ECSEL
\ Joint Undertaking * ek

European
Commission
I

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Prototype for Architecture-Driven Assurance (b)
D3.5

Work Package: WP3: Architecture-Driven Assurance

Dissemination level: PU = Public

Status: Final

Date: September,29 2017

Responsible partner: B&M

Contact information: Peter M. Kruse <peter.kruse@berner-mattner.com>
Document reference: AMASS_D3.5_WP3_B&M_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

Contributors

Names

Organisation

Stefano Puri

Intecs (INT)

Peter M. Kruse

Assystem Germany (B&M)

Eugenio Parra, José Luis de la Vara, Gonzalo Génova,
Valentin Moreno

Universidad Carlos Il de Madrid (UC3)

Luis Alonso The REUSE Company (TRC)
Alberto Debiasi Fondazione Bruno Kessler (FBK)
Garazi Juez, Estibaliz Amparan, Hudscar Espinoza, | Tecnalia Research & Innovation (TEC)

Alejandra Ruiz

Tomas Kratochvila, Petr Bauch, Vit Koksa

Honeywell (HON)

Jaroslav Bendik

Masaryk University (UOM)

Reviewers

Names

Organisation

Gael Blondell (Peer reviewer)

Eclipse Foundation (ECL)

Martin Helmut (Peer reviewer)

Virtual Vehicle (VIF)

Cristina Martinez (Quality Manager)

Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (Technical Committee Review)

Universidad Carlos Ill de Madrid (UC3)

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

TABLE OF CONTENTS

EXECULIVE SUMMIAIY...ccuiiiniiiieiiiieiieeiiiieiitnittneisienisieesssenssssnssssnsssssssssenssssnssssnsssssssssansssenssssnssssnssssnesssnnses 6
IR 111 4 o Y [Tt o o T 7
2. Implemented FUNCLIONAIILYccceeueiiiiieiciiiicccrreiccrreeecerreea e e s s eneseseeanessennssssnennssssnenassssnennssssnennns 10
N R Yoo o I PPN 10

2.2 Implemented REQUITEMENTScciiiiiieiiiiieeeecitee e ectee e eeite e e e sre e e e stbe e e e e araeeeesbaeesenreeeesnraeeeennsenas 11
2.2.1 System Component SPECITiCAtioN........cccuiiiieiiiiiicciiee e 11

2.2.2 System Architecture Modelling for ASSUIanCe.........ccceccvveeeecieee et eeciee e e eee e 20

2.2.3 V&V-based Assurance Impact ASSESSMENTccccciieeieiiiieeeieeeeectee e et e e e erre e e e eraeee e e 22

2.2.4 Contract-based Assurance COMPOSITIONcccuviiiieciiieiciie ettt e ere e e e ere e e e 43

3. Installation and User Manuals...........cceeeeueiiiiiiiiiimmnuiiniiniiiisesiissssessiisssssssessasesees 48
4. Implementation DESCriPiONccu.iiieeeiiiierciireiee e eerreeeeesreneseesrenassssensssssrenssessrensssssnennsssssennns 49
o R [0 Y oY (=T 0 g 1T o A=Y 1Y, [Yo [0 =SSR 49
4.1.1 System Component Specification BIOCKcccviriiciiiiieciiie e 49

4.1.2 Architecture-Driven AsSUrance BIOCK........cccvvueiiiiriiiiieiiiesiee s 49

L Yo 1V | ¢ ol oo L3 DT ol g o) o) o USSR 50
4.2.1 System Component Specification BIOCKccuviiieiiiiiicciie e 50

4.2.2 Architecture-Driven AsSUrance BIOCK........ccccvrueiriiiriiiiiiieiesieecies e s s 52

TR 0o Ty Vol 11T 1o T3 T 59
DY 0T ¢ VT 1T o L3P 60
3= =T =T 4T TN 62

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

Figure 32.
Figure 33.
Figure 34.

List of Figures

AMASS BUIIAING DIOCKS ...veeeieiiiee ettt e e e et e e e e e bte e e s sbteeesentaeeesntaeeeeanes 8
Layered structure of AMASS 00l MOAUIESoiieiiiiieiiee et 10
Description of main building blocks: System component specification and architecture

OIIVEN @SSUIANCE .ueiiiiiiiiee it e eeitee ettt e e e sttt e e s sttt e e s s beeeesabeeeeesbeeeessaseaeesastaeesssteeessnseeeessnseneessnse 11
oY oY VT =Te [o PRSPPI 12
[V oo [N T Y=d ST g s a1 1o o 1= o A PRSP PP 14

First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion.
Each selection features a short description and example to offer the user an easy decision.16
Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously
selected eneral PatterN LY P .o et e st e e s bae e e e enes 16
Last step of the Assertion-Wizard: Refine the pattern instance with names of available
model elements. Only element names which are valid for the corresponding placeholder

Are AlloOWEd 10 D8 USEd ...ci i e e st e e e s bt e e e e s te e e e ebraeeeenes 17
Pattern-suggestion feature of the Assertion EditOr.......cccoccciiiieeeieeecciiiieeeee e 17
Contract and FOrmalProperty @XampPle......ueeeiicieee ettt e st e e e sbte e e e s beeeeseanes 18
AsSIZN CONTract t0 COMPONENT coiiiiiiiiiieieee ettt e s ettt e e e e s s ssberteeee e e s s ssansraeaeeeas 19

After the creation of a ContractProperty, a Popup appears to decide whether a new

contract has to be created or an existing one has to be instantiated..........ccccecoveeiiiiieeieciieeeens 20
Links through EANNOTAtIONcoiiiiiee ettt e e e e e e et e e e e e ate e e s enbeee e eenraeas 21
Links through traceability meta-model........cccuueiieiiiie e 22
Automatic translation general diagram - From NL 1O LTL....cc.coiieiiiieeeiiieee e 23
Configuration window to setup the K NUMDBETcccuviiiiiiiee e 23
Metric results VISULIZAtIONccueiecieeiie ettt sae e st e st e e snte e s nneeesneeenanes 24
Result window for realiable eXperiment........cc.uei e et 24
Window result for not realiable eXperimentoooeiiie e e 25
Correctness Metrics related t0 NOUNS......cc.ii i it e e eree e sre e e bee e saeeenes 26
Correctness Metrics related tO VEIDSiiciie i re e evee e saee e 27
Tool to generate classifiers using machine learning with metrics of RQAccccoveeeciieeeennnen. 28
[TaaY o] [l o) i el = 1Y =T PSR 28
Completeness Metrics for MOAEISoooieiiii i et e e et e e e bre e e e eanes 29
Consistency MELrics fOr MOTEIScoocuiiee e e et e e e e cbte e e e srte e e e ebreeeeeanes 29
Saving snapshot with the quality of the Projectccceiiieciiie i 30
Graphical representation of the quality evolutionccccueeiieiiii i 30
Information of the SNAPSNOTooiceiiie e e e e e e e e e e e 31
GUI element used to run the V&YV Manager........uuve e iccciiiiieee ettt eeecvreee e e e e e evrrae e e e e e 32
SWitch in 0N the V&V RESUIT VIEW ..ccoeeiiiiiiiiie ettt st e st e e s sbee e e s 32
Example of requirements from Gesture Recognition system (Case Study 7) that are only

RV T 1171 o] [RN 34
Example of requirements that are consistent, non-redundant and not realisable....................... 34
Details for requirements ChECKINGccocuviiiiiiiie e e e 35
Checking and proposed error handliNgooiciiiiiiiiiie et e e e e 36

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

Figure 47.
Figure 48.
Figure 49.

Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

CHESS error model state MaChingocceiiiiiiiiii it ste e sbne e sbeeenes 37
Example of fault tree represented as @ table.........ccueeeiiiee i 37
Example of fault tree represented @S trEecuuvivcciiiee e e 38
Sabotage desigN arChitECTUIE........iii i et e et e e e e bte e e e srte e e e ebeeeeesanes 39
Example of @ Massif MOAEIoooouiiiiieeeee e e e e e e 40
Example of the generated Fault INjeCtOr COAE.......uumiiiiiiiiie e 41
Example of @ SADOTEUI COUB......uiiiiiii e e e e e te e e e e nba e e e eeareeas 41
F N QT 1Y A 0] o < U 42
Contract Editor With CONTENT @SSISt....cicuiiiiiiiiiiiiieeree ettt e sbee e sbeeenes 44
Hierarchical view of the system decomposed into sub-components and contracts 44
CoNtract REfINEMENT VIBW c...uiiiiiiiiie ettt ettt ettt te e sbe e s sate e sabeesaaeesabeeenns 45

Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the
system architecture represented by a tree of components (given by the decomposition into

SUD-COMPONENTS) 1ottt e et e e e et e e e e e bt e e e e ebteee e e bseeeeebtaeesebtaeaesstaeesaseneananses 46
Selecting analysis context for contract refinemMeNtccouveiiciiiii i 46
Part of an .SMV file representing the behaviour of the leaf components of the model............... 47
In this example, for each contract the results of the Contract-based verification are listed in

10 TS Lol I U 48
Tool modules for System Component Specification..........ccoeecvieiiiciiie e, 49
CHESS plugins supporting Contract Based DESIZNc.ueeiieiiiiiiiiiiiieiriieeeesiieeeeecvieee st ee s sveeee s 51
CHESS methodology CONSTIAINt......cciiciiiiiiiiiee et e e st e e e srae e e e sbeeeeseanes 52
Massif and Sabotage Meta-MOUEIS.......cc.uuiiiiiiiiicee e e 53
Connection between Sabotage and Massif meta-models.........cccceeevciiiiiiciiii i 53
Code GENEratioN WOIKSPACEc.uiiii ittt et e et e e s st e e e e sbteeeesabteeeesseneaesnnes 54
Diagram showing the dependences among the plugins. The direction of the arrow means

that the origin plugin depends on the target PlUgiN.......ccccvveeieieciieceecr e 58

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

Executive Summary

The deliverable D3.5 “Prototype for Architecture-Driven Assurance (b)” is the second output of the AMASS
task T3.3 Implementation for Architecture-driven Assurance, whose objective is the development of a
tooling framework to support architecture-driven assurance. D3.5 is the evolution of D3.4, which described
the first prototype.

