figure 21. Assertions Section in the Properties View of SAVONA.. 30

Figure 22. Contracts Section in the Properties View of SAVONA ... 31

Figure 23. Collapsed contracts in the Contract Section of SAVONA ... 31

Figure 24. Contract Wizard of SAVONA .. 31

Figure 25. Links through EAnnotation .. 34

Figure 26. Links through traceability meta-model .. 34

Figure 27. Example of file.oss and the “Model Explorer View” populated with the imported entities. 35

Figure 28. BDD describing a parameterized architecture .. 36

Figure 29. Correctness metrics for models ... 38

Figure 30. Window to answer the questions of the checklist metrics .. 38

Figure 31. Results presentation of the checklist metrics ... 39

Figure 32. Correctness checklist metric configuration .. 40

Figure 33. Completeness checklist metric configuration ... 41

Figure 34. GUI element used to run the V&V Manager ... 43

Figure 35. Switch in on the V&V Result view .. 43

Figure 36. Example of constraint's guarantee. .. 44

Figure 37. LTL going to and V&V results coming from the Verification Server ... 45

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 82

Figure 38. Example of requirements from Gesture Recognition system (Case Study 7) that are only
trivially realisable .. 46

Figure 39. Example of requirements that are consistent, non-redundant and not realisable....................... 47

Figure 40. Details for requirements checking ... 47

Figure 41. Checking and proposed error handling .. 48

Figure 42. Counterexample shown in the "Behaviour Trace View" ... 49

Figure 43. CHESS error model state machine ... 50

Figure 44. Example of fault tree represented as a table.. 50

Figure 45. Example of fault tree represented as tree .. 51

Figure 46. Sabotage design architecture. ... 52

Figure 47. Sabotage Fault List .. 53

Figure 48. Massif model of the DC drive system ... 54

Figure 49. Example of the generated saboteur ... 54

Figure 50. Xtend templates for the generation of saboteurs and readouts ... 55

Figure 51. Example of a saboteur code ... 55

Figure 52. Integration with safety contracts ... 56

Figure 53. Analysis Context .. 57

Figure 54. Excerpt of 2 pages of the generated report. ... 59

Figure 55. Contract Editor with content assist .. 60

Figure 56. Hierarchical view of the system decomposed into sub-components and contracts 61

Figure 57. Contract Refinement View... 61

Figure 58. Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the
system architecture represented by a tree of components (given by the decomposition into
sub-components) .. 62

Figure 59. Selecting analysis context for contract refinement... 63

Figure 60. Part of an ‘.SMV’ file representing the behaviour of the leaf components of the model 64

Figure 61. In this example, for each contract the results of the Contract-based verification are listed in
the Trace View .. 65

Figure 62. Tool modules for System Component Specification ... 67

Figure 63. CHESS plugins supporting Contract Based Design .. 69

Figure 64. CHESS methodology constraint .. 70

Figure 65. Massif and Sabotage meta-models .. 71

Figure 66. Connection between Sabotage and Massif at meta-model level .. 71

Figure 67. Code Generation workspace .. 72

Figure 68. Diagram showing the dependencies among the plugins. The direction of the arrow means
that the origin plugin depends on the target plugin. .. 77

Figure 69. Papyrus plugins for architectural pattern definition and manipulation support 78

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 82

Executive Summary

The deliverable D3.6 “Prototype for Architecture-Driven Assurance (c)” is the last output of the AMASS task
T3.3 Implementation for Architecture-driven Assurance, whose objective is the development of a tooling
framework to support architecture-driven assurance. D3.6 is the evolution of D3.5, which described the
second prototype, the sections modified with respect to D3.5 have been marked with (*) in the headlines.

AMASS task T3.3 has three prototype iterations, described in D3.4 [20] , D3.5 [21] and D3.6 (this document).
This deliverable reports the status of the aforementioned tooling framework for the final prototype release
(Prototype P2), in particular for what regards the system component specification and the tooling
framework supporting architecture-driven assurance, by describing the supported functionalities and the
details about implementation.

This deliverable takes into account the work performed in the other project work-packages, mainly WP2,
WP4, WP5 and WP6 because they have strong dependencies with T3.3. Indeed, in this deliverable a set of
functionalities regarding the system component specification has been selected from the AMASS
deliverable D2.1 “Business cases and high-level requirements” [18]. D3.6 describes the technologies that
allow the implementation of all selected functionality also covering requirements which have not been
implemented in previous prototype iterations.

The logical structural view of the AMASS reference tool architecture elaborated in the “AMASS Reference
Architecture” deliverables, D2.3 [6] and D2.4 [7], have also been considered in this deliverable; in particular
physical components like CHESS and its contract editing functionality have been successfully mapped to the
logical tool components Component Editor and Contract Editor.

WP4 and WP5 results have been particularly useful in guiding the argumentation and evidence metamodel
specification; importantly, system architecture-related information can now be traced to the
argumentation and evidence models.

The deliverable D3.6 “Prototype for architecture-driven assurance (c)” is the final evolution of this
deliverable; in particular, D3.6 documents the final state of the tooling framework’s implementation
supporting architecture-driven assurance using contract based design.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 82

1. Introduction (*)

The AMASS approach focuses on the development and consolidation of an open and holistic assurance and
certification framework for Cyber Physical Systems (CPS), which constitutes the evolution of the

OPENCOSS1 and SafeCer2 approaches towards an architecture-driven, multi-concern assurance, and
seamlessly interoperable tool platform.

The AMASS tangible expected results are:

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual,
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability

mechanisms (e.g. based on Open Services for Lifecycle Collaboration (OSLC)3 specifications).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC Application Programming Interfaces (APIs) with external tools (e.g. engineering
tools including V&V tools) and on open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes for maintenance, evolution
and industrialization. The Open Community will be supported by a governance board, and by rules,
policies, and quality models. This includes support for AMASS base tools (tool infrastructure for
database and access management, among others) and extension tools (enriching AMASS
functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse

community4 is a strong candidate to host AMASS (See D7.3 [27], D7.5 [28] and D7.6 [29] for further
details).

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding project
scientific and technical objectives are addressed by different work-packages.

1 www.opencoss-project.eu

2 https://artemis-ia.eu/project/40-nsafecer.html

3 https://open-services.net

4 www.polarsys.org

http://www.opencoss-project.eu/
https://artemis-ia.eu/project/40-nsafecer.html
https://open-services.net/
http://www.polarsys.org/

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 82

WP3 WP4 WP5 WP6
WP5 WP2

WP5

WP3 WP4

WP6

Figure 1. AMASS Building blocks

Since AMASS targets ambitious objectives related to architecture-driven assurance, multi-concern
assurance, seamless interoperability support and cross-domain and intra domain assurance reuse, the
AMASS Consortium has decided to follow an incremental approach by developing rapid and early
prototypes.

The benefits of following a prototyping approach are:

• Better assessment of ideas by focusing on a few aspects of the solution.

• Ability to change critical decisions by using practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks,
are aligned, merged and consolidated at Technology Readiness Level (TRL) 4 (technology validated
in laboratory).

2. During the second prototyping iteration (Prototype P1), the single AMASS-specific Building Blocks
will be developed and benchmarked at TRL 4.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL 5 (technology validated in relevant
environment).

Each of these iterations has the following three prototyping dimensions:

• Conceptual/research development: development of solutions from a conceptual perspective.

• Tool development: development of tools implementing conceptual solutions.

• Case study development: development of industrial case studies using the conceptual and tooling
solutions.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 82

As part of the Prototype P2, WP3 is responsible for driving the architecture specification in order to design
and implement the basic building block called “System Component Specification” (see Figure 1). This part
of the AMASS platform manages component and contract-based design (see D3.1 [10] Section 3.1.1).

This deliverable follows the outcomes of D3.5 [21], which comprised a thorough report on the tool
development results of the “System Component Specification” basic building block. It presents in detail the
pieces of functionality implemented in the AMASS platform tools, their software architecture, the
technology used, and some source code references. In that framework, D3.6 strongly focuses on the
integration of different approaches and ideas into one unified AMASS tooling framework supporting
architecture-driven assurance.

Other important parts of the D3.6 document are:

• Description of the AMASS Platform tools for the final prototype

• Finalized User Manuals and installation Instructions

• Source code description

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 82

2. Implemented Functionality

2.1 Scope (*)

The scope for the third prototype iteration is the provision of modelling tools for system component
specification, including a contract-based approach and the link with the assurance case specification. The
main scope is highlighted with red rectangles on Figure 2, which shows the general layered structure of the
AMASS platform (from AMASS deliverable D2.3 [19]).

Figure 2. Layered structure of AMASS tool modules

Figure 3 illustrates the component decomposition of these tools based on the design specification
documented in deliverable D3.3 [16].

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 82

Figure 3. Description of main building blocks

The System component specification enables the design of: the overall architecture, each single component
and the requirements. Moreover, it provides features of contract editing. The architecture driven assurance
is decomposed in different modules; the System Architecture Modelling for Assurance module that
interacts with the External Design Tools, the V&V-based Assurance Impact Assessment module that
provides V&V analysis invoking external V&V tools, the Contract-based Assurance Composition that
provides contact-based features, and the Assurance Patterns Library Management module that implements
the concept of assurance pattern.

2.2 Implemented Requirements (*)

From the requirements point of view, this last prototype iteration focuses on a set of AMASS requirements
as defined in the AMASS deliverable D2.1 “Business cases and high-level requirements” [18]. Table 1 shows
all relevant requirements which the final prototype shall implement. Even though some of the
requirements are still pending or in development at the release of this document, the final prototype will
cover all of them.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 82

Table 1. Requirements implemented in the final prototype of the AMASS platform (P2)

Requirement No Name Description Status Tools Involved Partners

WP3_APL_001 Drag and drop an
architectural pattern

The system shall be able to
instantiate in the component
model and architectural pattern
selected from the list of patterns
stored

Solved

Papyrus INT, TEC, CEA

WP3_APL_002 Edit an architectural
pattern

The system should be able to
edit, store and retrieve
architectural patterns

Solved
Papyrus INT, TEC, CEA

WP3_APL_003 Use of architectural
patterns at different levels

The system shall be able to apply
to the component model
architectural patterns at
different levels: AUTOSAR, IMA,
Safety/Security Mechanisms
(security controls)

Solved

Papyrus INT, TEC, CEA (B&M)

WP3_APL_005 Generation of
argumentation fragments
from architectural
patterns/decisions

The system shall be able to
generate arguments fragments
based on the usage of specific
architectural patterns in the
component model

Pending

OpenCert TEC, CEA

WP3_CAC_001 Validate composition of
components by validating
their contracts

The system shall be able to
validate the composition of
components by supporting the
validation of their contracts,
analysing the relationship among
assumptions and guarantees

Solved

CHESS,
OCRA

FBK

WP3_CAC_002 Assign contract to
component

The system shall allow to
associate a contract to a
component. Then, the system
shall allow to drop a contract
from a component

Solved

CHESS,
SAVONA

MDH, FBK, B&M

WP3_CAC_003 Structure properties into
contracts
(assumptions/guarantees)

The system shall be able to
support the extraction of
assumptions and guarantees to
be used in component contracts
based on component properties

Solved

CHESS/SAV
ONA

FBK, B&M

WP3_CAC_004 Specify contract
refinement

The system shall enable users to
specify the refinement of the
contract along the hierarchical
component’s architecture

Solved

CHESS/SAV
ONA

FBK, B&M

WP3_CAC_005 General management of
contract-component
assignments

The system should enable users
to have a view of the association
between contracts and
components for the entire
system architecture (thus, not
only a view on the single
contract assignment for each
component)

Solved

CHESS INT, FBK

WP3_CAC_006 Refinement-based
overview

The system should enable users
to have a hierarchical view of
the contract refinements along
the system architecture

Solved

CHESS,
SAVONA

FBK, B&M

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 82

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_007 Overview of check
refinements results

The system should enable users
to have an overview in terms of
status of check refinement of all
the defined contracts.

Solved

CHESS FBK

WP3_CAC_008 Contract-based validation
and verification

The system must provide
support for contract-based
system validation and
verification, including
refinement checking,
compositional verification of
behavioural models, contract-
based fault-tree generation

Solved

CHESS FBK

WP3_CAC_009 Improvement of Contract
definition process

The operation of contract
definition should be improved in
terms of time spent.

Solved
CHESS,

SAVONA
FBK, B&M

WP3_CAC_011 Overview of contract-
based validation for
behavioural models

The system could enable users
to have an overview of the
validation of a contract over a
state-machine. In case of failure,
the system could enable users to
have information about the
trace that does not fulfil the
contract.

Solved

CHESS FBK

WP3_CAC_012 Browse Contract status The user shall be able to browse
the contracts associated within a
component and their status
(fulfilled or not)

Solved

CHESS INT

WP3_CAC_013 Specify contracts defining
the assumption and the
guarantee elements

The system shall provide the
capability to create a contract
defining two new properties
(assumptions/guarantees)
implicitly associated to that
contract.