AMASS has planned three prototype iterations for the framework; this deliverable reports the status of the
aforementioned tooling framework for the second prototype release (Prototype P1), in particular for what
regards the system component specification and the tooling framework supporting architecture-driven
assurance, by describing the supported functionalities and the details about implementation.

This deliverable takes into account the work performed in the other project work-packages, mainly WP2,
WP4, WP5 and WP6 because they have strong dependencies with T3.3. Indeed, in this deliverable a set of
functionalities regarding the system component specification have been selected from AMASS deliverable
D2.1 “Business cases and high-level requirements”. D3.5 describes the technologies that allow
implementing all selected functionality.

The logical structural view of the AMASS reference tool architecture elaborated in deliverable D2.3
“AMASS Reference Architecture” [6] has been also considered in this deliverable; in particular physical
components have been mapped to the logical tool components Component Editor and Contract Editor
identified in deliverable D2.3.

WP4 and WPS5 results have been particularly useful for what concerns the argumentation and evidence
metamodel specification; indeed one important point related to the implementation for architecture-
driven assurance is related to the way system architecture-related information can be traced to the
argumentation and evidence models. Two possible solutions are currently under investigation about the
implementation of traceability between system architecture and other assurance-related information.
These solutions are also presented.

The deliverable D3.6 “Prototype for architecture-driven assurance (c)” will be the evolution of this
deliverable; in particular, D3.6 will document the progress about the implementation of the tooling
framework supporting architecture-driven assurance.

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

1. Introduction

The AMASS approach focuses on the development and consolidation of an open and holistic assurance and
certification framework for Cyber Physical Systems (CPS), which constitutes the evolution of the
OPENCOSS! and SafeCer? approaches towards an architecture-driven, multi-concern assurance, and
seamlessly interoperable tool platform.

The AMASS tangible expected results are:

a)

c)

The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer
conceptual, modelling and methodological frameworks for architecture-driven and multi-concern
assurance, as well as for further cross-domain and intra-domain reuse capabilities and seamless
interoperability mechanisms (e.g. based on Open Services for Lifecycle Collaboration (OSLC)3
specifications).

The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC Application Programming Interfaces (APIs) with external tools (e.g. engineering
tools including V&V tools) and on open-source release of the AMASS building blocks.

The Open AMASS Community, which will manage the project outcomes for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse

community# is a strong candidate to host AMASS (See D7.3 and D7.5 for further details).

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding project
scientific and technical objectives are addressed by different work-packages.

1 WWWw.opencoss-project.eu

2

www.safecer.eu

3 https://open-services.net

4 www.polarsys.org

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 62

http://www.opencoss-project.eu/
http://www.safecer.eu/
https://open-services.net/
http://www.polarsys.org/

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

AMASS Reference Tool Architecture

Architecture-Driven Assurance (STO1) Multi-Concern Assurance (STO2) @ -
s, g, | M &

Certification Safety/S€curity
Liaison Assessment

Component Supplier

\
1
1
1

Component ~ Module Assurance

AMASS Platform Basic Building Blocks Release Case Development

m wpr4 WP5 WPG CommonAssurance &
System Componen Assurance Case Evidence Compliance Certification Metamodel
Specification Specification nent 1ent (CACM) Product Engineering

{]

S
U N
Design Validation &
Verification

Development Quality
Cross/intra-Domain Reuse (STO4) Seamless Interoperability (STO3) Management

el S Sy

Figure 1. AMASS Building blocks

Since AMASS targets ambitious objectives related to architecture-driven assurance, multi-concern
assurance, seamless interoperability support and cross-domain and intra domain assurance reuse, the
AMASS Consortium has decided to follow an incremental approach by developing rapid and early
prototypes.

The benefits of following a prototyping approach are:

e Better assessment of ideas by focusing on a few aspects of the solution.

e Ability to change critical decisions by using practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks,
are aligned, merged and consolidated at Technology Readiness Level (TRL) 4 (technology validated
in laboratory).

2. During the second prototyping iteration (Prototype P1), the single AMASS-specific Building Blocks
will be developed and benchmarked at TRL 4.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL 5 (technology validated in relevant
environment).

Each of these iterations has the following three prototyping dimensions:

e Conceptual/research development: development of solutions from a conceptual perspective.

e Tool development: development of tools implementing conceptual solutions.

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

e (Case study development: development of industrial case studies using the conceptual and tooling
solutions.

As part of the Prototype P1, WP3 is responsible for driving the work resulting on architecture specification
in order to design and implement the basic building block called “System Component Specification” (see
Figure 1). This part of the AMASS platform manages component and contract-based design (see D3.1 [9]
Section 3.1.1), also related to architecture-driven assurance.

This deliverable reports the tool development results of the “System Component Specification” basic
building block. It presents in detail the pieces of functionality implemented in the AMASS platform tools,
their software architecture, the technology used, and some source code references.

Other important parts of D3.5 document are:
e Installable AMASS Platform tools for the first prototype
e User Manuals and installation Instructions

e Source code description

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 62

() Amass

Prototype for architecture-driven assurance (b)

D3.5V1.0

2. Implemented Functionality

2.1 Scope

The scope for the second prototype iteration is the provision of modelling tools for system component
specification, including a contract-based approach and the link with the assurance case specification. The
main scope is highlighted with a red rectangle on Figure 2, which shows the general layered structure of
the AMASS platform (from AMASS deliverable D2.3 [17]).

]
AMASS HMI
nininiete s b § v s & 3 1 & o v 5Suiiuiiatintioiioiieiiiie e el
* .

. s [—1 1 1

n a
c : Contracts : Assurance Analysis Cross-Intra domain Seamless
O = Management] reuse Interoperability
o .
w = .
2 oe . __ B e .
Q = -
< ;

H — E— E—

|} .

=| System Component Evidence Assurance Case Compliance

. Specification Management Specification Management

.

..IIIIIIIIIIII"
Infrastructure —]
Assurance Project Assurance
Lifecycle Traceability
Management

General Purpose

Platform Management

Figure 2. Layered structure of AMASS tool modules

Figure 3 illustrates the component decomposition of these tools based on the design specification
documented in deliverable D3.2.

H2020-JTI-ECSEL-2015 # 692474

Page 10 of 62

‘U\/ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

3 Architecture-Driven Assurance

3 External System - Design Tools Somponents
| i «componen.t» V&V-based Assurance Impact Assessment
System Architecture Modeling for Assurance|
Interaction with external toals o ecomponents
not implemented in Prototype 2 — § = Requirement Analysis
G P , =] CHESS Plugins
‘l’ F «component:
=component. = 1 CHESS Plugins
Rhapso
psotl) 3 External V&V tools
«components =component.
AutoFocus3 «components =] Behavioural Analysis 5
Assurance Patterns Library Management R wcomponents
«scomponents scomponents OCRA
Compasy Module not implemented = CHESS Plugins
«components in Prototype 2
«components
=] Safety Anaysis =components
XSAP
«components
=] CHESS Plugins
«components «Component»
Contract-based Assurance Compaosition nuXmy
«components
=] Contract Editor with Content assit
«components

=] Contract-based Analysis r"\
= 1 CHESS Plugins Y S \

«component»
«Components =1 CHESS Plugins
=] Contract-based Views
«components
=] CHESS Plugins

[|

3 AMASS Platform basic building blocks | use! !

' '
: W use

«components

System Component Specification

«Components «Ccomponent»
=] Architecture/ Component/Requirement Editor = | Contract Editor

«Ccomponent» «components
= 1SysML plugins =1 CHESS plugins

Figure 3. Description of main building blocks: System component specification and architecture driven assurance

2.2 Implemented Requirements

From the requirements point of view, this second prototype iteration focuses on a set of AMASS
requirements as defined in the AMASS deliverable D2.1 “Business cases and high-level requirements” [16].
Each requirement together with the implementation done so far to implement the requirement is shortly
outlined in the following sections.

2.2.1 System Component Specification

2.2.1.1 System Architecture Edition

System architecture specification is supported by the Papyrus UML/SysML editor [5]. The selection of
UML/SysML has been driven by the wide adoption of these modelling languages in the industry in different
domains. Then, the selection of Papyrus UML/SysML editor has been driven by the fact that Papyrus is one
of the most appreciated solid open source tools available in the industry for professional modelling; in
particular, recently the Papyrus Industry Consortium has been created to support a model-based
engineering platform based on the domain specific and modelling capabilities of the Eclipse Papyrus family

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 62

Prototype for architecture-driven assurance (b) D3.5V1.0

UA) AMASS

of products. It is worth noting that Papyrus has also integration facilities with other tools, such as the
commercial IBM UML Rhapsody tool; in addition, it supports the XMI OMG standard [8] for the interchange
of UML models between UML tools.

Through Papyrus editor (see Figure 4), SysML Blocks and UML Components can be used to model the
architectural entities as required by the AMASS component meta-model definition (see D2.3 [6]).
Decomposition of block/components into sub-blocks/sub-components can be modelled by using internal
block diagrams or composite structure diagrams. Both Papyrus Editor and other AMASS components are
under the same Open Source license, which supports the reuse of these previous results into the AMASS
platform.

Information about the functional behaviour of a given component/block can be provided through state
machine diagrams.