Solved

CHESS

 INT

WP3_CAC_014 Drop contract from
component

The system shall allow to drop a
contract from a component

Solved
CHESS,

SAVONA
INT, B&M

WP3_CAC_015 Reassign contract to
component

The system shall allow to
substitute the already assigned
contract to a component with
another contract

Solved

CHESS INT

WP3_SAM_001 Trace component with
assurance assets

The supplier of a component
shall be able to trace all the
assurance information with the
specific component

Solved

CAPRA INT

WP3_SAM_002 Impact assessment if the
component changes

The system shall provide the
capability for a component
change impact analysis Pending

CAPRA B&M, INT

WP3_SAM_003 Compare different
architectures according to
different concerns which
haven’t been specified
before

The system shall be able to
compare different system
architectures based on
predefined criteria, like
dependability or timing concerns

Solved

CHESS FBK

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 82

Requirement No Name Description Status Tools Involved Partners

WP3_SAM_004 Integration with external
modelling tools

The system could interact with
external tools for system design
and development (e.g.,
Rhapsody, AutoFocus, Compass)
to get the system architecture.

Solved

CHESS,
Papyrus

INT, UC3, TRC, FBK,
B&M

WP3_SC_001 System abstraction levels The user shall be able to browse
along the different abstractions
levels (system, subsystem,
component)

Solved

CHESS,
SAVONA

INT, B&M

WP3_SC_002 System abstraction levels The user shall be able to move
and edit along the different
abstractions levels (system,
subsystem, component)

Solved

CHESS,
SAVONA

INT, B&M

WP3_SC_003 Modelling languages for
component model

The system shall be able to
support different modelling
languages to model the
component/Subsystem/system

Solved

CHESS,
OCRA,

SAVONA,
Papyrus

FBK, B&M

WP3_SC_004 Formalize requirements
with formal properties

The system shall be able to
specify requirements about a
component in a formal way

Solved
CHESS,

SAVONA
INT, B&M

WP3_SC_005 Requirements allocation The system shall provide the
capability for allocating
requirements to parts of the
component model. More in
general, requirements
traceability shall be enabled.

Solved

CHESS,
Papyrus,
CAPRA

INT, KMT

WP3_SC_006 Specify component
behavioural model (state
machines)

The system shall be able to
specify the component
behavioural model

Solved
CHESS FBK

WP3_SC_007 Fault injection (include
faulty behaviour of a
component)

The system shall have fault
injection capabilities Solved

CHESS,
SABOTAGE

INT, TEC

WP3_VVA_001 Traceability between
different kinds of V&V
evidence

The system shall provide the
ability to trace immediate
evidence (obtained during the
execution of the left-hand side
of the V-model) with direct
evidence (obtained during the
execution of the right-hand side
of the V-model). For instance: a
contract-based, component-
based specification should be
traced with the corresponding
analysis-results.

Solved

CAPRA INT

WP3_VVA_002 Trace model-to-model
transformation

The system shall be able to trace
all component model
transformations executed during
V&V model-based analysis

Pending

CAPRA INT

WP3_VVA_003 Validate requirements
checking consistency,
redundancy, … on formal
properties

The system shall be able to
validate formal
requirements/properties

Solved

CHESS,
OCRA, V&V

Manager

FBK, HON, UOM

WP3_VVA_004 Trace requirements
validation checks

The system shall be able to trace
requirements validations

Solved
Papyrus,
CAPRA

INT

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 82

Requirement No Name Description Status Tools Involved Partners

WP3_VVA_005 Verify (model checking)
state machines

The system shall be able to
verify the component
behavioural model match with
the specification

Solved

CHESS,
NuXmv,

V&VManag
er

FBK, HON, UOM

WP3_VVA_006 Automatic provision of
HARA/TARA-artifacts

The system shall provide the
capability for automating HARA
(Hazard Analysis Risk
Assessment)/TARA (Threat
Assessment & Remediation
Analysis)-related artefacts (e.g.,
FTA, FMEA, attack trees.).

Solved

MediniAnal
yze,

SafetyArchi
tect, CHESS

B&M, KMT, A4T

WP3_VVA_007 Generation of reports
about system description/
verification results ….

The system shall generate
reports about
system/subsystem/component
verification results

Pending

CHESS,
V&VManag

er

FBK, HON

WP3_VVA_010 Model-based safety
analysis

The system shall allow the user
to generate fault trees and
FMEA tables from the
behavioural model and the fault
injection

Pending

CHESS,
XSAP

INT, FBK

WP3_VVA_011 Simulation-based Fault
Injection

The system should allow the
user to generate fault injection
simulations from the fault trees
and FMEA tables

Pending

SABOTAGE TEC, AIT, B&M

WP3_VVA_012 Design Space Exploration The system could support the
design space exploration of a
system for a certain
safety/security criticality level

Pending

CHESS FBK

Each requirement together with the implementation completed so far to implement the requirement is
briefly outlined in the following sections.

2.2.1 System Component Specification

2.2.1.1 System Architecture Editor (*)

Table 2. Requirements implemented in the System Architecture Editor

Requirement No Name Description Status Tools Involved Partners

WP3_SC_001 System abstraction levels The user shall be able to browse
along the different abstractions
levels (system, subsystem,
component)

Solved

CHESS,
SAVONA

INT, B&M

WP3_SC_002 System abstraction levels The user shall be able to move
and edit along the different
abstractions levels (system,
subsystem, component)

Solved

CHESS,
SAVONA

INT, B&M

WP3_SC_003 Modelling languages for
component model

The system shall be able to
support different modelling
languages to model the
component/Subsystem/system

Solved

CHESS,
OCRA,

SAVONA,
Papyrus

FBK, B&M

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 82

System architecture specification is supported by the Papyrus UML/SysML editor [5]. The selection of
UML/SysML has been driven by the wide adoption of these modelling languages in the industry in different
domains. Then, the selection of the Papyrus UML/SysML editor has been driven by the fact that Papyrus is
an open source tool with very strict adherence to the OMG standards definition and very good support for
customization (i.e. profiling), with also different successfully use case stories in the industry already

available5. In particular, recently the Papyrus Industry Consortium has been created to support a model-
based engineering platform based on the domain specific and modelling capabilities of the Eclipse Papyrus
family of products. It is worth noting that Papyrus also has integration facilities with other tools, such as the
commercial IBM UML Rhapsody tool; in addition, it supports the XMI OMG standard [9] for the interchange
of UML models between UML tools.

Through the Papyrus editor (see Figure 4), SysML Blocks and UML Components can be used to model the
architectural entities as required by the AMASS component meta-model definition (see D2.4 [7]).
Decomposition of blocks/components into sub-blocks/sub-components can be modelled by using internal
block diagrams or composite structure diagrams. Both the Papyrus Editor and other AMASS components
are under the same Open Source license, which supports the reuse of these previous results within the
AMASS platform.

Information about the functional behaviour of a given component/block can be provided through state
machine diagrams.

The resulting UML/SysML models and diagrams are stored in individual files in the Eclipse workspace.

5 https://www.eclipse.org/papyrus/testimonials.html

https://www.eclipse.org/papyrus/testimonials.html

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 82

Figure 4. Papyrus editor

The Papyrus UML editor supports the definition and application of UML profiles. In AMASS, the Papyrus
tool is used together with the CHESS profile extension [3]; in particular CHESS is used here as extension of
the UML and SysML modelling languages to allow the modelling of contracts, as explained in the following
sections, according to the AMASS component meta-model needs (see D2.4 [7]).

CHESS also provides extension to the Papyrus tool, for instance by adding dedicated diagram palettes to
facilitate the creation of the CHESS entities, or by adding a dedicated property tabs view for editing CHESS
entities properties (see Section 0).

For the GUI perspective, the CHESS theme enriches UML and SysML diagrams with useful information for
the user, such as multiplicity attributes for ports and components, and guard expressions in state machines.
The user may also hide graphical elements that cause visual clutter such as the stereotypes applied to the
CHESS entities. CHESS enables the automatic generation of SysML diagrams from the CHESS model and
provides a layout facility for arranging the diagram elements based on the Eclipse Layout Kernel (ELK)[12].

It is worth noting that the CHESS profile also provides other modelling capabilities, such as the
dependability profile [11] for failure modelling and specific support for timing properties (see Section 0
about CHESS features). Moreover, CHESS provides a methodology for the design, verification and
implementation of CPS SW systems [1]. The CHESS profile follows the same licensing approach as Papyrus
and other AMASS components, which supports the easy integration of the developments from the
intellectual property perspective.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 82

2.2.1.1.1 Easy System Architecture Modelling with SAVONA (*)

As Papyrus and CHESS can be used for various different modelling activities their options and possibilities
might overcome an average system engineer without an extensive background on applying SysML. It has
been found that a restricted user interface, which only allows meaningful actions would result in a higher
user acceptance. SAVONA has been developed to support system engineers in creating static system
architectures in SysML.

Figure 5. SysML IBD showing multiple system layers

The SysML Internal Block Diagram (IBD) has been chosen as the main diagram type for designing the
systems architecture in SAVONA, as it allows an intuitive understanding of the model though multiple
system layers. Mechanisms have been added that generate whitebox diagrams of selected system blocks,
which can automatically be synchronized on model changes. This enables an effortless display of the
model’s current design status.

The Model Explorer is customized to only show relevant model elements such as blocks, parts, ports,
signals and diagrams. Its context menu (see Figure 6) has been revised to only allow applicable copy/paste
operations and to create new model elements and diagrams.

Figure 6. Revised Context Menu of the Model Explorer

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 82

SAVONA also allows a tabular view of model elements. Such Model Tables can be viewed for each SysML
block, containing the parts, ports and signals of the block. Figure 7 shows the Signals-tab containing all
signals of the selected block. Model element names and descriptions can be edited directly inside the
model table.

Figure 7. Model Table showing all signals of a SysML Block

The custom Properties View in SAVONA combines all relevant information for each model element.
Element descriptions can be formatted and may contain hyperlinks as shown in Figure 8. The view also
contains sections for specifying contracts, which is further described in section 2.2.1.5.1.

Figure 8. Properties View in SAVONA

Modelling a system’s architecture often results in large diagrams that are difficult to lay out by hand. Based
on the Eclipse Layout Kernel (ELK)[12] SAVONA offers the automatic layout of SysML IBD, which simplifies
the laying out of new diagrams or parts of it.

Since SAVONA is also based on Papyrus it offers possibilities for interoperability to the AMASS Platform /
CHESS. A CHESS export function allows conversion of the SAVONA model into a CHESS model (see Figure 9).
That way, the initial architecture design can be performed in SAVONA and later be reopened in CHESS to
perform various V&V activities on the model without any loss of information.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 82

Figure 9. CHESS Export function of SAVONA

2.2.1.2 Formalize Requirements with Formal Properties (*)

Table 3. Requirements regarding the formalization of system requirements

Requirement No Name Description Status Tools Involved Partners

WP3_SC_004 Formalize requirements
with formal properties

The system shall be able to
specify requirements about a
component in a formal way

Solved
CHESS,

SAVONA
INT, B&M

WP3_SC_005 Requirements allocation The system shall provide the
capability for allocating
requirements to parts of the
component model. More in
general, requirements
traceability shall be enabled.

Solved

CHESS,
Papyrus,
CAPRA

INT, KMT

Requirements can be modelled in Papyrus using the SysML profile; indeed, SysML comes with the
dedicated Requirement stereotype (see Figure 10) which can be managed through Requirement Diagrams.
The availability of system requirements represented in the model allows the user to model their
traceability to the different parts of the system model. In particular, by using the SysML profile,
requirements can be traced to the entities of the architecture, by using the Satisfy link defined by SysML. In
this way requirements traceability (see e.g. [8]), which is an important quality factor to be guaranteed while
building systems, can be obtained while using model-driven support.

In AMASS, a formal property represents a distinct entity which is used to provide a formal description of a
given system requirement, the latter usually described using informal textual language.

To model formal properties, the CHESS profile defines a construct called FormalProperty as an extension
of UML Constraint (see Figure 10). A FormalProperty can be created first in the model and then linked
to the requirement that it formalizes; the SysML trace link can be created in the SysML Requirement

diagram or through the tabular editor provided by Papyrus6. Then the formal description of the
requirement is provided by using the specification attribute coming with the FormalProperty entity. This

6 https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation

https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 82

attribute can refer to the UML OpaqueExpression element that contains language-specific texts to
express one formal property in different modelling languages.

Figure 10. Modelling FormalProperty

It is worth noting here that the CHESS profile does not force the usage of a particular formal language; the
choice of the formal language to be adopted for the formalization of requirements is made by the modeller,
typically according to the adopted process/methodology. CHESS currently supports integration with the

OCRA contract specification language7; in particular, through the CHESS Contract plugins explained in
Section 0 it is possible to verify formal properties with respect to OCRA syntax.

7 https://ocra.fbk.eu

https://ocra.fbk.eu/

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 82

2.2.1.3 Semi-Formal Requirement Definition

As users might not be familiar with formal expressions to define contracts, we adopted a custom text-based
editor with syntax checks and auto-completion, and a wizard to set up assertions with pre-defined
templates for the most common assertion patterns.

In the following paragraphs we explain both concepts in detail.

2.2.1.3.1 Assertion Wizard

As applying a template language can be quite difficult without any guidelines, we decided to implement a
wizard that guides the user through the process of choosing and filling out an appropriate pattern structure
for their statement. The first page of the wizard shows the user the three main pattern types of our
template language: Global Invariant Pattern, Simultaneity Pattern, and Trigger-Reaction Pattern (see Figure
11). We have added a short description and an example for each one so that it is easier for the user to
decide.

After selecting the main pattern type, several possible pattern instances of the type are presented to the
user. Each of them features an example to demonstrate a possible application (see Figure 12). If an
appropriate pattern instance is chosen, the user will be directed to the last page of the wizard, where the
patterns construct needs to be customized. The user can now replace non-terminals by simply clicking on
them. A drop-down menu shows possible substitutions and the option to use a macro. If a terminal that
must be replaced by an event name is selected, a list containing all event interface names of the currently
selected component appears. That way the user can only choose and use model elements that are in scope
(see Figure 13). The same holds for terminals that must be replaced by variable names except that the
suggested names come from all available ports except the event ports. We also provide a set of time units
the user can choose from when specifying timed behaviour. Only if no non-terminals remain in the pattern
instance and all terminals are replaced by actual interface names, values, units, etc., can the assertion be
assigned to a selected component. Otherwise, the wizard will give a hint to the user about the remaining
non-terminals or terminals.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 82

Figure 11. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion. Each selection
features a short description and example to offer the user an easy decision.

Figure 12. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously selected general
pattern type

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 82

Figure 13. Last step of the Assertion-Wizard: Refine the pattern instance with names of available model elements.
Only element names which are valid for the corresponding placeholder can be used

2.2.1.3.2 Assertion Editor (*)

If the user has already gathered some experience with our template language, the use of the Assertion
Wizard might include too many unnecessary steps to formulate a valid assertion. The right pattern
structure is already known by the user, so going through the wizard seems inefficient. With the Assertion
Editor, we allow the user to directly type in the desired assertion. As writing valid assertions free-hand can
be difficult and error-prone, we offer support with an online syntax check and suggestions for auto-
completion of the statement, as one might expect from various programming IDEs. Figure 14 shows the
Assertion Editor suggesting valid possibilities to continue the current statement.

We chose Xtext as the technology to base our text editor on. That allowed us to easily implement the editor
by providing the BNF in the Xtext grammar format and slightly adjusting the auto-completion suggestions.
The rest was automated by the code generation feature of Xtext. Another important reason for choosing
Xtext is that it features methods to automatically translate expressions from one language to another. This
can be used later to translate our template expressions into a formal language expression.

Figure 14. Pattern-suggestion feature of the Assertion Editor

Assertions which are created using the Assertion Wizard or Editor were planned to be automatically
translated to formal language expression such as LTL. Since the completion of other features had a higher

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 82

priority than this one, we could not manage to complete its implementation on time. This might be
unfortunate from a research perspective but acceptable from the project’s perspective since there were no
requirements requesting this feature.

2.2.1.3.3 Macro Definition

Sometimes it is unavoidable to use complex expressions within a pattern language, where a natural
language expression would be much shorter or easier to read and understand. That is why we introduce the
concept of Macros, which allows the use of natural language expressions within our pattern language. The
user defines a meaning for each natural language phrase by specifying a corresponding pattern language
expression. This way we ensure that even with natural language elements, all built expressions within our
pattern language have unambiguous semantics.

As Macros are used to create assertions, they can be created on the same types of model elements. To add
a new macro, click the Add-Button on the upper right-hand corner of the Macro Section (see Figure 15).

Figure 15. Macros Section of the Properties View in SAVONA

On the first wizard page, a keyword to define a macro for is selected (see Figure 16). The left side of the
wizard shows possible replacements for the currently selected keyword. Additionally, the user sets the
macro name.

Macros can only replace a non-terminal from the (semi-) formal syntax, as the semantics are only
guaranteed to be specified on that level. Terminals (such as port names) can have different meanings due
to their context and can therefore not be used as a macro definition.

The subsequent macro wizard pages allow the customization of the selected keyword. As it uses the same
page layout as the Assertion Wizard, please refer to the description of the Assertion Wizard for detailed
information.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 82

Figure 16. The first page of SAVONA's Macro Wizard

2.2.1.3.4 Data Dictionary (*)

When specifying (semi-)formal assertions, there needs to be a way to define custom variables such as
constants or units. SAVONA offers a Data Dictionary View (see Figure 17) where several model elements
can be defined that can later be used within the definition of assertions:

• Enumerations and Enumeration Members can be defined

• Constants of a certain type (Integer, String, etc.) with or without a Unit

• Units (a predefined set of Units is available from start-up)

• Datatypes to use as types on ports (a predefined set of Units is available from start-up)

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 82

Figure 17. Data Dictionary View in SAVONA

Each SAVONA project/model features one Global Data Dictionary whose entries are available through the
entire project. Additionally, each component type (block) has its own Local Data Dictionary whose entries
are only available to this exact same component and its owned ports.

The entries of the Data Dictionary are also exported during the CHESS Export. To allow CHESS to properly
interpret the Data Dictionary and its entries, the Data Dictionary Papyrus profile is always contained within
the exported model files.

2.2.1.4 Structure Properties into Contracts

Table 4. Requirements covering the structure of contracts

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_003 Structure properties into
contracts
(assumptions/guarantees)

The system shall be able to
support the extraction of
assumptions and guarantees to
be used in component contracts
based on component properties

Solved

CHESS/SAV
ONA

FBK, B&M

The CHESS profile supports the modelling of weak and strong contracts to support contract-based design
(the reader can refer to AMASS D3.1 [10] for an introduction to weak and strong contracts and contract-
based design).

Contracts are available in the CHESS profile as a special kind of classifiers (i.e. an entity used to describe
instance-level entities of the same kind). Contracts can be created in UML class, component, or SysML block
diagrams. A Contract comes with two attributes representing the assumption and guarantee formal
properties.

By using the CHESS Papyrus extension, when a Contract is created in the model, the tool automatically
creates a pair of empty FormalProperties to represent the assumption and guarantee of the Contract.

Alternatively, a given FormalProperty available in the model before the creation of the Contract can
later be assigned to the Contract itself, as assumption or guarantee.

Figure 18 below shows an example of Contract and FormalProperty modelling; the figure shows the
Assume and Guarantee attributes owned by the Contract, which in the example are bounded to the
represented FormalProperty. A link between the Contract and the FormalProperty is also depicted.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 82

Figure 18. Contract and FormalProperty example

2.2.1.5 Assign Contract to Component (*)

Table 5. Requirements covering contract management

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_002 Assign contract to
component

The system shall allow to
associate a contract to a
component. Then, the system
shall allow to drop a contract
from a component

Solved

CHESS,
SAVONA

MDH, FBK, B&M

WP3_CAC_003 Structure properties into
contracts
(assumptions/guarantees)

The system shall be able to
support the extraction of
assumptions and guarantees to
be used in component contracts
based on component properties

Solved

CHESS/SAV
ONA

FBK, B&M

WP3_CAC_005 General management of
contract-component
assignments

The system should enable users
to have a view of the association
between contracts and
components for the entire
system architecture (thus, not
only a view on the single
contract assignment for each
component)

Solved

CHESS INT, FBK

WP3_CAC_009 Improvement of Contract
definition process

The operation of contract
definition should be improved in
terms of time spent.

Solved
CHESS,

SAVONA
FBK, B&M

WP3_CAC_013 Specify contracts defining
the assumption and the
guarantee elements

The system shall provide the
capability to create a contract
defining two new properties
(assumptions/guarantees)
implicitly associated to that
contract.

Solved

CHESS

 INT

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 82

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_014 Drop contract from
component

The system shall allow to drop a
contract from a component

Solved

CHESS,
SAVONA

INT, B&M

WP3_CAC_015 Reassign contract to
component

The system shall allow to
substitute the already assigned
contract to a component with
another contract

Solved

CHESS INT

In CHESS, a contract can be assigned to a component by instantiating the contract in the component itself.
The instantiation is realized by creating for a component a special kind of property, called
ContractProperty which is typed with the given contract. This allows to potentially reuse the same
contract in different contexts/systems (as analogous to the practice of sharing requirements across
projects, i.e. software/system requirements reuse).

It is possible to first create the contract and then assign it to a component. The AMASS prototype enables
also the possibility to automatically create a contract when a ContractProperty is created, see [21]. In
this case, the association contract-component is 1 to 1. The first advantage is that, during the editing of the
contract, the content assist supports the user suggesting which are the ports and the attributes name of the
component. The second advantage is that, the operation of contract definition is improved in terms of time
spent.

Figure 19. After the creation of a ContractProperty, a Popup appears to decide whether a new contract has to be
created or an existing one has to be instantiated

ContractProperty has also an attribute that allows specifying whether the associated Contract has to

be applied to the Component/Block according to the weak or strong semantics8 [10].

As example, Figure 20 shows the criticalValueIsManaged ContractProperty owned by the FunctionalSystem
Block (the ContractProperty is shown in the diagram in the Constraint compartment of the Block). The
criticalValueIsManaged property is typed as CriticalValueIsManaged Contract, the latter is also
represented in the diagram. The criticalValueIsManaged property represents the association of the
CriticalValueIsManaged Contract to the FunctionalSystem Block.

8 As discussed [10], while strong assumptions define compatible environments in which the component/block can be
used, weak assumptions define specific contexts where additional information is available. Hence, a
component/block should never be used in a context where some strong assumptions are violated, but if some weak
assumptions do not hold, it just means that the corresponding guarantees cannot be relied on.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 82

Figure 20. Assign Contract to Component

2.2.1.5.1 Contract Definition in SAVONA (*)

To specify a contract within SAVONA, assertions must be gathered that are later used either as assumptions
or guarantees. The Assertions Section of the Properties View (see Figure 21) shows assertions that are
defined for the currently selected SysML block, interface or connector.

Figure 21. Assertions Section in the Properties View of SAVONA

As contracts can only be defined on SysML blocks via the Contracts Section (see Figure 22), the Contracts
section shows an overview of all contracts assigned to the currently selected type and allows the editing,
creation and deletion of contracts.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 82

Figure 22. Contracts Section in the Properties View of SAVONA

In the Contracts Section, contracts can be collapsed or expanded as shown in Figure 23, allowing a clean
overview of the existing contracts.

Figure 23. Collapsed contracts in the Contract Section of SAVONA

When defining a new contract in SAVONA, the Contract Wizard is used to ease the process of assigning
assertions as assumptions or guarantees. Previously defined assertions can be used to create a contract for
a component. The wizard offers assertions that are defined on the currently selected SysML block and the
owned ports of the block (see Figure 24).

Figure 24. Contract Wizard of SAVONA

To use one of the offered assertions in a contract, simply assign a type (either assumption or guarantee) to
it. At least one guarantee is needed to create a contract. Multiple assumptions as well as multiple

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 82

guarantees are conjunct. Assertions without any type assignment will not be considered in the contract
definition.

2.2.1.6 Contract Refinement

Table 6. Requirements covering contract refinement

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_004 Specify contract
refinement

The system shall enable users to
specify the refinement of the
contract along the hierarchical
component’s architecture

Solved

CHESS/SAV
ONA

FBK, B&M

WP3_CAC_006 Refinement-based
overview

The system should enable users
to have a hierarchical view of
the contract refinements along
the system architecture

Solved

CHESS,
SAVONA

FBK, B&M

The CHESS profile allows the modelling of contract refinement and decomposition along the refinement
and decomposition of the architectural entities, the latter provided through UML composite structural
diagrams or SysML block definition diagrams. In particular, contract instances play a key role during the
refinement specification. Indeed, contracts refinement is modelled for contract instances, not for the
Contracts entities; this is because the same Contract can be reused in several contexts (i.e. instantiated in
several Components/Blocks), and for each context the refinement of the same Contract could be different.
So, through the CHESS profile, it is possible to model how a given contract instance is refined by a set of
other contract instances.

In practice, given a contract instance C assigned to a component A, and given the decomposition of A into
subcomponents (A1,…,An) and the contracts instances assigned to each subcomponent (C1<1..k>,… ,Cn<1..j>)., it
is possible to model how C is decomposed by (a subset of) (C1<1..k>,…,Cn<1..j>); it is worth noting that contracts
decomposition can then be modelled for the subcomponents as well, so to have multiple levels of contracts
decomposition.

2.2.1.7 Modelling Failure Behaviour

Existing support for failure behaviour modelling is available from state-of-the-art projects and modelling
tools, like the UML/MARTE dependability profile coming with the CHESS modelling language [3] (see e.g.
section 2.2.3.4).