System architecture UML/SysML models and diagrams are stored in individual files in the Eclipse
workspace.

£ runtime-New_configuration - Papyrus - WBS/WBS.di - Eclipse Platform
File Edit “J Diagram Navigate Search Papyrus Project Run CHESS Window Help

" Associations
& A_bscu?_bscu

= No_Double_Fault: Boolean

E in Valid: Boolean

BN e B iR A = Ralv He RN IE R A Rl R TR R v S g - 100% s QT Qi G
P IS RS AT o | A~ &g~ [ovick Access] | % | i [04
[f Project Explorer 52 = O |~ wesdi = g
=% = «Blocks ~ | 55 Palette B
1 Online Transactional Checkout ~ System NEE
v = WBs = properties -
v 3 WES B in Pedal_Pos: Boolean % Associgtions %
- di [in Pedal_Pos2: Boolean ' Association
= notation E out Brake_Line: Continuous
- (51 No_Double_Fault: Boolean # DirectedAssoc..
‘’d__u_r_n_l__ hd /Composit\on
- - & ModelElements <
% Model Explorer 3% B 5 Specations
=@ elE - 3 Package
S traints Actor
~ [= WheelBrakingSystem . cons o %
E modelRequirementView (S brake time: System Brake Time Rlack
~ B3 modelSystemView 1 i PortandFlows
~w 3 PhysicalArchitecture +bscy + 4 Port
«Blocks System
[+Blocks Hydraulic “:‘SOCCU“” + hydraulic & FlowPort
.
=Blockn BSCU IORETtEE Blocks [Flowspecificati...
?Assnmtmm [in Pedal_Pos1: Boolean Hydraulic & DataTypes P
Association2 [in Pedal_Pos2: Boolean
_t properties o)
«Blocks SUbBSCU 1 out Valid: Boolean & e s e DatzType
7 A_bscul_bscu E out CMD_AS: Boolean B in CMD_AS: Boolean [T ValueType

PrimitiveType

o5 CommentAn..

BZ Diagram PhysicalArchitecture BDD
B2 Diagram PhysicalArchitecture_CD
B2 Diagram PhysicalArchitecture CD
E3 Contracts
E3 modelComponentView
B3 modelDeploymentView
B3 modelAnalysisView

operations

operations

censtraints
{7} {Valid := bscu1.Valid or bscu2.Valid }

= Parameter

»,
3

BR PhysicalArchitect... 52 Hydraulic_IBD | [Bd SubBSCU_IBD | By Contracts | [System_IBD By SowtwareComponent... | Bg SoftwareContracts_CD

E ConstraintBlock
[ConstraintPro.

£ = & - =
N Properties 53 % = a
= e [Prop o
Exl M System
-
UML Name ‘ System
Comments Qualified name WheelBrakingSystem:: modelSystemView: PhysicalArchitecture: System
SysML
% ls abstract Otrue @ false ls active Otrue @ false
Profile
Style Is leaf Otrue @ false
Appearance Visibility public w
Rulers And Grid
Owned attribute G| & 4| %8|
Advanced
(= hydraulic : Hydraulic ‘
= 1= hseu: RSCLI e
HR=-] e |

Figure 4. Papyrus editor

The Papyrus UML editor supports the definition and application of UML profiles. In AMASS, Papyrus tool is
used together with the CHESS profile extension [3]; in particular CHESS is used here as extension of the
UML and SysML modelling languages to allow the modelling of contracts, as explained in the following
sections, according to the AMASS component meta-model needs (see D2.3 [6]).

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

CHESS also provides extension to the Papyrus tool, for instance by adding dedicated diagram palettes to
facilitate the creation of the CHESS entities, or by adding a dedicated property tabs view for editing CHESS
entities properties (see Section 4).

It is worth noting that the CHESS profile also provides other modelling capabilities, such as the
dependability profile [10] for failure modelling and specific support for timing properties (see Section 4
about CHESS features). Moreover, CHESS provides a methodology for the design, verification and
implementation of CPS SW systems [1]. The aforementioned features are not currently part of the AMASS
basic building blocks; their possible role and integration in AMASS will be studied during the project. The
CHESS profile follows the same licenses approach as Papyrus and other AMASS components, which
supports the easy integration of the developments from the intellectual property perspective.

2.2.1.2 Formalize Requirements with Formal Properties

Requirements can be modelled in Papyrus using the SysML profile; indeed, SysML comes with the
dedicated Requirement stereotype (see Figure 5) which can be managed through Requirement Diagrams.
The availability of system requirements represented in the model allows to model their traceability to the
different parts of the system model. In particular, by using the SysML profile, requirements can be traced
to the entities of the architecture, by using the Satisfy link defined by SysML. In this way, model-driven
support can be enabled to support requirement traceability (see e.g. [7]), which is an important quality
factor to be guaranteed while building systems.

In AMASS, a formal property represents a distinct entity which is used to provide a formal description of a
given system requirement, the latter usually described using informal textual language.

To model formal properties, CHESS profile defines a class called FormalProperty as an extension of UML
Constraint (see Figure 5). A FormalProperty can be created first in the model and then it has to be
linked to the requirement that it formalizes; the SysML trace link can be created in the SysML Requirement
diagram or through the tabular editor provided by Papyrus®. Then the formal description of the
requirement has to be provided by using the specification attribute coming with the FormalProperty
entity.

5 https://wiki.eclipse.org/Papyrus User Guide/Table Documentation

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 62

https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation

(-A./ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

~P “WBS.di i3 = 8

«Requirement=
Brake_Delay
«Reguirements
text=The delay between a brake command (given
via the brake pedal) and its execution (by
applying brake force to the wheel) shall not
exceed 10ms

«Formal Property= N
{7} System_Brake_Time_Guarantee

{always ((change{Pedal_Pos1) or change{Pedal_Pos2)) - =
(time_until{ change{Brake_Line)) ==10)}}

LF SowtwareComponent... By SoftwareContracts_CD Select_Switch_C5D BSCU_CSD | | WES_Requirements 23 | ¥t
[T] Properties &3 4 ~ = 0

{7} System_Brake_Time_Guarantee

UML MNarme Systermn_Brake_Time_Guarantee Constrained element NI
Comments Visibility public v

Profile

Style Context B3 Contracts e | |G| | o

Appearance

Rulers And Grid :

Advanced Specification IC°”5tr3'"t5F'EC="E|WE}‘5((Chaﬂge(Pedal_PDﬂJnrchange(Pedal_Pn52))-> % (s

(time_until{ change(Brake_Line)] <=10])"

[l [=
Figure 5. Modelling FormalProperty

It is worth noting here that the CHESS profile does not force the usage of a particular formal language; the
choice of the formal language to be adopted for the formalization of requirements is made by the
modeller, typically according to the adopted process/methodology. CHESS currently supports integration
with the OCRA contract specification language®; in particular, through the CHESS Contract plugins
explained in Section 4 it is possible to verify formal properties specification with respect to OCRA syntax.

2.2.1.3 Semi-Formal Contract Definition

As users might not be familiar with formal expressions to define contracts, we offer the possibility to use a
set of patterns with which many assertions can be formulated. We thought about different ways to

6 https://ocra.fbk.eu

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 62

https://ocra.fbk.eu/

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

support the user at writing template assertions and ended up providing two ways, which allow the user to
specify assertions by using our patterns more easily.

The first option is to use an Assertion Wizard, which guides him or her through a preselected set of
available pattern constructs together with examples. If the user has decided on a pattern, he or she just
needs to adjust minor details such as variable names or conditional relations until the assertion is
completed. The other option for the user is to write assertions in a text editor, which features syntax
checks and auto-completion. In the following paragraphs we explain both concepts in detail.

Assertion Wizard

As applying a template language can be quite difficult without any guidelines, we decided to implement a
wizard that guides the user through the process of choosing and filling out an appropriate pattern
structure for their statement. The first page of the wizard shows the user the three main pattern types of
our template language: Global Invariant Patter, Simultaneity Pattern, and Trigger-Reaction Pattern (see
Figure 6). We have added a short description and an example for each one so that it is easier for the user
to make a decision.

After selecting the main pattern type, several possible pattern instances of the type will be presented to
the user. Each of them features an example to demonstrate a possible application (see Figure 7). If an
appropriate pattern instance is chosen, the user will be directed to the last page of the wizard, where the
patterns construct needs to be customized. The user can now replace non-terminals by simply clicking on
them. A drop-down menu shows possible substitutions and the option to use a macro. If a terminal that
must be replaced by an event name is selected, a list containing all event interface names of the currently
selected component appears. That way the user can only choose and use model elements that are in scope
(see Figure 8). The same holds for terminals that must be replaced by variable names except that the
suggested names come from all available ports except the event ports. We also provide a set of time units
the user can choose from when specifying timed behavior. Only if no non-terminals remain in the pattern
instance and all terminals are replaced by actual interface names, values, units, etc., the assertion can be
assigned on a selected component. Otherwise, the wizard will hint the user at the remaining non-terminals
or terminals.

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

s 5
B Assertion Wizard l SR X

Create a new Assumption or Guarantee based on patterns

Select whether you want to create an assumption or a guarantee and choose a general
pattemn type.

Select which kind of Assertion you want to define:
Assertion Type
(@) Assertion () Assumption () Guarantee

Select which Pattern you want to use:

General Pattern Type

() Global Invariant Patterns
For nearly all systems we want to define conditions, which shall always held,
regardless of the state the system is currently in.
The Glebal Invariant Pattern allows the definition of those conditions,
as they do not have a restricted scope but need to be fulfilled at all points in time.

Example: the supply_voltage is always in the range from 5V to 12V.

() Simultanety Patterns

These Patterns are used to specify the dependency system behavior,
that happens simultancusly. They can express the dependency of one condition to another
or can state that a specific event is only allowed to occur while a certain condition holds.