Extension of the aforementioned CHESS dependability profile has been done in AMASS to address security
concerns also, as documented in AMASS deliverable D4.3 [24] section 2.1.4.1.

2.2.2 System Architecture Modelling for Assurance

Table 7. Requirements covering architecture modelling for assurance

Requirement No Name Description Status Tools Involved Partners

WP3_SAM_001 Trace component with
assurance assets

The supplier of a component
shall be able to trace all the
assurance information with the
specific component

Solved

CAPRA INT

WP3_SAM_003 Compare different
architectures according to
different concerns which
haven’t been specified

The system shall be able to
compare different system
architectures based on
predefined criteria, like

Solved

CHESS FBK

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 82

Requirement No Name Description Status Tools Involved Partners

before dependability or timing concerns

WP3_SAM_004 Integration with external
modelling tools

The system could interact with
external tools for system design
and development (e.g.,
Rhapsody, AutoFocus, Compass)
to get the system architecture.

Solved

CHESS,
Papyrus

INT, UC3, TRC, FBK,
B&M

2.2.2.1 Link Architecture-Related Entity to Assurance Case Information (*)

The allowed links between architectural entities and the other parts of the CACM AMASS meta-model are
described in the AMASS deliverable D3.3 [16].

As explained in the previous sections, the AMASS component model has been made available as Eclipse
plugin as UML/SysML language extended with the CHESS profile for contracts, while the other parts of the
CACM (argumentation, evidence, compliance management) are currently implemented as Ecore meta-

models9 (not as UML profile).

Within the UML profile definition, it is not possible to refer to an Ecore entity which is not related to the
UML language, so the aforementioned links (e.g. from a CHESS-Contract to an argumentation-Claim) cannot
be expressed through the CHESS profile; the links have to be managed with some additional modelling
support, as explained below in the text.

One solution could be to use the EAnnotation mechanism available in Ecore: EAnnotation allows to
attach extra information to any object available in an Ecore model. In our case, EAnnotation could be

created for a UML model entity (for instance a Contract)10; then EAnnotation could be used to refer to
an entity of the CACM defined in some external (to the UML) model (as a Claim in an argumentation
model). Figure 25 gives a picture of what has been stated above (CACM model in the figure is intended as
the model for argumentation, evidence, and compliance management).

9 Ecore is a model provided by the Eclipse EMF project (https://www.eclipse.org/modeling/emf). Ecore can be used
to model the structure of a given domain of data models. Typically, Ecore is referenced as a meta-meta-model; the
structure of a given domain of data models is referenced as meta-model, where a model is a concrete instance of
this meta-model.

10 It is worth noting that EAnnotation can be added to UML model entities because UML models in Eclipse are
implemented as Ecore models.

https://www.eclipse.org/modeling/emf

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 82

Figure 25. Links through EAnnotation

However, the solution of using EAnnotation does not allow to formalize the kind of connections that are
allowed between the different metamodels.

The solution adopted in AMASS to support links between architectural entities and the other parts of the
CACM AMASS meta-model foresees the usage of a dedicated traceability meta-model (see Figure 26). In
this way, a link is created according to the traceability meta-model; each link owns a reference to the UML
model entity and a reference to the CACM model entity to be associated.

Figure 26. Links through traceability meta-model

What is worth noting is that the usage of a dedicated traceability meta-model can be made generic in order
to support traceability between assurance case information and architecture-related entities specified with
other non-UML modelling languages. For instance, by assuming the availability of an Architecture Analysis

and Design Language (AADL)11 editor in Eclipse, the same traceability model could be used to create links
between AADL entities and argumentation/evidence entities available in the CACM model.

11 http://www.aadl.info/aadl/currentsite

http://www.aadl.info/aadl/currentsite

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 82

In AMASS we use the Eclipse Capra12 tool which offers a framework supporting the solution depicted in
Figure 26; see AMASS D5.6 Prototype for seamless interoperability (c) [26] for further details about Capra
usage in AMASS.

2.2.2.2 Import System component specification (*)

The third prototype (Prototype P2) enables the import of the system architecture specification in oss

format13. The process involves the parsing of the .oss file and the creation of the CHESS entities (including
the SysML diagrams) of the model. Figure 27 left-side and right-side show respectively the file.oss and the
“Model Explorer View” populated with the imported entities.

Figure 27. Example of file.oss and the “Model Explorer View” populated with the imported entities.

This feature allows the Prototype P2 to obtain the system architecture from external system design and

development tools. A candidate tool is AutoFOCUS314 because it supports the import/export of oss files.

2.2.2.3 Compare different architectures (*)

This operation involves the following sequential activities:

1. Model the parameterized architecture

2. Instantiate the architecture

3. Perform the analyses over the architecture instances

12 https://projects.eclipse.org/projects/modeling.capra

13 https://es.fbk.eu/tools/ocra/download/OCRA_Language_User_Guide.pdf

14 https://af3.fortiss.org/

https://projects.eclipse.org/projects/modeling.capra
https://es.fbk.eu/tools/ocra/download/OCRA_Language_User_Guide.pdf
https://af3.fortiss.org/

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 82

4. Compare the architecture instances according to the analysis results

A parameterized architecture is an architecture in which the number of components, the number of ports,
the connections, and the static attributes of components depends on a (possibly infinite) set of parameters.
In CHESS, such parameters are mapped to static UML ports. In this way, it is not required to define an
additional element in the CHESS profile. The parameters can be constrained using the UML Constraint
element. The elements that compose the architecture, such as the ports and the subcomponents, can be
parameterized through the editing of their multiplicity attributes using the defined parameters, see Figure
28.

Figure 28. BDD describing a parameterized architecture

The System component has the parameter ‘number_subComp’ that is used to define the number of
subcomponents of type BSCU. This parameter is constrained by the expression ‘number_subComp <30’.

The modelling of the parameterized architecture is followed by its instantiation. In this phase the user sets
the values of the parameters, i.e. he/she defines the configuration of the architecture.

OCRA takes in input the parameterized architecture and one or more configurations. Then, OCRA produces
the instances of the architecture, and for each of them, it performs a list of contract-based verifications. The
output are the results derived from the contract-based verifications (that are described in Section 2.2.4).
The comparison of the results is described in the D4.6 deliverable [25], Section Trade-off Analysis.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 82

2.2.3 V&V-based Assurance Impact Assessment

2.2.3.1 Metrics

Following describes the metrics for models and checklist type implemented in the Requirement Quality
Analyzer tool RQA [22] presented in the section 2.4.4.3 Metrics for models and 2.4.4.4 Metric checklists of
the D3.3 deliverable [16].

2.2.3.1.1 Correctness metrics for models (*)

The RQA tool implements the follow correctness metrics to assess models (Figure 29).

Class model

• Method hiding factor

This metric is a measure of the encapsulation in the class. It is the ratio of the sum of hidden methods
(private and protected) to the total number of methods defined in each class (public, private, and
protected).

• Attribute Hiding Factor

This metric represents the average of the invisibility of attributes in the class diagram. It is the ratio of the
sum of hidden attributes (private and protected) for all the classes to the sum of all defined attributes
(public, private, and protected).

• Public methods

This metric calculates the public methods in a class.

• Number of methods

This metric Count all methods (public, protected, and private) in a class.

• Design Size in Classes

This metric is a count of the total number of classes in the design.

Package model

• Abstractness

The abstractness metric measures the package abstraction rate. A package abstraction level depends on its
stability level. Calculations are performed on classes defined directly in the package and those defined in
sub-packages. In UML models, this metric is calculated on all the model classes.

Sequence Diagram

• Message With Label Ratio

Measures the ratio of messages with label (any text attached to the messages) to the total number of
messages in a sequence diagram.

• Return Message With Label Ratio

Measures the ratio of return messages with label (any text attached to the return messages) to the total
number of return messages in a sequence diagram.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 82

Figure 29. Correctness metrics for models

2.2.3.1.2 Checklist metrics (*)

The RQA tool has included a new kind of metric based on Checklist. A checklist is a test with a series of
questions that the user must answer (Figure 30).

Figure 30. Window to answer the questions of the checklist metrics

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 82

Depending on the answers, it is possible to weight the result to provide a quality measure using quality
ranges defined (Figure 31).

Figure 31. Results presentation of the checklist metrics

There are two types of checklist metric:

• Correctness checklist metric: the question included in this metric must be answered by each
workproduct of the specification (Figure 32).

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 82

Figure 32. Correctness checklist metric configuration

• Completeness checklist metric: the questions included in this metric must be answered at the
specification level (Figure 33).

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 82

Figure 33. Completeness checklist metric configuration

2.2.3.2 Connectors (*)

A connector between RQA and the AMASS platform has been implemented. This activity will be reported in
the deliverable D5.6 Prototype for seamless interoperability [26].

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 82

2.2.3.3 V&V Manager

Table 8. Requirements covered by the V&V Manager

Requirement No Name Description Status Tools Involved Partners

WP3_VVA_003 Validate requirements
checking consistency,
redundancy, … on formal
properties

The system shall be able to
validate formal
requirements/properties

Solved

CHESS,
OCRA, V&V

Manager

FBK, HON, UOM

WP3_VVA_005 Verify (model checking)
state machines

The system shall be able to
verify the component
behavioural model match with
the specification

Solved

CHESS,
NuXmv,

V&VManag
er

FBK, HON, UOM

WP3_VVA_007 Generation of reports
about system description/
verification results ….

The system shall generate
reports about
system/subsystem/component
verification results

Pending

CHESS,
V&VManag

er

FBK, HON

V&V Manager is an Eclipse plugin under development that enables invocation of multiple verification and
validation tools, which process requirements or contracts directly from the AMASS platform. The V&V
Manager for given requirements (and optionally also system architecture or design) connects to the
verification server using OSLC Automation integration to get the V&V Assurance results. These results
report whether the requirements are consistent, non-redundant, non-vacuous, and realizable; if system
architecture or design information is available it also reports whether the given model complies with the
requirements.

2.2.3.3.1 Implementation progress (*)

The V&V Manager plugin implementation was updated with new functionality (more human-readable
language of contracts, merging of contracts of nested components possible). The verification status is now
updated in the V&V Results view quasi-continually.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 82

Figure 34. GUI element used to run the V&V Manager

The view for presenting the result of the verification can be shown. This view can display textual
documents.

Figure 35. Switch in on the V&V Result view

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 82

The contracts are expected to be written in the LTL (Linear Temporal Logic) Language extended with
arithmetic expressions and subset of MTL language (Metric Temporal Logic) syntax, allowing direct
expression of real-time requirements with math equations. An example of the guarantee part of a contract
is depicted in the Figure 36.The guarantee editor is tailored to the OCRA syntax and provides helpful hints
about the inconsistencies in the text, e.g. underlining the names of variables having no counterpart in the
list of ports. The remaining underline in the figure below is there because the syntax linked to the editor
does not allow string literals, which are nevertheless allowed.

Figure 36. Example of constraint's guarantee.

The presence of signal names as clearly isolated lexical elements enables their comparison to the relevant
port names. Signal names that are used in the contract properties but not found among the port names are
reported.

The formal properties are automatically translated to LTL before they are sent to the Verification Server. In
the current stage of the plugin development it is beneficial to have the opportunity to visually inspect the
inputs to the Verification Server. Therefore, the LTL representation of the contracts and the lists of input
and output signals are displayed together with the V&V results, as can be seen in the Figure 37.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 82

Figure 37. LTL going to and V&V results coming from the Verification Server

The findings of the V&V tools are also displayed in the V&V Results view, as shown in the Figure 37. Some
tools may provide their answer almost immediately (which can be the case e.g. for checking of consistency
or redundancy), while other tools take more time to terminate their tasks (e.g. realizability checking).
Therefore, the V&V Manager monitors the consolidated response provided by the Verification Server and
updates the V&V Results view in short periods of time in order to present the most recent status of
validation and verification.

2.2.3.3.2 Verification Servers and Implementation Progress (*)

The communication between the V&V Manager (the Eclipse plugin) and the Verification Server is based on
OSLC, i.e. there is a specification describing interaction between these two parts, which conforms to OSLC
Performance Monitoring and OSLC Automation specifications. The V&V Manager is an OSLC consumer and
the Verification Server is an OSLC provider.

Currently, there is one public Verification Server (hosted at Masaryk University). Verification servers at
Honeywell are not public since they also host licensed V&V tools and are used for Honeywell confidential
data. The V&V tools that are planned to be used for performing the semantic requirement analysis tasks
have been already installed. What remains to be done is to finish implementation of the V&V Manager
(increase its flexibility, make use of the traceability available in the AMASS Platform); the communication
with the Verification Server is both fully specified and tested.

It is relatively easy to add another new OSLC provider similar to the existing Verification Server. The
interaction between the V&V Manager and the new verification server will have to be completely tested.
Therefore, each user can set up whatever selection of verification tools is required. Note that although
OSLC resources are defined in terms of RDF properties and operations on resources are performed using
HTTP, i.e. OSLC provider is usually located on a remote server, it is also possible to use local verification
servers running on localhost.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 82

2.2.3.3.3 Semantic Requirement Analysis (*)

This V&V technique formally proves if a given set of formal requirements or contracts is consistent, non-
redundant, non-vacuous, realizable and complete. Our approach is to execute multiple V&V tools and their
configurations at once on multiple Verification Servers in parallel since often even V&V tool experts
proficient in formal methods cannot determine which V&V tool and configuration will yield the best and/or
quickest result. Moreover, especially for model checking this approach distributes the computationally
expensive V&V tasks to multiple servers and is the fastest way to get the V&V results.

The screenshots below show the example verification results from the Honeywell proprietary tool ForReq.
The same results will be visible from the AMASS platform after the V&V Manager implementation is
finished. Figure 38 shows requirements that could be realised by some trivial system, which suggests that
the requirements are incomplete. Figure 39 shows requirements that are non-realizable; more specifically
the first two requirements are realizable and when the third requirement is added to them, it makes them
unrealizable.

The analysis internally calls Acacia+ (which is a tool internally also called by the RQA tool mentioned above)
to obtain the realizability witness: a strategy that prescribes what reactions to input signals will lead to
requirements satisfaction. In addition to demonstrating that the requirements are realizable, ForReq also
interprets this witness to estimate the complexity of the requirements, and thus to some extent their
completeness. For each input and output signal we compute the coverage by user requirements. The best
requirements can only be satisfied if the system may need to react to a change in the value of each
particular input. On the other hand, if a system can completely ignore some (or all) input signals, then we
proclaim the requirements to be trivially satisfied. In a similar manner, ForReq assigns a degree of coverage
to every signal, ranging from “fully covered” to “not covered” and reports this complexity analysis to the
user in a comprehensive manner.

Since performing realizability checking is often very time-consuming task, the requirements are also
checked for logical consistency which is a weaker property than realizability, yet easier to compute. The
consistency checking is performed by the tool ReMUS which was developed by Masaryk University. If the
requirements are found to be inconsistent, ReMUS also identifies the minimal inconsistent subsets of the
whole set of requirements, i.e. the sources of the inconsistencies. This information can be then used by the
user to refine the requirements.

Figure 38. Example of requirements from Gesture Recognition system (Case Study 7) that are only trivially realisable

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 82

Figure 39. Example of requirements that are consistent, non-redundant and not realisable

2.2.3.3.4 Formal Verification of Requirements against System Design

When system architecture or system design is available, each requirement should be verified for
compliance with the system. This needs requirements to be formal and mapped to the system. The Figure
below shows an example of a few requirements and the results from 3 model checkers from 3 different
verification servers. It should always be the case that the V&V tools agree with the result. However, often
only some of the model checkers or their configurations are able to return the complete result.

When the requirement is not satisfied by the given system, the counterexample is provided in the form of
table showing relevant input and output values in time that falsify given requirement and also, in the case
of a Simulink system design, a counterexample model that shows the falsifying behaviour.

Figure 40. Details for requirements checking

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 82

For system design in C or C++, only the DIVINE LLVM model checker is currently integrated. Simple
requirements could be translated to the form of C asserts and verified by the DIVINE model checker jointly
with other safety properties or C asserts that are not derived from requirements. This is demonstrated in
the figure below.

 Figure 41. Checking and proposed error handling

2.2.3.4 Model Checking (*)

Table 9. Covered requirements regarding the verification of state machines

Requirement No Name Description Status Tools Involved Partners

WP3_VVA_005 Verify (model checking)
state machines

The system shall be able to
verify the component
behavioural model match with
the specification

Solved

CHESS,
NuXmv,

V&VManag
er

FBK, HON, UOM

To check if the behaviour of the entire system or the behaviour of single components is compliant with a

set of formal properties, CHESS interacts with nuXmv15. nuXmv is a symbolic model checker for the analysis
of synchronous finite-state and infinite-state systems.

To perform the model checking command, the state machines that are used to describe the system

behaviour, are translated in the SMV language16 and stored as a file with the .smv extension. nuXmv takes

15 https://nuxmv.fbk.eu

16 The language used by xSAP to represent the nominal model, see
http://nusmv.fbk.eu/NuSMV/papers/sttt_j/html/node7.html

https://nuxmv.fbk.eu/
http://nusmv.fbk.eu/NuSMV/papers/sttt_j/html/node7.html

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 82

in input the file, the list of formal properties and returns the result of the check. If the properties are not
satisfied, a counterexample is shown in the dedicated “Behaviour Trace View” of CHESS (see Figure 42.).

Figure 42. Counterexample shown in the "Behaviour Trace View"

2.2.3.5 Generate fault trees from the behavioural model and the fault injection

Table 10. Covered requirements regarding generation of fault trees

Requirement No Name Description Status Tools Involved Partners

WP3_SC_006 Specify component
behavioural model (state
machines)

The system shall be able to
specify the component
behavioural model

Solved
CHESS FBK

WP3_VVA_010 Model-based safety
analysis

The system shall allow the user
to generate fault trees and
FMEA tables from the
behavioural model and the fault
injection

Pending

CHESS,
XSAP

INT, FBK

Generation of fault tree from the behavioural and fault model is supported by xSAP, a tool for safety

assessment of synchronous finite-state and infinite-state systems17.

CHESS implements a seamless integration with xSAP to allow the automatic generation of fault trees
starting from the information made available in the CHESS model. In particular, the following information
available in CHESS is used for the transformation to xSAP:

• System components (hierarchical architecture): SysML Blocks or UML Components with port
definitions and composite relationships

• For each component:

o The nominal behaviour, modelled using state machines; the activities in the state machine

have to be specified using the NUSMV language18.

o The error behaviour, modelled by using a state machine stereotyped with the
<<ErrorModel>> (see Figure 43) stereotype available from the CHESS dependability

profile19. The CHESS dependability profile is also used to model error states, error
propagation (e.g. InternalPropagation in Figure 43) and failure conditions (e.g. stuckAt
value, inverted error) in component properties.

17 https://xsap.fbk.eu/

18 The language used by xSAP to represent the nominal model, see
http://nusmv.fbk.eu/NuSMV/papers/sttt_j/html/node7.html

19 CHESS comes with a dedicated profile for dependability for modelling safety aspects related to the system
architecture. The metamodel from which the CHESS dependability profile has been derived is the SafeConcert
metamodel; this metamodel is presented in AMASS D3.3 [16] Appendix C.

https://xsap.fbk.eu/
http://nusmv.fbk.eu/NuSMV/papers/sttt_j/html/node7.html

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 82

Figure 43. CHESS error model state machine

An initial integration between CHESS and xSAP was originally developed in SafeCer. In AMASS this
integration has been reviewed; the model-to-text transformation has been extended and fixed according to
the latest modifications of the CHESS profile, in particular of the CHESS Contract sub-profile. Moreover,
some bugs have been discovered and fixed.

In the second prototype, CHESS provides a Fault Tree View to graphically represent the result of the
analysis as a table or tree, see respectively Figure 44 and Figure 45.

Figure 44. Example of fault tree represented as a table

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 82

Figure 45. Example of fault tree represented as tree

2.2.3.6 Simulation-based Fault Injection (*)

Table 11. Requirements covering simulation-based fault injection

Requirement No Name Description Status Tools Involved Partners

WP3_SC_007 Fault injection (include
faulty behaviour of a
component)

The system shall have fault
injection capabilities Solved

CHESS,
SABOTAGE

INT, TEC

WP3_VVA_011 Simulation-based Fault
Injection

The system should allow the
user to generate fault injection
simulations from the fault trees
and FMEA tables

Pending

SABOTAGE TEC, AIT, B&M

Model-based design combined with a simulation-based fault injection technique is a promising solution for
the early safety assessment of systems. The fault injection functionality is supported by the Sabotage tool,
which is based on a simulation fault injection framework. The Sabotage tool helps to specify different
failures within a model-based system design performed in Matlab/Simulink. The Eclipse modelling
framework (EMF) in combination with Massif [15], which converts from MATLAB Simulink models to EMF,
supports the specification of failures with an intuitive fault list. Sabotage automatically adds “saboteur”
blocks into Simulink models to reproduce those specific failures. The saboteur block is a Simulink s-function
block, whose custom C code implements the injected fault. The tests are run and the results are analysed
and visualised.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 82

One of the main goals that AMASS promotes is the use and creation of model-based solutions. In that
direction, the configuration, creation, run and visualisation of the fault injection experiments is developed
into an Eclipse framework. In addition, this framework provides the communication with Matlab/Simulink
tool.

Due to the use of Eclipse framework in the Sabotage tool, the user does not need to be familiar with the
low-level configuration technologies for the automatic generation of fault injection experiments, for
example, EMF, Xtend, Matlab/Simulink, Java and C code. Figure 46 depicts the technologies involved in
integrating our Eclipse framework with Sabotage.

Figure 46. Sabotage design architecture.

Even though this functionality is released as part of Prototype P2, it extends work started in Prototype P1.
Thus, some preliminary results and concepts are already covered in the D3.5 deliverable [21]. However,
those results and concepts are improved for this third Prototype (P2).

After investigating how to model the configuration of fault injection experiments, EMF technology has been
chosen. The reason why, is the possibility to link Sabotage configuration to the Massif meta-model. The
meta-model, which configures the experiments of the fault injection, is called Sabotage. The Sabotage
meta-model is used to configure the failures that will be reproduced in the system. To establish where
those failures will be injected, the Massif meta-model is used. The Massif meta-model, which is created
based on EMF technology, provides the architecture of the system in a manner compatible with the
Sabotage meta-model.

On the other hand, Model-to-text transformations are adopted for automation of the experiments. More
specifically, the template language Xtend [14] is applied to generate Matlab and C code. Xtend technology
includes a template language to generate code. As explained in D3.3, the Sabotage framework creates the
golden (fault-free) and the faulty System Model Under Test (SMUT). The Xtend technology is employed to
export the resulting C code that generates each failure, Matlab code to create a golden and a faulty SMUT,
and Matlab code to execute the experiments and visualise the results. Xtend allows the creation of code
replacing the dynamic areas of the template with information from a metamodel. In this case, that
information comes from the Sabotage and Massif meta-models. The following lines explain some of the
functionalities in a more accurate way.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 82

• Configuration of the fault injection experiments:

One of the major issues regarding the configuration of the fault injection experiments and the creation of
the fault list [16] is to define where to inject the faults. Those faults reproduce failure behaviours on certain
components.

In Figure 47 a fault list is defined in the Sabotage model where all the faults, readouts and their properties
are specified.

Figure 47. Sabotage Fault List

To extract the necessary information regarding possible injection points, Massif is used. The necessary
information regarding possible injection points (i.e. Connection) is extracted, importing the Simulink model
to Massif. This includes information regarding the architecture of the system and the connection between
input and output ports. The same concept applies to the observation points, monitors or read-outs. This
information needs to be specified based on the current system model.

An example architecture of a DC drive system defined in Massif model is shown in Figure 48.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 82

Figure 48. Massif model of the DC drive system

• Generation of the fault injection experiments:

One of the main remarkable features is the construction of the golden and the faulty Simulink models. After
generation of the fault list, the Xtend technology creates Matlab code files (Figure 50), which construct the
golden and faulty Simulink models. These Matlab code files create a golden Simulink model (fault-free
system with readouts inside) and a faulty Simulink model (Figure 49) with the faults of the fault list and the
readouts. The Matlab code files handles the generation of the C code files where the behaviour of faults are
reproduced.

Figure 49. Example of the generated saboteur

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 82

Figure 50. Xtend templates for the generation of saboteurs and readouts

The Fault Injector creates and completes the C code (see Figure 51) of each saboteur for the corresponding
S-functions block in Simulink. In the case where the fault is easily represented as a Simulink default blocks,
e.g. random or delay failures, that block is used instead of an S-function blocks. This decision is related to
fault representativeness, where it is tested that those blocks sufficiently represent the behaviour of those
specific fault models.

Figure 51. Example of a saboteur code

Figure 52 illustrates how the integration of the Sabotage framework is carried out with respect to contracts.
This allows to read the CHESS/Savona Model and relate information such as the aforementioned failure
mode of a certain component defined as part of the system architecture.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 82

During this the development of the last prototype iteration this work has been enhanced in order to
investigate and add the following features as follows. The possible role and integration of other
architecture-driven assurance functionalities with Sabotage have been studied during the project,
especially establishing relations to contracts-based approach and model-based safety analysis. This means
that the information regarding the fault type to be introduced can be linked as information contained in the
system architecture (failure mode). In order to complete the information describing the faulty behaviour of
a certain component and reproduce that behaviour in a form of a saboteur. As specified in Section 2.2.1.1,
the failure modelling feature is currently supported via the CHESS profile but not as part of the AMASS
building block.