Example: While ignition occurs, car_key_status is INSERTED",

@) Trigger-Reaction Patterns

System behavior can also stand in some trigger reaction relation to each other.
So does some event occurence always need to trigger another event or
result in the satisfaction of a specifc condition

Example: Whenever crash_detected occurs then in response airbag_ignition occurs during within 50ms.

< Back Mext = Finish

%

Figure 6. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion. Each selection
features a short description and example to offer the user an easy decision.

B Assertion Wizard l of X

Create a new Assertion based on Trigger-Reaction Patterns

Select a pattern of a more specified set of patterns based on your choices,

Please select a pattern that will be the base of your specification,
On the next page you will be able to modify it further.

General Pattern Type
@ T1: Whenever [event] then in response [timed_cond_or_event].

Example: Whenever QueryFails occurs then in response ErrorMessage occurs within Sms.

() T2: Whenever [event] while { [conditions_temporal_duration]) then in respense [timed_cond_or_event].

Example: Whenever QueryFails occurs while sys_state is "ACTIVE”
then in response ErrorMessage occurs within Sms.

~) T3: Whenever [condition] [duration] then in response [timed_cond_or_event].

Example: Whenever brakeForce is greater than 80 % for at least 500ms
then in response InitiateFullBraking occurs within 100ms.

() T4: Whenever [condition] [duration] and ([conditions_temporal_duration]) then in response [timed_cond_or_e

Example: Whenever brakeForce is greater than 80 % for at least 500ms and brake_pedal state is "BRAKII
then in response InitiateFullBraking occurs within 100ms.

(7) C1: Whenever [precond_or_events] then in response [postcond_or_events].

Example: Whenever dataProcessing occurs and then dataReceived occurs within Sms
then in response dataAck occurs within 10ms.

[<Back | nea> | Finish

%

Figure 7. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously selected general
pattern type

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 62

@ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

-
i ' Assertion Wizard l El &J

Create a new Assertion based on Trigger-Reaction Patterns

Customize the template based on your model.

You choose the following Pattern:
T1: Whenever [event] then in response [timed_cond_or_event].

You may now customize the pattem fitting your needs.

Whenever {the absolute value of] Pedal_Pos changeste " DOWMN " thenin response

{the absolute value of} [PORTMAME] increases above [value] after at most [number] [timeunit]

Revert to "[var_change]"

Pedal_Pos
Brake_Line

b

4

Figure 8. Last step of the Assertion-Wizard: Refine the pattern instance with names of available model elements.
Only element names which are valid for the corresponding placeholder are allowed to be used

Assertion Editor

If the user has already gathered some experience with our template language, the use of the Assertion
Wizard might include too many unnecessary steps to formulate a valid assertion. The right pattern
structure is already known by the user, so going through the wizard seems inefficient. With the Assertion
Editor, we allow the user to directly type in the desired assertion. As writing valid assertions free-hand can
be difficult and error-prone, we offer support with an online syntax check and suggestions for auto-
completion of the statement, already known from various programming IDEs. Figure 9 shows the Assertion
Editor suggesting valid possibilities to continue the current statement.

We chose Xtext as the technology to base our text editor on. That allowed us to easily implement the
editor merely only by providing the BNF in the Xtext grammar format and slightly adjusting the auto-
completion suggestions. The rest was done automatically by the code generation feature of Xtext. Another
important reason why we chose Xtext is because it features methods to automatically translate
expressions from one language to another. This can be used later to translate our template expressions
into a formal language expression.

.
.| Create a new Assertion &J
Whenever Pedal_Pos changes to 'DOWN' then in responseJ -
(2] Brake_Line : Continuous -

2| Pedal_Pos: Enumeration
'= all of the following conditions hold:
'= any of the following events occur:

'= at least of the fellowing conditions holds:

m

'= none of the following condition holds:

QK '= none of the following events eccur:

\, '= not all of the following condition hold:

'= only one of the following conditions holds:
'= the absolute value change of

'= the absolute value of

'= the following events eccur in arbitrary order:

Figure 9. Pattern-suggestion feature of the Assertion Editor

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

The translation of pattern expressions to LTL or similar temporal logics is planned to be supported in the
final prototype.

2.2.1.4 Structure Properties into Contracts

CHESS profile supports the modelling of weak and strong contracts to support contract-based design (the
reader can refer to AMASS D3.1 [9] for an introduction to weak and strong contracts and contract-based
design).

Contracts are available in the CHESS profile as a special kind of classifiers (i.e. an entity used to describe
instance-level entities of the same kind). Contracts can be created in UML class, component, or SysML
block diagrams. A Contract comes with two attributes representing the assumption and guarantee formal
properties.

By using the CHESS Papyrus extension, when a Contract is created in the model, the tool automatically
creates a pair of empty FormalProperties, the latter playing the role of assumption and guarantee of
the Contract itself.

Alternatively, a given FormalProperty available in the model before the creation of the Contract can
later be assigned to the Contract itself, as assumption or guarantee.

Figure 10 below shows an example of Contract and FormalProperty modelling; the figure shows the
Assume and Guarantee attributes owned by the Contract, which in the example are bounded to the
represented FormalProperty. A link between the Contract and the FormalProperty is also
depicted.

«contract»
«constraint»
CriticalValuelsManaged

«Contract»
Assume=TRUE
Guarantee=FunctProp
Formalize=CriticalValueFunctRequirement

parameters
| constraints
«formalProperty» N
FunctProp «formalProperty»
{always (critical_value implies TRUE
in the future SHM)} {TRUE}

Figure 10. Contract and FormalProperty example

2.2.1.5 Assign Contract to Component

In CHESS, a Contract is assigned to a given UML Component/SysML Block by instantiating the Contract
itself in the Component/Block. In particular, a ContractProperty attribute has to be created for the
Component/Block first and then the ContractProperty type must be set to the particular Contract.
Therefore, in CHESS one important piece of information related to contract-based design is modelled
through the contract instance, which represents a Contract associated to a Component/Block.

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

ContractProperty has also an attribute that allows specifying if the associated Contract has to be
applied to the Component/Block according to the weak or strong semantics” [9].

As example, Figure 11 shows the criticalValuelsManaged ContractProperty owned by the FunctionalSystem
Block (the ContractProperty is shown in the diagram in the Constraint compartment of the Block). The
criticalValuelsManaged property is typed as CriticalValuelsManaged Contract
(criticalValuelsManaged:CriticalValuelsManaged), the latter is also represented in the diagram. The
criticalValuelsManaged property represents the association of the CriticalValuelsManaged Contract to the
FunctionalSystem Block.

& *model.di 22

«system»
«block»
FunctionalSystem
properties
in critical_value: Boolean
out SHM: Boolean

operations

constraint:

criticalValuelsManaged: CriticalValuelsManaged |

<

B3 FunctionalArchite... &2 553 ComponentTypesAnd... { Bl Componentimplemen... i3] LogicaIToPhysicaI...‘G Fun
= <Property> criticalValueIsManaged : CriticalValuelsManaged

UML—’ Applied stereotypes: @

Y

Profile [@ ContractProperty

Appearance |
Advanced \
|

Ports

Figure 11. Assign Contract to Component

This allows to potentially reusing the same Contract in different contexts/systems (as analogous to the
practice of sharing requirements across projects, i.e. software/system requirements reuse).

7 As discussed [9], while strong assumptions define compatible environments in which the component/block can be
used, weak assumptions define specific contexts where additional information is available. Hence, a component/block
should never be used in a context where some strong assumptions are violated, but if some weak assumptions do not
hold, it just means that the corresponding guarantees cannot be relied on.

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

The second AMASS prototype (Prototype P1) enables also the possibility to automatically create a contract
when a ContractProperty is created, see Figure 12. In this case, the association contract-component is
1 to 1. The first advantage is that, during the editing of the contract, the content assist supports the user
suggesting which are the ports and the attributes name of the component. The second advantage is that,
the operation of contract definition is improved in terms of time spent.

& Question pe

'.6.' Do you want to create a new contract or instantiate an existing one?

7

Figure 12. After the creation of a ContractProperty, a Popup appears to decide whether a new contract has to be
created or an existing one has to be instantiated

2.2.1.6 Contract Refinement

The CHESS profile allows to model contracts refinement/decomposition along the
refinement/decomposition of the architectural entities, the latter provided through UML composite
structural diagrams or SysML block definition diagrams. In particular, contract instances play a key role
during the refinement specification. Indeed, contracts refinement is modelled for contract instances, not
for the Contracts entities; this is because the same Contract can be reused in several contexts (i.e.
instantiated in several Components/Blocks), and for each context the refinement of the same Contract
could be different. So through the CHESS profile it is possible to model how a given contract instance is
refined by a set of other contract instances.

In practice, given a contract instance C assigned to a component A, and given the decomposition of A into
subcomponents (A,...,An) and the contracts instances assigned to each subcomponent (Ci<1.ks,... ,Cn<1.j>)., it
is possible to model how Cis decomposed by (a subset of) (Ci<1. ks)...,Cn<1. j>).

2.2.1.7 Modelling Failure Behavior

For the modelling of failure and security behavior (e.g. an accidental / malicious fault occurring at a given
component’s input/output port) no specific implementation has been currently identified as official part of
the AMASS building block; this is currently an ongoing task in the AMASS project.

Existing support for failure behavior modelling is available from state of the art projects and modelling
tools, like the UML/MARTE dependability profile coming with the CHESS modelling language [3] (see e.g.
section 2.2.3.4).

The investigation of the extension of the CHESS dependability profile to support definition of security
threats is currently an ongoing task.

2.2.2 System Architecture Modelling for Assurance

2.2.2.1 Link Architecture-Related Entity to Assurance Case Information

The allowed links between architectural entities and the other parts of the CACM AMASS meta-model
(about management of the assurance project as indicated in Figure 2) are currently described in the
CONCERTO deliverable D2.2 [4].

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

As explained in the previous sections, the AMASS component model has been made available as Eclipse
plugin as UML/SysML language extended with the CHESS profile for contracts, while the other parts of the
CACM (argumentation, evidence, compliance management) are currently implemented as Ecore meta-

mode8 (not as UML profile).

Within the UML profile definition, it is not possible to refer to an Ecore entity which is not related to the
UML language, so the aforementioned links (e.g. from a CHESS-Contract to an argumentation-Claim)
cannot be expressed through the CHESS profile; the links have to be managed with some additional
modelling support, as explained below in the text.

Indeed, in the context of Task 3.3 we are currently investigating the best approach to allow the modelling
of the links between the component model entities and the other parts of the CACM. One solution could
be to use the EAnnotation mechanism available in Ecore: EAnnotation allows to attach extra
information to any object available in an Ecore model. In our case, EAnnotation could be created for a
UML model entity (for instance a Contract)?; then EAnnotation could be used to refer to an entity of
the CACM defined in some external (to the UML) model (as a Claim in an argumentation model). Figure 13
gives a picture of what has been stated above (CACM model in the figure has to be intended as the model
for argumentation, evidence, and compliance management).

Ecore
metamodel

UML2 meta- CACM meta-
model model

refers

UML profile

compliant with

compliant with

UML model CACM model

Using EAnnotation

Figure 13. Links through EAnnotation

Another possibility is to use a traceability support based upon a dedicated traceability meta-model (see
Figure 14). In this way, a link would be created according to the traceability meta-model; each link would
own a reference to the UML model entity and a reference to the CACM model entity to be associated. We

8 Ecore is a model provided by the Eclipse EMF project (https://www.eclipse.org/modeling/emf); Ecore can be used to
model the structure of a given domain of data models. Typically, Ecore is referenced as meta-meta-model; the
structure of a given domain of data models is referenced as meta-model, where a model is a concrete instance of this
meta-model.

9 It is worth noting that EAnnotation can be added to UML model entities because UML models in Eclipse are
implemented as Ecore models.

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 62

https://www.eclipse.org/modeling/emf

"/"‘,‘ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

are also currently evaluating the applicability of this approach to the needs of traceability addressed in
WPS.

Traceability
metamodel

compliant with

refers Traceability

CACM model
model|

UML model

Figure 14. Links through traceability meta-model

It is worth noting that both the aforementioned solutions can also be used to model links between
architectural entities and process related information, being the latter defined according to WP6 results (at
the time of writing, the specification of the links between architectural entities and process related
information has not yet been fully formalized, it will be defined in the context of task T3.2).

We are still investigating the benefits and limits of each of the aforementioned solutions, in particular by
using the CAPRA tool which offers an implementation for the solution depicted in Figure 14; CAPRA is also
under extension in the context of WP5. What is worth noting is that the usage of a dedicated traceability
meta-model could be made generic in order to support traceability between assurance case information
and architecture-related entities specified with other non-UML modelling languages. For instance, by
assuming the availability of an Architecture Analysis and Design Language (AADL)10 editor in Eclipse, the
same traceability model could be used to create links between AADL entities and argumentation/evidence
entities available in the CACM model.

2.2.3 V&V-based Assurance Impact Assessment

2.2.3.1 Requirements Formalization for analysis of Temporal Realizability — Requirement Quality
Analyzer approach

Requirement Quality Analyzer (RQA) tools provide the possibility to create custom-coded metrics made by
a user. Using this feature, a metric has been created for the detection and evaluation of the temporal
elements in a set of requirements.

The implementation consists of a NLP software mechanism applied to textual requirements in order to
make a quality assessment, in terms of temporal consistency. The quality assessment is an automatic
translation from requirements written in Natural Language to LTL, using the RSHP Model applied to textual
requirements.

To summarize, the metric looks for elements representing time in the requirements and then checks that
they do not present temporal conflicts. This process starts by formalizing requirements using certain
writing patterns, with the objectives of extracting relevant information from them (concepts, relationships
and properties), storing and reusing them thanks to RSHP.

10 http://www.aadl.info/aadl/currentsite

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 62

http://www.aadl.info/aadl/currentsite

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

Requirements

RSHP Model to textual requirements

Requirements Formalization

Pattern
Matching

Figure 15. Automatic translation general diagram - From NL to LTL

The resultant LTL is being processed by Acacia+, a open source tool with algorithms to check the
realiability, syntehisis and optimization of LTL specifications. Thus, Acacia+ will check the temporal
consistency and return if the resultant LTL is realiable (high quality) or not (low quality).

According to custom-coded development rules, every metric shall follow three steps: configuration,
evaluation and results. For the described metric, these steps have been implemented this way:

Configuration: Acacia+ tool requests different parameters; however, only one of them is been configurable
by the user. Precisely, it is the K number of accepted states (through lower and upper limits and an
incremental coefficient), which restricts the number of iterations in case the problem is hard to be
computed.

! Configuration — O x

Acacia+ options

Range of values of k:
From || | to | | in steps of |:|

Accept Cancel

Figure 16. Configuration window to setup the K number

On the other hand, the metrics require the pattern or pattern group needed for formalization.

Evaluation: the objective is to provide the LTL specification to Acacia+. In this sense, it will:
1. Analyse the entire requirement specification.
2. Check which of the requirements matches the patterns selected in the configuration step.
3. Study the results of the formalization of the requirements.
4. Translate the NL to LTL using the results of the formalization.
5

Execute the resultant LTL specification in Acacia+, which will return at least a winning strategy
(according to K number) or a counter-strategy in case the formula is not reliable.

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

Results: there are only two possible final states: temporally realiable specification or not (with the selected
configuration). Thus, for the realiable case, the result is high quality (3 stars) or low quality (1 star) for the
case it is not possible to demostrate the realiable. Additionally, there is a result window showing the final
translation and Acacia+ result.

Metrics

Identifier Name Quality Score Quality date Summary
v 4525 Acacia+ Temporal Yerification 1 1.00 9/4/2016 11:55:23 &AM Meither rezlizability nor unrealizability has been proved.
4526 Acacia+ Temporal Venfication 2 0.00 9/4/2016 11:55:23 AM Formula is realizable.

Figure 17. Metric results visualization

It is remarkably that, for the cases the problem is not realiable, RQA will indicate to increment the K
number in the configuration step, thanks to Acacia+.

LTL Viewer — | >

Cliert 1: < When engine activates, propeller shall be canceled until ignition starts = ~
Gilengine=1) -= X{{propeller=0)Ulgnition=1)));

HCliert 2: < When aircraft launches, wheel shall be closed until electrical power system activates =
Gilgircraft=1) -= X(fwheel=0)Uizlectrical power system=1)));

H Mutual Exclusion:
« When ignition starts, electrical power system shall be stopped =
< When electrical power system activates, ignition shall be deactivated =

Gifignition=0) + (electrical power system=0});

HEHHHHHEHAR Realizabilty checking and synthesis SHHEEHEHEHEHHNN
Calling tl2ba to conver each specification to automaton
spec ul... done

Optimization on automaton for ull: Detect bounded/unbounded states. .

Tum-based automaton for ul]

nb states: 17 (Environment: 7/System: 4)
nb accepting states: 5

nb unbounded states: &

Ok

Figure 18. Result window for realiable experiment

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 62

@ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

LTL Viewer — O =

nb states: 10 (Environment: 5/System: 5) -
| nb accepting states: 4
. 4 nb unbounded states: &

Optimization time: 0.0

Forward algorthm {OTFUR):

Mb of terations: 68

Mb of states explored: 35

OTFUR time: 0.0

Winning positions extraction time: 0.0

Size of antichain of winning positions (System, Environment): (0, 0)
Blapsed time: 0.0

Mo solution found for spec ulfork =5and ¢ =19, 1. 1, 1]

Bound on k and ¢ reached for spec ull -» computation aborted {no winning solution within the bounds k = 5
andc=[159.1,1,1])

HHHHEHEHHHHHEEE Beecution recap HHHHEHEEHHEHA TS
Meither realizabilty nor unrealizabilty has been proved. You may retry with higher k and ¢ values.
Total time: 0.05s

Memony: 15.87MB W

Figure 19. Window result for not realiable experiment

2.2.3.2 Metrics

This section describes the implementation in the RQA tool related to the metrics presented in the section
2.4.4 Metrics of the D3.2 deliverable [14].

2.2.3.2.1 Metrics for requirements

Following describes the metrics implemented in the RQA tool related with requirements, and presented in
the section 2.4.4.1 Metrics of the D3.2 deliverable.

2.2.3.2.1.1 Correctness metrics

The RQA tool implements the follow correctness metrics based on the System Knowledge Base (see Figure
20).

In-System Conceptual Model Nouns (SCM Nouns)

The RQA tool allows to create the metric “SCM nouns”, to check if each term in the requirements belongs
to the SCM view or any semantic.

Out-of-System Conceptual Model Nouns (Out-of-SCM Nouns)

The user can create the metric “Out-of-SCM Nouns”. This metric checks if each term does not belong to
any SCM view or any semantic cluster.

In-Semantic Clusters Nouns (SCC Nouns)

The RQA tool allows to create the metric “SCC Nouns”. The metric checks if each term of the requirements
belongs to one or more semantic clusters.

Out-of-Semantic Clusters Nouns (Out-of-SCC Nouns)

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 62

| AMASS

Prototype for architecture-driven assurance (b)

D3.5V1.0

The RQA tool implements the metric “Out-of-SCC Nouns”. The metric checks if each term does not belong

to any semantic cluster.