Figure 52. Integration with safety contracts

2.2.3.7 Support for traceability between different kinds of V&V evidence

Table 12. Requirements covering traceability of different V&V artefacts

Requirement No Name Description Status Tools Involved Partners

WP3_VVA_001 Traceability between
different kinds of V&V
evidence

The system shall provide the
ability to trace immediate
evidence (obtained during the
execution of the left-hand side
of the V-model) with direct
evidence (obtained during the
execution of the right-hand side
of the V-model). For instance: a
contract-based, component-
based specification should be
traced with the corresponding
analysis-results.

Solved

CAPRA INT

WP3_VVA_002 Trace model-to-model
transformation

The system shall be able to trace
all component model
transformations executed during
V&V model-based analysis

Pending

CAPRA INT

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 82

Requirement No Name Description Status Tools Involved Partners

WP3_VVA_004 Trace requirements
validation checks

The system shall be able to trace
requirements validations

Solved Papyrus,
CAPRA

INT

One of the AMASS requirements about architecture-driven assurance is about traceability of different
artefacts produced during the model-based design and implementation process. For instance, the
requirement cites “a contract-based, component-based specification should be traced with the
corresponding analysis-results”.

Support for this requirement has been implemented in CHESS modelling language, in order to be able to
trace analysis results to the set of model entities and assumptions used to perform that particular analysis.
The adopted approach has been inherited by the MARTE modelling language, which comes with the
concept of analysis context allowing to represent the set of model information needed to run a given
analysis.

The CHESS modelling language has been extended with AMASS-specific analysis contexts; for instance, the
new stereotype named ContractRefinementAnalysisContext (see Figure 53) identifies the information
available in the CHESS model for a given contract refinement analysis. The aforementioned information is
the set of components with associated contracts that has to be analysed; the CHESS model can comprise
different views (e.g. functional, logical, physical) and different analyses can be run on each of the different
views, or even different parts of the same view.

Figure 53. Analysis Context

The ContractRefinementAnalysisContext stereotype also comes with a Boolean attribute
checkAllWeakContracts which can be used; if the value is true all weak contracts available in the current
components set identified by the analysis context are considered, otherwise only the weak contracts
marked by the modeller as valid are given in input to the analysis.

According to the new modelling language support, the CHESS tool has been modified to allow the user to
invoke contract refinement analysis, the latter performed thanks to the integration with the OCRA tool (see
section 2.2.3.3), by selecting an existing ContractRefinementAnalysisContext. Once the analysis has
finished, analysis results can then be linked to the analysis context, and hence to the target analysed set of
components and associated contracts; this last step is not currently automated and must be made by the
user using the traceability capabilities discussed in section 2.2.2.1.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 82

2.2.3.8 Generation of product-based assurance arguments from CHESS model

The generation of product-based assurance arguments is based on the assurance information associated
with the strong and weak contracts. To include only the relevant weak contracts in generation we need to
first know which of those hold in the current system. To achieve that, we have extended the CHESS tool by
using the checkAllWeakContracts attribute when performing contract refinement analysis to transform all
the weak contracts into OCRA format. All strong contracts C=(A,G) are transformed into normal OCRA

contracts C=(A,G), while the weak contracts Cs=(B,H) are transformed into guaranteed implications in OCRA
as Cw=(TRUE,B=>H). The refinement connection of Cw is inherited from the corresponding weak contracts.
To check consistency of the weak assumptions in the given context and identify which weak contracts
should be used in argument generation, we have extended the CHESS tool to allow for property validation
of the weak contract assumptions in OCRA. The results of both OCRA commands are saved in a file and
previewed to the user. The results are used to update the status of the contracts. To perform the contract
refinement analysis with all weak contracts, the user sets the Boolean attribute checkAllWeakContracts of
the ContractRefinementAnalysisContext stereotype to TRUE and selects the Check Contract Refinement
functionality. Then, to validate the weak contract assumptions, the user makes sure the
checkAllWeakContract attribute is set to TRUE and selects the Validate Weak Contracts functionality.

Based on the contract status we create a set of argument fragments in the corresponding assurance case
project where they can be viewed in the assurance case editor. The generator uses a pre-existing argument
pattern for the generation using information from the traceability editor of the contracts and the assurance
evidence. The generated argument fragments include only assurance evidence for those contracts relevant
in the given context, which is determined by the status attribute of the contracts. The argument fragment
generation can only be performed after successful refinement analysis and contract validity checks. The
generation is performed from the ContractRefinementAnalysisContext argument generator property tab.

2.2.3.9 Reports Generation (*)

Table 13. Requirements covering the generation of system reports

Requirement No Name Description Status Tools Involved Partners

WP3_VVA_007 Generation of reports
about system description/
verification results ….

The system shall generate
reports about
system/subsystem/component
verification results

Pending

CHESS,
V&VManag

er

FBK, HON

The third prototype (Prototype P2) enables the generation of reports stored in files. In particular, the tool
can generate a document, either as doc or tex format, containing tables and diagrams as shown in Figure
54.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 82

Figure 54. Excerpt of 2 pages of the generated report.

2.2.4 Contract-based Assurance Composition

2.2.4.1 Contract Editor with content assist

Table 14. Requirements covering the improvement of contract creation

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_009 Improvement of Contract
definition process

The operation of contract
definition should be improved in
terms of time spent.

Solved
CHESS,

SAVONA
FBK, B&M

In the AMASS prototype, the contract definition and the property definition can be edited using an editor
with content assist, see Figure 55. The latter provides two utilities: (1) it notifies whether a word does not
belong to the language used or whether it is not a port or an attribute of the component of the editing
contract/property. (2) It suggests the keyword of the language used and the ports and attributes of the
component.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 82

Figure 55. Contract Editor with content assist

In this example, in the editing area of the assume property, an incorrect port name is highlighted. In the
editing area of the guarantee property, it is suggested which are the compatible keywords or identifiers to
insert.

2.2.4.2 Contract-based Views

Table 15. Requirements covering the overview of contracts

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_011 Overview of contract-
based validation for
behavioural models

The system could enable users
to have an overview of the
validation of a contract over a
state-machine. In case of failure,
the system could enable users to
have information about the
trace that does not fulfill the
contract.

Solved

CHESS FBK

In the AMASS prototype, CHESS provides a hierarchical view that shows the decomposition of the system
component into sub-components. It also shows the contracts assigned for each component. The system is
represented graphically as the top element of the view (see Figure 56).

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 82

Figure 56. Hierarchical view of the system decomposed into sub-components and contracts

CHESS also provides a hierarchical view that shows the contracts with their refining contracts, see Figure
57. The weak contracts are graphically represented as a document with a “W” on top.

Figure 57. Contract Refinement View

2.2.4.3 Contract refinement analysis

Table 16. Requirements covering contract refinement analysis

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_007 Overview of check
refinements results

The system should enable users
to have an overview in terms of
status of check refinement of all
the defined contracts.

Solved

CHESS FBK

WP3_CAC_008 Contract-based validation
and verification

The system must provide
support for contract-based
system validation and
verification, including

Solved

CHESS FBK

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 82

Requirement No Name Description Status Tools Involved Partners

refinement checking,
compositional verification of
behavioural models, contract-
based fault-tree generation

Contract refinement analysis is supported by the OCRA tool. CHESS comes with a seamless integration with
OCRA which allows invocation of the analysis starting from the components and associated contracts
available in the CHESS model. When the analysis is invoked through the CHESS tool the following steps are
performed:

1. A validation is performed on the CHESS model to check that the modelled information is available
and syntactically correct with respect to what is required by OCRA.

2. The user selects the analysis context that has to be taken into account.

3. Model-to-text transformation from CHESS model to OCRA language is executed (.oss artefact
derivation, see Figure 58).

4. The OCRA tool is invoked with the produced .oss and with the appropriate command option.

5. The results from the OCRA analysis are showed to the modeller in a dedicate window and saved as
output artefacts in a specific folder under the current CHESS project.

Figure 58. Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the system
architecture represented by a tree of components (given by the decomposition into sub-components)

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 82

Figure 59. Selecting analysis context for contract refinement

The integration between CHESS and OCRA was originally developed in SafeCer. In AMASS, this integration
has been improved, in particular by introducing the analysis context support; moreover, the model-to-text
transformation has been reviewed according to the latest modifications of the CHESS profile, in particular
those of the CHESS Contract sub-profile.

2.2.4.4 Contract-based Safety Analysis

The contract-based safety analysis detects the component failures as the failure of its implementation to
satisfy the contract. When the component is composite, its failure can be caused by the failure of one or
more subcomponents and/or the failure of the environment in satisfying the assumption. This dependency
can be automatically computed based on the contract refinement. CHESS interacts with OCRA to produce a
fault tree in which each intermediate event represents the failure of a component or its environment.

2.2.4.5 Contract-based verification of the behavioural model

Table 17. Requirements covering contract verification

Requirement No Name Description Status Tools Involved Partners

WP3_CAC_001 Validate composition of
components by validating
their contracts

The system shall be able to
validate the composition of
components by supporting the
validation of their contracts,
analyzing the relationship among
assumptions and guarantees

Solved

CHESS,
OCRA

FBK

WP3_CAC_008 Contract-based validation
and verification

The system must provide
support for contract-based
system validation and
verification, including
refinement checking,
compositional verification of
behavioural models, contract-
based fault-tree generation

Solved

CHESS FBK

WP3_CAC_012 Browse Contract status The user shall be able to browse
the contracts associated within a

Solved CHESS INT

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 82

Requirement No Name Description Status Tools Involved Partners

component and their status
(fulfilled or not)

WP3_VVA_003 Validate requirements
checking consistency,
redundancy, … on formal
properties

The system shall be able to
validate formal
requirements/properties

Solved

CHESS,
OCRA, V&V

Manager

FBK, HON, UOM

The Contract-based verification of the behavioural model is supported by the OCRA tool. This functionality
verifies whether the finite state machines defined in the CHESS model verify the contracts. The state
machines are translated into the SMV language, where the behaviour is described by means of logical
formulas that describe the initial states and the state transitions; see Figure 60. Meanwhile, the contracts,
as already mentioned in Section 2.2.3.3, are translated into the OCRA language in an .oss file. CHESS sends
such information as input to OCRA, and then to the Trace View; for each contract the result of the check is
shown, see Figure 61.

Figure 60. Part of an ‘.SMV’ file representing the behaviour of the leaf components of the model

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 82

Figure 61. In this example, for each contract the results of the Contract-based verification are listed in the Trace
View

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 82

3. Installation and User Manuals

The steps necessary to install the final prototype are going to be exhaustively described in the AMASS User
Manual (currently in progress) and will not be repeated here. That document will contain all required steps
and document references to set up the tools. There is currently no pre-packaged distribution.

Users can find the installation instructions, the tool environment description, and the functionalities for the
creation of Standards and Process models (models representing Standards, Regulations, or Company-
specific Processes), Assurance Projects and the associated Evidence models (Artefacts), Compliance Maps
(so far, compliance maps from Reference Artefacts to Artefacts), and Argumentation models, in addition to
Architecture models.

A methodological guideline on how to use the presented tools will be published within D3.8 [23].

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 82

4. Implementation Description

4.1 Implemented Modules

4.1.1 System Component Specification Block

As documented in AMASS deliverable D2.4 [7], the System Component Specification logical building block
decomposes into two sub-blocks (see Figure 62): the Component Editor and the Contract Editor. The
purpose of the first tool module is to provide services for architecture specification; the second tool module
provides services to store and instantiate contracts and to associate them to the architectural entities.

The two aforementioned blocks and associated services are made available in the AMASS platform through
the usage of the Eclipse-Based Papyrus UML/SysML Editor extended with the CHESS plugins. In particular,
Papyrus contains plugins for editing the architectural/component-based models, together with the
possibility to model requirements (by using the SysML profile support). CHESS provides plugins for
management of formal properties and contract specifications and their association with the architectural
components.

The CHESS profile for Contract (see D3.1 [10]) is implemented as a UML/SysML profile; the profile has been
designed using the Papyrus editor facilities.

Figure 62. Tool modules for System Component Specification

4.1.2 Architecture-Driven Assurance Block

As documented in AMASS deliverable D2.4 [7], the Architecture-Driven Assurance allows for explicit
integration of assurance and certification activities with the CPS development activities, including
specification and design. It decomposes into four sub-blocks: System architecture modelling for assurance,
V&V-based Assurance Impact Assessment, Contract-Based Assurance Composition, and Assurance Patterns
Library Management.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 82

4.2 Source Code Description

4.2.1 System Component Specification Block

Papyrus20 is an Eclipse project and its source code is freely available through the Eclipse GIT server21.

The source code of the CHESS contract editor is available through the Polarsys CHESS project22.

Extensions to the Polarsys CHESS project are foreseen during the context of AMASS project; the extensions
will be developed by working on an AMASS dedicated code repository
(https://services.medini.eu/svn/AMASS_source). Then, once the extensions are sufficiently mature, they
will be pushed to the Polarsys CHESS repository as AMASS contributions.

The additional CHESS plugins that need to be installed on top of Papyrus environment to enable the CHESS-
based AMASS Contract Editor features are the following (see also Figure 63):

• org.polarsys.chess.contracts.chessextension: provides the Papyrus extension to easily
work with the CHESS Contract profile, for instance to facilitate the creation of CHESS stereotypes.