In-Hierarchical Views Nouns (SCV Nouns)

It is allowed to create the metric “SCV nouns” to check that each term in the requirement belongs to one
or more SCM view.

Out-of-Hierarchical Views Nouns (Out-of-SCV Nouns)

The RQA tool allows to create the metric “Out-of-SCV Nouns” to check that each term in the requirement
does not belong to one or more SCM view.

Correctness

Completeness Consistency
Correctness metrics:
Identifier | Metric I... | Name

17,119
16,067
17.047

&

=

oo
oo

oo
[=]=]

oo
oo

Quall,

Range
[0,1)
n.o

Add new metric
Edit metric
Delete metric(s)
Enable Selected
Enable all
Disable all
Search...

Copy to

Select all

Select none

Invert selection

Copy selection to clipboard

Export...

Refresh

No. of ranges: 2

- Indefinite articles (Avoid)
- Passive voice [Avoid)

- TRC - Conditional mode (&void)

1175 Out-of-5CC Mouns
1145 Qut-of-5CC Nouns
1171 _Out-of-SCC Verbs

Based on RMS L

o ROZ Precision
Based on Simple Text content *

2 Precisio
on SKB) ROZ Precision

- RO2 Precision
Based on Textual structure ’

Based on Special Sentences

Custom-code metric

5 50 56 @ &

- Passive voice (Avoid)

- TRC - Conditional mode (Avoid)

RO3 Precision -
RO3 Precision -
RO3 Precision -
RO3 Precision -
RO4 Precision -
RO4 Precision -
RO4 Precision -

RO4 Precision -

Rationale

MNouns that are not part of the SCC must be avoided.
MNouns that are not part of the SCC must be avoided.
Verbs that are not part of the SCC must be avoided.

- TRC - Imperative mode (Enforce)

Subject: Specific Terms (Avoid)

Subject: Generic Terms (Awvoid)

Subject: Part Terms (Avoid)

Subject: Whole Terms (Avoid)

In-controlled vocabulary nouns (Enforce and restrict)
Out-of-controlled vocabulary nouns (Avoid)
In-controlled vocabulary verbs (Enforce and restrict)

Out-of-controlled vocabulary verbs (Avoid)

Weight

instead of...
Ve VOice re..

sertiveness...

RO4 Precision -

RO4 Precision -

In-Hierarchical views nouns (Enforce and restrict)

Qut-of- Hierarchical views nouns (Avoid)

RO4 Precision -

R04 Precision -

In- Hierarchical views verbs (Enforce and restrict)

Out-of- Hierarchical views verbs {Avoid [

Mandatory Quality Level
No R04 Precision -
No RO4 Precision -

In-Semantic clusters nouns (Enforce and restrict)

Out-of-Semantic clusters nouns (Avoid)

ment, you must..

RO4 Precision -

RO4 Precision -

In-Semantic clusters verbs (Enforce and restrict)

Qut-of-Semantic clusters verbs (Avoid)

RO4 Precision -

RO4 Precision -

In-System Conceptual Model nouns (Enforce and restrict)

Cut-of-System Conceptual Model nouns (Avoid)

RO4 Precision -

RO4 Precision -

In-Systemn Conceptual Model verbs (Enforce and restrict)

Out-of-System Conceptual Model verbs (Avoid)

R38 Uniformity Of Language - Define Terms (Avoid Synonyms)
R40 Uniformity Of Language - Unknown Abbreviations (Avoid)
R40 Uniformity Of Language - Unknown Acronyms (Avoid)

Figure 20. Correctness metrics related to nouns

All of these metrics but related to verbs instead of nouns are also implemented in the RQA tool (see Figure

21).

H2020-JTI-ECSEL-2015 # 692474

Page 26 of 62

Figure 21. Correctness metrics related to verbs

2.2.3.2.2 Applying machine learning to improve the quality of requirements

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0
Correctness | Completeness | Consistency
r— Correctness metrics:
| Identifier | Metnc I... | MName ” Rationale
o 17,119 1175 Out-of-5CC Nouns Nouns that are not part of the SCC must be avoided.
o 16,067 1145 Out-of-5CC Mouns Nouns that are not part of the SCC must be avoided.
o 17.047 1171 _Qut-of-5CC Verbs Verbs that are not part of the SCC must be avoided.
| B Add new metric *| [E Based on RMS ,
. '? Edit metric E.' Based on Simple Text content * E‘° RO2 Precision - Passive voice (fvoid)
~ E‘g Delete metric(s) a on SKEB N E‘o R0O2 Precision - TRC - Conditional mode {Avoid)
o Enable Selected E.' Based on Textual structure 4 Elo RO2 Precision - TRC - Imperative mode (Enforce)
P Enable all =) Based on Special Sentences E‘o RO3 Precision - Subject: Specific Terms (Avoid)
o Disable all L;|° Custom-code metric E‘g RO3 Precision - Subject: Generic Terms (Avoid)
s RO3 Precision - Subject: Part Terms (Avoid
W Q Search... - Indefinite articles (Avoid) ° ! 0) instead of...
i i . E‘o RO3 Precision - Subject: Whole Terms (Avoid) .
L 1, Copy to v | - Pazsive voice (Avoid) VE VOICE Te...
o E Selact all ~TRC - Conditional mode (Avoid) E‘° RO4 Precision - In-controlled vocabulary nouns (Enforce and restrict) L erfiveness..
— 5 RO04 Precision - Qut-of-controlled vocabulary nouns (fvaid)
ES Select none —
N og et select o RO04 Precision - In-controlled vocabulary verbs (Enforce and restrict)
g Invert selection _ B)
— % e RO4 Precision - Out-of-controlled vocabulary verbs (Avaid)
Copy selection to clipboard
Py P %6 R0 Precision - In-Hierarchical views nouns (Enforce and restrict)
1, Export... 4 — - . .))
(5 RO4 Precision - Out-of- Hierarchical views nouns (Avaid)
) =
 Qual) Refresh E‘o RO4 Precision - In- Hierarchical views verbs (Enforce and restrict)
| Range - ” Mandatory Quality Level | Sum E‘g RO4 Precision - Out-of- Hierarchical views verbs (Avoid)
IHI 0,1 No 4 W E‘g RO4 Precision - In-Semantic clusters nouns (Enforce and restrict)
':l 1,0 Na > 4 The o E‘o R04 Precision - Qut-of-Semantic clusters nouns (Avoid) ment, you mL
E‘% RO4 Precision - In-Semantic clusters verbs (Enforce and restrict)
E‘o RO4 Precision - Out-of-Semantic clusters verbs (Avoid)
% RO Precision - In-System Conceptual Model nouns (Enforce and restrict)
RO4 Precision - Out-of-System Conceptual Madel nouns (Avaid)
RO4 Precision - In-System Conceptual Model verbs (Enforce and restrict)
RO4 Precision - Out-of-System Conceptual Model verbs (Avoid)
R32 Uniformity Of Language - Define Terms (Avoid Synonyms)
No. of P F‘o R40 Unifermity Of Language - Unknown Abbreviations (Avaid)
0. OT ranges:
(% R40 Uniformity Of Language - Unknown Acronyms [Avoid)

Machine learning techniques are used to improve the quality of requirements. The tool showed in Figure
22 is connected to RQA to extract the values of correctness metrics related with a set of requirements.

H2020-JTI-ECSEL-2015 # 692474

Page 27 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

o5 Clasificador de imagenes — O %

| Conexidn ala base de datos | Fitro: Seleccione el tipo de métrica

Tipo de métrica

| Seleccion de atributos | » Personal Metrics

RQA Metrics

Generar clasificador

Validar clasificador

Gestion de datos desde RQA Seleccione las métricas que se utilizaran para generar el clasificador
Métricas 2
» Unclassified_Concepts
Ambiguity
Comect_Grammar
Readabilty
Extra_Notes
Knowledge_Environment
No_Realistic
Defined_Tems
No_Escapes_Clauses
Conjunction
Single_Sentences A

Seleccione los documentos fuente de los requisitos

Documentos fuente G

» Deimos

TM5PRofibus-BAD

MSDV3PlusMIRs-GOOD

URS_VO1RD0GOOD

FS-SRS-VO1RD0-BAD

HS5-FRRU-BCK-7-URS-FS-V2_0-BAD

FDV V1-BAD v
Aceptar

Figure 22. Tool to generate classifiers using machine learning with metrics of RQA

This information is used to generate a classifier that provides the quality of the requirements (see Figure
23).

J48 pruned tree

_Domain_concepts <= 1
1 Acronyms <= 0
| 1 Domain_concepts <= 0: 2 (262.0/9.0)
1_Domain_concepts > 0
| 1 _Boilerplates_matching <= 0
| 1_Connectors <= 1
| 1 Connectors <= 0
| 1 _Unclassified werbs <= 0
| | 1 Implicit sentences <= 0
| | | 1_Text_length_(words) <= 10: 1 (5.0)
| | | 1 _Text_length (words) > 10: 2 (30.0/%.0)
| | 1 _Implicit_sentences > 0: 1 (2.0)
| 1 _Unclassified wverbs > 0: 2 (52.0/10.0)

|
|
|
|
|
|
|
|
|
|
| 1_Connectors > 0

Figure 23. Example of classifier

2.2.3.2.3 Metrics for models
The RQA tool allows to create metrics to evaluate the completeness and consistency in models.