• org.polarsys.chess.contract.integration: implements the integration with the OCRA
and XSAP tools; in particular, it allows automatically invoking the aforementioned tools and getting
back the obtained results within the Eclipse environment.

• org.polarsys.chess.contracts.profile: implements the CHESS profile for contracts.

• org.polarsys.chess.contracts.transformations: implements the model of text
transformation for integration with the OCRA and XSAP tools; in particular a corresponding OCRA
model can be generated starting from the components and contracts modelled in UML/SysML and
CHESS profile. The plugin adds a dedicated command to the CHESS Eclipse menu to invoke the
transformations.

• org.polarsys.chess.contracts.validation: implements the validation of the constraints
that the CHESS model has to satisfy in order to allow the mapping to the OCRA language and then
the integration with the OCRA tool.

• org.polarsys.chess.contracts.feature: allows to deploy/undeploy the CHESS plugins
related to contract-based design support.

• org.polarsys.chess.contracts.contractPropertyManager: allows the automatic
generation of the contract component when a contractInstance is associated with a component.

20 https://eclipse.org/papyrus/

21 https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/

22 https://git.polarsys.org/c/chess/chess.git?h=develop

https://services.medini.eu/svn/AMASS_source
https://eclipse.org/papyrus/
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/
https://git.polarsys.org/c/chess/chess.git?h=develop

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 82

Figure 63. CHESS plugins supporting Contract Based Design

One important point to mention is that, in addition to the aforementioned support for contract design, the
Polarsys CHESS project provides additional features.

In particular, the Polarsys CHESS project provides a set of core plugins that allow the application of the
CHESS methodology ([1][2]). This is the base upon which the AMASS methodology has been build. The
actual CHESS methodology allows the design, verification and implementation of cyber physical software
systems; CHESS adopts a dedicated component model language [4] and ad-hoc model transformations to
enable timing/dependability analysis and code generation. Moreover, the CHESS methodology defines a
multi-view approach for modelling the different aspects/concerns of the system; for each view, the
diagrams and entities that can be created/viewed/modified are fixed and formalized in the view definition.
The CHESS plugins extend the Papyrus editor to support the CHESS modelling language and design-by-view
approach; so, by using the CHESS Papyrus extension, the constraints imposed by the CHESS methodology
are enforced in a live manner, at modelling time, to avoid late discovery of modelling activities which can
violate the correctness-by-construction approach implemented by CHESS.

The CHESS-based AMASS Contract plugins use some utilities provided by other core CHESS plugins; in
detail, the core CHESS plugins used are:

• org.polarsys.chess.core: provides some facilities regarding selections and diagram status.

• org.polarsys.chess.services: provides functionalities about the CHESS editor (as extension
of the Papyrus one).

• org.polarsys.chess.validation: provides functionalities about model validation.

• org.polarsys.chessmlprofile: provides the SysML/UML/MARTE profile implementation of
the CHESS modelling language [3]. Moreover, it provides dedicated diagram palettes extending the
Papyrus ones to easily manage the creation of CHESS stereotypes in a given diagram. Therefore,
CHESS core plugins are required in order to use the CHESS Contract feature.

• org.polarsys.chess.diagramsCreator: enables the creation of SysML/UML diagrams taking
as input the CHESS entities located in the model.

• org.polarsys.chess.OSSImporter: provides functionalities to parse a OSS file and to
populate a CHESS project with the entities that are imported.

In order to allow the AMASS platform’s stakeholders to use the CHESS-based AMASS Contract features on
top of the Papyrus editor without having to use the CHESS methodology for SW development, an extension

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 70 of 82

has been made to the CHESS core plugins. In particular, the user can decide to disable the live-check of the
constraints associated to the CHESS multi-view support; in this way, the modeller can use the full Papyrus
and UML features, together with the CHESS extension for contract-based design.

Figure 64 below provides a snapshot of the CHESS methodology constraints that can be enabled/disabled
through the Eclipse preferences page.

Figure 64. CHESS methodology constraint

4.2.2 Architecture-Driven Assurance Block

4.2.2.1 Requirements Formalization with Temporal Logics – RQA approach

To create the custom-coded metric needed to detect linear temporal logic consistency issues in the
requirements, it is necessary to add the following information to RQA:

• Assembly: the .DLL file generated after building the project. It is necessary to include the entire
path of the .DLL file or add it into the RQA installation path.

• Class: the name of the class in the project. RQA should help you to choose this field using the
provided assembly.

• Method: the name of the method containing the code of the metric. RQA should help you to
choose this field using the provided class.

4.2.2.2 Simulation-based Fault Injection

As specified in Section 2.2.3.6 the MASSIF Simulink Integration Framework for Eclipse is used for accessing
Simulink model information. Importing uses the command line interface of Matlab rather than directly
parsing mdl or slx files. This is the API recommended by MathWorks for accessing Simulink model
information.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 82

Following the procedure explained in [https://github.com/viatra/massif], the user installs MASSIF into the
Eclipse Neon environment. The most important prerequisites are the following:

1. Clone the Massif "Master" branch from https://github.com/viatra/massif (Massif 0.6.0).

2. Install VIATRA Query and Transformation SDK 1.5.0 from
http://download.eclipse.org/viatra/updates/release/. Note that there is a dependency between
VIATRA and EMF. To avoid any incompatibilities with the VIATRA version, EMF 2.12 must be
installed.

3. Install Xtext Complete SDK 2.10.

Note also the association between different meta-models. Especially between Sabotage and Massif meta-
models.

• tecnalia.sabotage.ecore  Sabotage meta-model defines all the faults injected in the Simulink

model.

• hu.bme.mit.massif.simulink  Massif meta-model is designed to store all information for each

MATLAB block of a system.

Figure 65. Massif and Sabotage meta-models

It is necessary to load the Massif model system to the fault list to help the user to define where the faults
are injected into that specific Massif model. To do that “load resource” functionality needs to be carried out
at meta-model and model level in order to establish the connection. This means that not only the Sabotage
meta-model and Massif meta-model are connected, but also when the user is using Sabotage model needs
to link a Simulink model with a Sabotage model.

Figure 66. Connection between Sabotage and Massif at meta-model level

https://github.com/viatra/massif
https://github.com/viatra/massif
http://download.eclipse.org/viatra/updates/release/

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 82

In order to perform code generation by means of Xtend (cf. Section), those meta-models are included as
dependency plugins. Together with these plugins, other ones are required as well:

• hu.meb.mit.massif.simulink: provides the generated java files from Massif EMF meta-

model. Massif meta-model is designed to store all information for each MATLAB block.

• tecnalia.sabotage.faultlist: provides the generated java files from Sabotage EMF meta-

model. This meta-model defines all the faults injected in the Simulink model.

• org.eclipse.core.runtime: provides support for the runtime platform, core utility methods

and the extension registry.

• org.eclipse.xtext.generator: provides Generator facilities for Xtext.

• org.eclipse.emf.mwe2.launch: MWE2 (Modeling Workflow Engine) allows composition of

object graphs declaratively in a very compact manner.

• org.eclipse.emf.mwe2.language.ui: provides user interface for MWE2 facilities.

• org.apache.log4j: provides most of the logging operations, except configurations.

• org.apache.commons.logging: provides a logging interface that is intended to be both

lightweight and an independent abstraction of other logging toolkits. It provides the

middleware/tooling developer with a simple logging abstraction allowing the user (application

developer) to plug in a specific logging implementation.

All of these are included in the manifest file.

Figure 67. Code Generation workspace

4.2.2.3 Fault Trees generation (*)

The plugins to visualise fault tree are the following:

• eu.fbk.eclipse.standardtools.faultTreeViewer

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 82

• eu.fbk.eclipse.standardtools.faultTreeViewer.emfta

• eu.fbk.eclipse.standardtools.faultTreeViewer.emfta.design

These are Eclipse plugins located in the EST git repository23. The plugins are derived from the open source

tool EMFTA24, to embed the fault tree viewer inside the CHESS platform. The plugins require the Sirius

Eclipse tool25 to work correctly.

4.2.2.4 Metrics

4.2.2.4.1 Metrics for requirements

4.2.2.4.1.1 Correctness metrics

Following, the functions of the source code are presented. For each metric two function are specified: one
about the numerical value and the other giving feature information.

Metric to nouns

In-System Conceptual Model Nouns (SCM Nouns)

ScmNounCount: return a double with the result of the metric.

ScmNounFeatures: return a list of strings with the resultant features of the metric.

Out-of-System Conceptual Model Nouns (Out-of-SCM Nouns)

OutOfScmNounCount: return a double with the result of the metric.

OutOfScmNounFeatures: return a list of strings with the resultant features of the metric.

In-Semantic Clusters Nouns (SCC Nouns)

SccNounCount: return a double with the result of the metric.

SccNounFeatures: return a list of strings with the resultant features of the metric.

Out-of-Semantic Clusters Nouns (Out-of-SCC Nouns)

OutOfSccNounCount: return a double with the result of the metric.

OutOfSccNounFeatures: return a list of string with the resultant features of the metric.

In-Hierarchical Views Nouns (SCV Nouns)

ScvNounCount: return a double with the result of the metric.

ScvNounFeatures: return a list of strings with the resultant features of the metric.

Out-of-Hierarchical Views Nouns (Out-of-SCV Nouns)

OutOfScvNounCount: return a double with the result of the metric.

OutOfScvNounFeatures: return a list of strings with the resultant features of the metric.

23 https://gitlab.fbk.eu/CPS_Design/EST.git

24 https://github.com/juli1/emfta

25 https://eclipse.org/sirius/

https://gitlab.fbk.eu/CPS_Design/EST.git
https://github.com/juli1/emfta
https://eclipse.org/sirius/

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 82

Metric to verbs

In-System Conceptual Model Verbs (SCM Verbs)

ScmVerbCount: return a double with the result of the metric.

ScmVerbFeatures: return a list of string with the resultant features of the metric.

Out-of-System Conceptual Model Verbs (Out-of-SCM Verbs)

OutOfScmVerbCount: return a double with the result of the metric.

OutOfScmVerbFeatures: return a list of strings with the resultant features of the metric.

In-Semantic Clusters Verbs (SCC Verbs)

SccVerbCount: return a double with the result of the metric.

SccVerbFeatures: return a list of strings with the resultant features of the metric.

Out-of-Semantic Clusters Verbs (Out-of-SCC Verbs)

OutOfSccVerbCount: return a double with the result of the metric.

OutOfSccVerbFeatures: return a list of strings with the resultant features of the metric.

In-Hierarchical Views Verbs (SCV Verbs)

ScvVerbCount: return a double with the result of the metric.

ScvVerbFeatures: return a list of strings with the resultant features of the metric.

Out-of-Hierarchical Views Verbs (Out-of-SCV Verbs)

OutOfScvVerbCount: return a double with the result of the metric.

OutOfScvVerbFeatures: return a list of strings with the resultant features of the metric.

4.2.2.4.2 Applying machine learning to improve the quality of requirements

This functionality is implemented in an external tool and uses libraries from RQA.

4.2.2.4.3 Metrics for models

The structure of the source code previously implemented to generate the completeness and consistency
metric relative to requirements has been adapted to evaluate the quality of the models. The information
extracted from the models is processed by the metrics to evaluate the quality. The following list gives the
function of each metric.

Completeness

• Terminology coverage:

TerminologyCoverageMetric_Evaluation:

• Relationships from SCM View Coverage

SCMCoverageMetric_Evaluation

• Relationship types coverage

RelationshipTypeCoverageMetric_Evaluation

• Model-content coverage

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 82

ModelContentCoverageMetric_Evaluation

• Properties coverage

PropertiesCoverageMetric_Evaluation

Consistency

• Property values

PropertiesConsistencyMetric_Evaluation

• Arithmetic operation compliance with SCM

ArithmeticOperationConsistencyMetric_Evaluation

• Overlapping requirements

OverlappingConsistencyMetric_Evaluation

• Measurement units for specific property

MeasurementUnitsSpecificPropertyConsistencyMetric_Evaluation

4.2.2.4.4 Quality evolution (with respect to time)

The quality evolution is represented with three general functions: save snapshot, show graphical quality
evolution, and open snapshot information.

CreateAndSaveSnapshot: this function creates one snapshot with the quality information of the project.

LoadQualityEvolutionView: this function loads the quality value from the snapshot saved in the project
and a graphical area chart is shown.

LoadQualityEvolutionSnapshot: this function shows the information contained in one snapshot.

4.2.2.5 Contract-Based Assurance Composition and Model Checking (*)

The plugins that need to be installed on top of the CHESS environment to enable the editor with content
assist are the following:

• org.polarsys.chess.contracts.contractEditor: it provides a contract editor with content assist. It also
enables the possibility to create a new contract directly from the editor view.

• org.polarsys.chess.constraints.constraintEditor: it provides a constraint editor with content assist.