The completeness metric implemented are (see Figure 24):

e Terminology coverage

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 62

"/""}.‘ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

e Relationships from SCM View Coverage
e Relationship types coverage
e Model-content coverage

e Properties coverage

Metrics configuration:

Correctness | Completeness | Consistency

Completeness metrics:

Identifier | Mame

[5_‘_|=° Add new metric r
Edit metric

Terminclogy coverage
Relationships from SCM View coverage

Eh Delete metric(s) Relationship types coverage

o Models-content coverage

v Enable Selected

ail i il il

Enable al

= Properties coverage
- . =

Figure 24. Completeness metrics for models

The consistency metric implemented are (see Figure 25):
e Property values
e Arithmetic operation compliance with SCM
e Overlapping requirements

e Measurement units for specific property

Metrics configuration:

Correctness | Completeness Consistency

Consistency metrics:

Identifier | Name

E'=n Add new metric r
Edit metric

Properties values

Arithmetic cperation compliance with SCM

[@ Delete metric(s) Overlapping Requirements

ol 6 6 &l

W' Enable Selected

Measurement units for specific property

Figure 25. Consistency metrics for models

The metric “Arithmetic operation compliance with SCM” implements the update presented in the section
“2.4.4.1.2 Consistency metric” in the deliverable D3.2 [14]. With this update, the metric takes into account
the possible transformation between measurement unit of the same magnitude even if belongs to
different measurement system.

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 62

AM[ASS Prototype for architecture-driven assurance (b)

D3.5V1.0

2.2.3.2.4 Quality evolution (with respect to time)

The RQA tool implements the functionality to save the snapshot of quality information of the project over

the time (see Figure 26).

- e 2 Simple view —~ =
[=2 B 5
by waunve | L2 & il

o

Snapsnot Requiements

] 3]

Mekics Soggestions
O Full vew
spearcation seiector | Quaity scleeboara sna rowton Requiremerts Comecness Comoietenass Consistency Knowieqge base
bl
(@) Quality snapshet infermation - o x Objects quality
Overall quality Snapshot information:
Name:
Description:

Send by email / Show fike in folder: ||

ok || camcal

I Objects with ‘High' qualiy: 1 (0,60 %)
‘Objects with Medium’ quality: 31 (46.50 %)
I Objects with ‘Low’ quality: B5 [50.90 %)

B High' qualty average rate: 575 % Correctness Consistency
Medium’ qualty average rate: 2425 %
I “Low quality average rate: 69.99 %

Completeness

I Completeness elements - expected and found: 6 (101 %)
B Completeness elements - expected but NOT found: 49 (89.09 %)

B Highi 1{060%) [Medium: 86 (51.50%) W Low: 80 (47.90 %) W High: 130 9653 %)
Not matching fiters: 0 (0.00%) I N/A:0 (000%) B Low: 5 (347 %)

Figure 26. Saving snapshot with the quality of the project

The tool allows a graphical representation of the different snapshots saved (see Figure 27).

‘Quality Project TEST' Quality evolution - Scoreboard

Overall quality

5000%

000%

o —

T T T T T T T T T T
8/10/2017 8/10/2017 8/10/2017 /1072017 &10/2017 §/10/2017 8/10/2017 8/11/2017 8/11/2017 &/16/2017

Current

| A High' quality average rate . ‘Mediur’ quality average rate_4 Low quality average rate 4 No qualiy’ quality average rate @ Metric Changes

Objects quality

810/2017 8/10/2017 8/10/2017 &10/2017 §/10/2017 8/10/2017 8/10/2017 8/11/2017 8/11/2017 &16/2017 Current

A Objects wiith High' quality Objects with 'Medium' quality A Objects with 'Low quality 4 Objects with "No quality’ quality @ Metric Changes Total objects

Completeness

50.00 %

81072017 8/10/2017 8/10/2017 §10/2017 §10/2017 §/10/2017 8/10/2017 8/11/2017 8/11/2017 8/16/2017 Current

[Completeness elements - expected and found @ Metric Chanaes |

Figure 27. Graphical representation of the quality evolution

It is possible to show the information that composes the snapshots (see Figure 28).

Current quality

Current quality

Current quality

H2020-JTI-ECSEL-2015 # 692474

Page 30 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

e ey nayzen

B oocoe sttt Gty s

R —o T Simpleview | [l @9 s | [(=] ~
o
TRC Requirements Scorebozrd Snapsnot Qualiy | Reaurement pey e | Quality snapshot from: 8/10/2017 2:53:07 PM spe
Document (+2) evolution Full view snapb
Specification selector | Quality scoreboard and evolution Requirements base

A High' quality average rate: 12.00%

*Quality Project TEST' Quality evolution - Scoreboard
Qualty Proj Quality ‘Medium’ quality average rate: 26.74%) = Quallty Snapshat Viewer - 0o
A 'Low' quality average rate: 61.26% Quality Snapshot @
10005] A ‘No quality’ qualty average rate: 0.00% = jualty
e~
@ The metic configuration has been changed | oyeall Requiements Correciness Completeness Consistency
qualty
Double Click to view Snapshot details . .
5000%] Scoreoard | Reguirements Metrics
Name: snap6
Description:
000% 7 Project - module(s): DQA LDWS - 1SO17361
8102017 81072017 8102017 8102017 80207 o/fNT 802017 81172017 VR 6
O = Objects quality Completeness

Overall quality

m (] [} (] (] (] u (] (]) Juality
100 -

I Objects with High’ quality: 0 (0.00 %)
Objects with "Medium* quality: 77 (53.47 %)
I Objects with Low’ quality: 67 (46.53 %)

0 o Lo o Lo 0

I High' quality average rate: 120
81072017 §10/2017 /1022017 §/10/2017 B/102017 B/102017 /1072017 §/11/2017 8112017 8 ‘Medium’ quality average rate:
A lowq ge rate: 61.2¢

A Objects with "High' quali jects with ‘Medium' quality A
Objects with 'High" quality 4 Objects with 'Medium' quality A Obj Correctness Consistency I Completeness elements - expec

10000% [] [] [] [] [] [] [] [] uaiity
I High: 0 (0.00 %)

Medium: 78 (54.17 %)
B Low: 66 (45.83 %)
I Not matching filters: 0 (0.00 %) I High: 4 (80.00 %)
3000%] N/A: 0 (0.00%) B Low:1(2000%)

Change layout Open containing folder | | [l Create scoreboard report

000% |

8102017 8/10/2017 81072017 8/10/2017 &10/2017 _ 8/10/2017 _ 8/10/2017 _ §/11/2017 _ 811/2017 _ 8/16/2017 Current

Figure 28. Information of the snapshot

2.2.3.3 V&V Manager

V&V Manager is an Eclipse plugin under development that enables invocation of multiple verification and
validation tools of requirements or contracts directly from the AMASS platform. The V&V Manager for
given requirements (and optionally also system architecture or design) calls verification server using OSLC
Automation integration to get the V&V Assurance results (whether the requirements are consistent, non-
redundant, non-vacuous, realizable and in case of system architecture or design also if requirements
comply with given system).

Implementation progress

The V&V Manager plugin implementation is in its initial stage. The relevant Eclipse plugin has been created.
The command for running the V&V Manager is available, but does not support the whole expected
functionality yet.

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 62

: AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

= runtime-EclipseApplication - Resource - smazat/model.di - Eclipse Platform o] 4
File Edit ~JDiagram Mavigate Search Papyrus Project Run CHESS Window Help
i ?%i""i*ﬁ*?ﬁz’l*
q><h—>,||§3'af.ag.i‘ﬁ_-.§.%@ '*"'|E'=5::; .:__;E§3v|1nu% I%'Q LI VRN |
Q- g2 - U e oS '|<33CD§BI|A-&'.J' Qui-:k.-‘a-:-:essiﬁ||_r~_.|")
P model, di
[5rp = B #Pmodeldi 32 = g
= <'==={> - ;I L2 Palette [
F-F% smazat ’E@\ R
«wcanstraints 0 L
ji 3
Mavigate 0 ts
= File b =+ PartAndFlaws
Load resource...
_ =5 DataTypes
— Emable write
o CommentAndC... <
& t S
£ Open textual editor for stereotype applications ConstraintBlock
#4 Delete Selected Element Delete |
& ConstraintProp...
- o __ /; Delete From diagram Shift+Delete r P
=05 8 1 D o Paragater
» B[v & sy 7 Format »
- #J Filters L _—
! :—f'_'| i J validate model
: € 7 Edit v J validate subtree
Profiles 5 J7 Select constraints and Validate model
umL ocL y f 7 Select constraints and Validate subtree
Comm

#% Remove markers from model

SysML E Show Properties View

N #€ Remove markers from subtree
Profile fﬁ' Show References View

Compute constraint
CHESS L4
Acceleo Model Code Generator L WV Manager

Flmrmma i Fumre @ mmbmk P 0 I T = S P L -

Figure 29. GUI element used to run the V&V Manager

Properties E

The view for presenting the result of the verification can be shown. This view can display textual
documents.

D mode.d I _ioix = o

ype filter text] MRS b
|:-E-"| |:;'| [:1 = ;
=- Q—b Other - ot

-

Assodations 40

" Association

|- & Dircrtaddcn |
ModelElem... <0
= General | [Package
S | LI, S N

l] ; PortandFlows -:ZOLI
B svsML Requirement Diagram | Bg |
oK I Cancel |

(] Propertiesl ‘&, V&V Result 53 = 8

Figure 30. Switch in on the V&V Result view

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

The communication with the Verification Server is being elaborated.

2.2.3.3.1 Verification Servers and Implementation Progress

The communication between V&V Manager (the Eclipse plugin) and the Verification Server is based on
OSLG, i.e. there is a specification describing interaction between these two parts, which confirms to OSLC
Performance Monitoring and OSLC Automation specifications. The V&V Manager is an OSLC consumer and
the Verification Server is an OSLC provider.