• org.polarsys.chess.properties.propertyEditor: it provides a property editor with content assist.

The CHESS plugins to enable different hierarchical views based on contracts are the following:

• org.polarsys.chess.contracts.hierarchicalContractView: it provides a view that shows the
decomposition of the system component into sub-components. It also shows the contracts
assigned for each component.

• org.polarsys.chess.contracts.refinementView: it provides a view that shows the contracts with their
refining contracts.

The complete set of contract-based analysis is provided by the following plugins:

• org.polarsys.chess.verificationService: it provides different analysis commands invoking the OCRA
and nuXmv. They include “check contract refinement”, “contract-based safety analysis”, “check
contract implementation” and “model checking”.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 82

• org.polarsys.chess.smvExporter: it translates the UML state machine in a coherent SMV file that is
used as input for the V&V tools.

These depend on a set of Eclipse plugins located in the EST git repository26. The plugins are:

• eu.fbk.eclipse.standardtools.contractEditor.core: it contains the core functionalities used in the
CHESS plugin contractEditor.

• eu.fbk.eclipse.standardtools.constraintEditor.core: it contains the core functionalities used in the
CHESS plugin constraintEditor.

• eu.fbk.eclipse.standardtools.propertyEditor.core: it contains the core functionalities used in the
CHESS plugin propertyEditor.

• eu.fbk.eclipse.standardtools.hierarchicalContractView.core: it contains the core functionalities
used in the CHESS plugin hierarchicalContractView.

• eu.fbk.eclipse.standardtools.refinementView.core: it contains the core functionalities used in the
CHESS plugin refinementView.

• eu.fbk.eclipse.standardtools.xtextService: it contains the core functionalities used in the three
CHESS plugins editors.

• eu.fbk.eclipse.standardtools.ExecOcraCommands: it contains the core functionalities to interact
with OCRA, that are used in the CHESS plugin verificationService.

• eu.fbk.eclipse.standardtools.nuXmvService: it contains the core functionalities to interact with
nuXmv, that are used in the CHESS plugin verificationService.

• eu.fbk.eclipse.standardtools.ModelTranslatorToOcra: it contains the core functionalities to
translate the CHESS model in a coherent OSS model.

• eu.fbk.eclipse.standardtools.StateMachineTranslatorToSmv: it contains the core functionalities to
translate the state machines defined in the CHESS model in coherent SMV models.

There are some Eclipse plugins used by these Eclipse plugins as external libraries but not implemented in
the project. They can be installed from the following Eclipse update site http://es-
static.fbk.eu/tools/amass_sde. The available plugins are:

• eu.fbk.tools.editor.*: plugins provided by FBK that enrich a text area with content assist for an LTL
grammar.

• org.eclipse.xtext.*: xText library needed for the editor plugins.

Figure 68 shows in more detail the dependencies among the plugins. The set org.polarsys.chess.* are the
plugins described in Section 4.2.1.

26 https://gitlab.fbk.eu/CPS_Design/EST.git

http://es-static.fbk.eu/tools/amass_sde
http://es-static.fbk.eu/tools/amass_sde
https://gitlab.fbk.eu/CPS_Design/EST.git

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 82

Figure 68. Diagram showing the dependencies among the plugins. The direction of the arrow means that the origin
plugin depends on the target plugin.

4.2.2.6 Report Generation (*)

The plugin developed to generate the report describing the system architecture is:

• org.polarsys.chess.diagram.ui: it enables the generation of a document in doc or tex format
containing information about system components. Moreover, it provides functionalities to export
UML/SysML diagrams as images. Those functionalities are used to generate the report.

4.2.2.7 Architectural Patterns (*)

The implementation related to architectural pattern definition and instantiation support is currently
ongoing in AMASS.

A set of Papyrus plugins concerning architectural patterns support has been released by CEA in the context

of the Papyrus Software Designer release27. The plugins can be reached on the following gerrit patch
commit: https://git.eclipse.org/r/#/c/126526/. To be able to run them, additional plugins from Papyrus
designer are required to satisfy dependencies as shown on Figure 69.

27 https://wiki.eclipse.org/Papyrus_Software_Designer

https://git.eclipse.org/r/#/c/126526/
https://wiki.eclipse.org/Papyrus_Software_Designer

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 82

Figure 69. Papyrus plugins for architectural pattern definition and manipulation support

The release enriches the Papyrus editor with a specific UML profile for pattern definition and provides
support for pattern instantiation. It also contains associated Papyrus customization, as well as a subset of
GoF patterns. There is support to apply / integrate a design pattern in application models. There is a small
extension profile for safety patterns concerning a set of non-functional properties related to availability,
reliability and resource consumption. Related to pattern instantiation, the tool provides support for
managing the binding between the pattern roles, i.e. the abstract entities foreseen by the pattern
definition, and the actual entities available in the given system model where the pattern is instantiated.
The plugins include a minimal documentation as user manual.

The provided set of plugins is used as a baseline in AMASS; the original release targets the Eclipse
Oxygen/Photon environment. A first experimentation has shown the usability of the plugins in Neon
environment with degraded customization capabilities: basically, dedicated palette and stylesheets
attached to the diagrams cannot be used. Although the customization features are not required for pattern
definition and instantiation, the plugins have to be adapted to the Eclipse Neon AMASS environment to
support full capability offers by the released plugins. Moreover, the integration with CHESS has to be
realized, in particular to allow the modelling of contracts for patterns, enabling the application of the
argumentation fragment for architectural patterns described in AMASS D3.3 [16].

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 82

5. Conclusions(*)

This deliverable D3.6 “Prototype for Architecture-Driven Assurance (c)” is the third and last output of the
AMASS task T3.3 Implementation for Architecture-driven Assurance, whose objective is the development of
a tooling framework to support architecture-driven assurance. Innovative approaches have been described
within this document and were incorporated into the AMASS Tool Platform to reach this objective. CHESS
and SAVONA allow the creation of system models based on the Papyrus Framework. Furthermore, system
requirements and contracts can be defined, validated and verified using OCRA and the V&V Manager.
Different metrics can be used via the RQA tool to analyse the modelled system and increase its quality. To
support early safety assessments during development, the SABOTAGE tool offers simulation-based fault
injection on the created system model. All of the assurance and model artefacts can thereby be traced
using CAPRA.

With three planned prototype iterations for the framework, this deliverable reports the status for the third
and final prototype release (Prototype P2), in particular for the system component specification and the
tooling framework supporting architecture-driven assurance, by describing the supported functionalities
and the details about implementation.

Following the two previous versions of this deliverable, D3.6 strongly focused on the integration of
different approaches and ideas into one unified AMASS tooling framework supporting architecture-driven
assurance. Among others, the AMASS Platform tools for the final Prototype P2, the finalized User Manuals
and installation Instructions and the source code description for Prototype P2 were presented in detail in
the document.

Based on the data provided for the deliverable, all partners showed significant effort with the
implementation of their individual features and functionalities, which can also be seen by looking at the
requirements table in section 2.2. Most of the requirements regarding architecture based assurance have
already been covered when this document is published. Nevertheless, the remaining ones are still being
worked on and will be finished by the release of the final AMASS Prototype P2.

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 82

Abbreviations

Abbreviation Explanation

AADL Architecture Analysis and Design Language

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

BNF Backus-Naur Form

BSCU Braking System Control Unit

CACM Common Assurance and Certification Meta-model

CHESSML CHESS Modelling Language

CPS Cyber Physical System

DC Direct Current

ECSEL Electronic Components and Systems for European Leadership

ELK Eclipse Layout Kernel

EMF Eclipse Modelling Framework

EMFTA EMF-based Fault-Tree Analysis Tool

FMEA Failure Mode and Effects Analysis

FTA Fault Tree Analysis

GUI Graphical User Interface

HARA Hazard Analysis and Risk Assessment

HTTP Hypertext Transfer Protocol

IBD Internal Block Diagram

IDE Integrated Development Environment

IMA Integrated Modular Avionics

JU Joint Undertaking

LTL Linear Temporal Logic

NLP Natural Language Processing

MARTE Modelling and Analysis of Real Time and Embedded systems

MTL Metric Temporal Logic

OCRA Othello Contracts Refinement Analysis

OMG Object Management Group

OSLC Open Services for Lifecycle Collaboration

OSS OCRA System Specification

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 82

RQA Requirement Quality Analyzer

RSHP RelationSHiP

SCC Semantic Clusters

SCM System Conceptual Model

SCV Hierarchical Views

SMUT System Model Under Test

SMV Symbolic Model Verifier

SW Software

SysML System Modelling Language

TARA Threat Analysis and Risk Assessment

TRL Technology Readiness Level

UML Unified Modelling Language

V&V Verification and Validation

WP Work Package

XMI XML Metadata Interchange

xSAP eXtended Safety Assessment Platform

 AMASS Prototype for architecture-driven assurance (c) D3.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 82

References (*)

[1] Mazzini S., J. Favaro, S. Puri, L. Baracchi., “CHESS: an open source methodology and toolset for the
development of critical systems”, 2nd International Workshop on Open Source Software for Model
Driven Engineering (OSS4MDE), Saint-Malo, October 2016

[2] L.Baracchi, S.Mazzini, S.Puri, T.Vardanega: “Lessons Learned in a Journey Toward Correct-by-
Construction Model-Based Development”, Reliable Software Technologies – Ada-Europe 2016
Volume 9695 of the series Lecture Notes in Computer Science pp 113-128, 31 May 2016

[3] https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf

[4] CONCERTO ARTEMIS JU project, D2.2 The CONCERTO Component Model, 9 May 2014, available at
http://www.concerto-project.org/results

[5] Papyrus Eclipse project: https://eclipse.org/papyrus/

[6] AMASS D2.3 AMASS Reference Architecture (b), 29 September 2017

[7] AMASS D2.4 AMASS Reference Architecture (c), 4 June 2018

[8] M. dos Santos Soares, J. Vrancken: “Model-Driven User Requirements Specification using SysML”,
JOURNAL OF SOFTWARE, VOL. 3, No. 6, June 2008

[9] XML Metadata Interchange, www.omg.org/spec/XMI/

[10] AMASS D3.1 Baseline and requirements for architecture-driven assurance, 30 September 2016

[11] CONCERTO D3.3 – Design and implementation of analysis methods for non-functional properties -
Final version, 18 November 2015, Public Distribution, http://www.concerto-project.org/results

[12] Eclipse Layout Kernel, https://www.eclipse.org/elk/

[13] Acacia+, http://lit2.ulb.ac.be/acaciaplus/

[14] Xtend, https://eclipse.org/xtend/documentation/2.7.0/Xtend%20User%20Guide.pdf

[15] Massif Ecore description,
https://github.com/viatra/massif/tree/master/plugins/hu.bme.mit.massif.simulink/model

[16] AMASS D3.3 Design of the AMASS tools and methods for architecture-driven assurance (b), 30 March
2018

[17] Massif: MATLAB Simulink Integration Framework for Eclipse, https://github.com/viatra/massif

[18] AMASS D2.1 Business cases and high-level requirements, 28 February 2017

[19] AMASS D2.2 AMASS Reference Architecture (a), 30 November 2016

[20] AMASS D3.4 Prototype for Architecture Driven Assurance (a), 23 December 2016

[21] AMASS D3.5 Prototype for Architecture-Driven Assurance (b), 29 September 2017

[22] Verification Studio (V & V Studio) previously called RQA. The Reuse Company. Accessed August 22th,
2018. https://www.reusecompany.com/verification-studio

[23] AMASS D3.8 Methodological Guide for Architecture-Driven Assurance (b), 31 October 2018

[24] AMASS D4.3 Design of the AMASS tools and methods for multiconcern assurance (b), 30 April 2018

[25] AMASS D4.6 Prototype for multi-concern assurance (c), 31 August 2018

[26] AMASS D5.6 Prototype for seamless interoperability (c), 30 September 2018

[27] AMASS D7.3 open source platform project proposal, 31 January 2018

[28] AMASS D7.5 open source platform provisioning and website (a), 31 July 2017

[29] AMASS D7.6 open source platform provisioning and website (b), 31 March 2018

https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
http://www.concerto-project.org/results
https://eclipse.org/papyrus/
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-architecture-%28c%29_AMASS_Final.pdf
http://www.omg.org/spec/XMI/
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.1_Baseline-and-Requirements-for-Architecture-Driven-Assurance_AMASS_final.pdf
http://www.concerto-project.org/results
https://www.eclipse.org/elk/
http://lit2.ulb.ac.be/acaciaplus/
https://eclipse.org/xtend/documentation/2.7.0/Xtend%20User%20Guide.
https://github.com/viatra/massif/tree/master/plugins/hu.bme.mit.massif.simulink/model
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://github.com/viatra/massif
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.5_Prototype-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.reusecompany.com/verification-studio
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D7.3_AMASS-open-source-platform-project-proposal_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D7.5_AMASS-open-source-platform-provisioning-and-website-%28a%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D7.6_AMASS-open-source-platform-provisioning-and-website%28b%29_AMASS_Final.pdf