Currently, there is just a one public verification server (hosted at Masaryk University) and it is not fully
ready yet. Verification servers at Honeywell are not public since they host also licensed V&V tools and are
used for Honeywell confidential data. The V&V tools that are planned to be used for performing the
semantic requirement analysis tasks have been already installed. What remains to be done is to finish
implementation of the V&V manager; the communication with the Verification Server is both fully
specified and tested.

It shall be relatively easy to add another verification servers as the interaction between V&V Manager and
verification server will be completely tested. Therefore, everyone shall be able to create his/her own
verification server in order to employ his/her own verification tools if needed. Note that although OSLC
resources are defined in terms of RDF properties and operations on resources are performed using HTTP,
i.e. OSLC provider is usually located on a remote server, it is also possible to use local verification servers
running on localhost.

2.2.3.3.2 Semantic Requirement Analysis

This V&V technique formally proves if a given set formal requirements or contracts are consistent, non-
redundant, non-vacuous, realizable or complete. Our approach is to execute multiple V&V tools and its
configurations at once on multiple verification servers in parallel since often even V&V tool expert
proficient in formal methods cannot determine which V&V tool and configuration will bring the best result
fastest. Moreover, especially for model checking this approach distributes the computationally extensive
V&YV tasks to multiple servers is the fastest way to get the V&V results.

The screenshots below show the example verification results from the Honeywell proprietary tool ForReg.
The same results will be visible from AMASS platform after the V&V Manager implementation is finished.
The Figure 31 shows requirements that could be realised by trivial system, which suggests that the
requirements are incomplete.

The analysis internally calls Acacia+ (same as RQA above) to obtain the realizability witness: a strategy that
prescribes what reactions to input signals will lead to requirements satisfaction. In addition to
demonstrating the requirements to be realizable, ForReq also interprets this witness to estimate the
complexity of the requirements, and thus to some extend their completeness. For each input and output
signal we compute the coverage by user requirements. The best requirements can only be satisfied if the
system may need to react to a change in the value of each particular input. On the other hand, if a system
can completely ignore some (or all) input signals, then we proclaim the requirements to be trivially
satisfied. In a similar manner, ForReq assigns a degree of coverage to every signal, ranging from “fully
covered” to “not covered” and reports this complexity analysis to the user in a comprehensive manner.

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 62

<—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

a./ 158.138.138.152 Requirements Verification ol = | 3]
:RE;equ\remem Progress Text Server Consistency Redundancy Realisability
» _ 141 All requirements have been proven consistent. £
141 There is no redundancy in the requirements

The reguirements are realisable. But trivizlly: no input needs to be distinguished.
1”1 Cutput gesture could be forever same as or forever different from tap Ztimes.
Qutput gesture could be forever same as or forever different from long_press

The Gesture Recognition shall set Gesture Matches to "TAPZTIMES" when &l of the following conditions are satisfied:
o Touch 1 Time To Prev is greater than 0.25
o Touch 1 Contact 1 Movement is "STATIC"
o Touch 1Contact 1 Time is lower than .25
o Touch 2 Time To Prev is lower than 0.3 RakD 01324145 2188765 300734 5
o Touch 2 Contact 1 Movement is "STATIC"
o Touch 2 Contact 1 Time is lower than 0.4

SW_HL_02_0002 | Formal

The Gesture Recognition shall set Gesture Matches to "LONG PRESS" when all of the following conditions are satisfied:
o Touch 1 Time To Prev is greater than 0.25
SW _HL_02_D004 | Formal o Touch 1 Contact 1 Movement is "STATIC™ Rak0 0.132414s 218876 3.00794 s
o Touch 1 Contact 1 Time is greater than 0.4

Figure 31. Example of requirements from Gesture Recognition system (Case Study 7) that are only trivially realisable

o 158.138.138.152 Requirements Verification = =R
ﬁjequirement Progress Text Server Consistency Redundancy Realisability
» _ 141 Al requirements have been proven consistent.
11 There is no redundancy in the requirements.
141 The requirements are not realisable.

SW_HL_01 00005 | Static The Voter Core Function shall be designed for an execution rate of 40Hz.
The Voter Core shall immediately set Signal Mismatch when any of the following conditions is satisfied, otherwise clear Signal
Mismatch:
SW_HL_01_00001 | Formal o Signal Defta is greaterthan 1 Rakd 0.0315789 5. 1.34075 5. 0.313859s.
o Signal Valid is invalid.

n " - "
SW_HL_07_00002 | Fornal When Permanent Mismatch is set, the Voter Core shall set the Permanent Mismatch and latch forever, Rak(00315789 <. 124075 <. 0.312859 s,
The Voter Core shall set the Permanent Mismatch when Signal Mismatch has been set for 0.03 seconds, otherwise clear

SW_HL_01_00003 | Formal Permanent Mismatch Rakd 0.0315789 s 1.34075s 0.313859s

The Voter Core shall intialize the Permanent Mismatch to FALSE during the first frame execution

SW_HL_01_00004 | Formal Ralk0 003157895 1340755 0.313859 s

Figure 32. Example of requirements that are consistent, non-redundant and not realisable

2.2.3.3.3 Formal Verification of Requirements against System Design

When system architecture or system design is presented each requirement should be verified for
complience with the system. This needs requirements to be formal and mapped to the system. The Figure
below shows example of few requirements and its results as provided by 3 model checkers from 3
different verification servers. It should always be the case that the V&YV tools agree with the result.
However, often only some of the model checkers or its cofigurations are able to return the complete
result.

When the requirement is not satisfied by the given system, the counterexample is provided in the form of
table showing relevant input and output values in time that falsify given requirement and also in the case
of Simulink system design the special counterexample model could be generated that shows the falsifying
behavior.

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

Requirement Document: VoterCore_Software_Requirements @) [

Tan i)

ng conditions are Setup Model Checkers

Requrement | progress | Tex NSMV | nuXmv | DVE | Sever | ogmemor.free fem
» Static The Voter Core Function shall be designed for an execution rate of 40Hz. Yes Yes Yes none
I SW_HL_01_00001 | Formal The Voter Core shall immediately set Signal Mismatch when any of the following conditions a... | No No No Rak finished in 4 Seconds
SW_HL_01_00002 | Formal The Voter Core shall set the Pemanent Mismatch when Permanent Mismatch is set. No No No Galaxy finished in 4 Seconds
SW_HL_01_00003 | Fomal The Voter Core shall set the Permanent Mismatch when Signal Mismatch has been set for y . Verfy finished in 4 Seconds
deadlock Formal There is no deadlock in the model Verify finished in 4 Seconds
100 % Coverage of inputs and outputs by all requirements /

input /home/divine/apache-tomcat-7.0.57/VoterCore.so

property { deadlock }: deadlock freedom

o
Cyde2 | Ged | Cydes | Gpes : : LY

cl FALSE TRUE FALSE FALSE hi 1g... 64 states, 1024 nges
signal_delta 2147483648 | 2147483648 | 2147483648 | 2147483648 | 2147483648 (2147483648

signal_valid TRUE FALSE FALSE TRUE TRUE TRUE

The property HOLDS

result=0

Figure 33. Details for requirements checking

For system design in C or C++, only DIVINE LLVM model checker is currently integrated. Simple
requirements could be translated to the form of C asserts and verified by DIVINE model checker jointly
with other safety properties or C asserts that are not derived from requirements. As demonstrated on the

Figure below.

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 62

"/"‘,‘ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

-

95! ForReq - Formalization of Requirements o[®][=

By default, basic safety properties are verified:
asserts are not violated, no deadlock, memory bounds
are preserved, no invalid dereference, no division by [s e crecien |
zero, no memory leaks, and mutexes are preserved

Assigned System: 10 (.cpp) files: arthmetic, binsearch_u32d, dereference, linsearch_u32d, memory, memory_exc,
m plook_bincp. plook_linpg. t_modf, szymanski
o/ 158.138.138.152 Requirements Verification ol ®
Requirement ID Text DIVINE Y o o
» arthmetic - basic safety propeties - assetts are not violated, no deadiock. m... | DIVISION BY ZERO [/arthmetic.cpp:13] finished in 3 Seconds
binsearch_u32d-safety | binsearch_u32d - basic safety properties - asserts are not violated, no deadl... | ASSERTION FAILED [../binsearch_u32d.cpp:81] finished in 4 Seconds
dereference-safety dereference - basic safety properties - asserts are not violated, no deadlock.... | BAD DEREFERENCE [../dereference.cpp:21] finished in 7 Seconds
linsearch_u32d-safety |linsearch_u32d - basic safety properties - asserts are not violated. no deadlo... | BAD DEREFERENCE [../linsearch_u32d.cpp:55] finished in 3 Seconds
memory-safety memory - basic safety properties - asserts are not violated, no deadlock. me... | UNHANDLED EXCEPTION [cxa_exception_divine.cpp:49 | finished in 7 Seconds
memory_exc-safety memory_exc - basic safety properties - asserts are not violated. no deadlock... | UNHANDLED EXCEPTION [cxa_exception_divine.cpp:49 | | finished in 6 Seconds
plook _bincp-safety plook_bincp - basic safety properties - asserts are not violated, no deadlock.... | Yes” finished in 10 Seconds
plook_linpg-safety plook_linpg - basic safety properties - asserts are not violated, no deadlock, ... | ASSERTION FAILED [../plook_linpg.cpp:224] finished in 10 Seconds
t_modf-safety t_modf - basic safety properties - asserts are not violated, no deadlock, me... |ASSERTION FAILED [../t_modf.cpp:172] finished in 3 Seconds
szymanski-safety szymanski - basic safety properties - asserts are not violated, no deadlock, ... | EXIT CALLED WITH NON-ZERO VALUE [glue.cpp:74]f finished in 3 Seconds
N

Details of how to reach error are displayed when clicked

Honeywell

(__First-Order Metric Temporal Logic... | [Linear Temporal Logic... | | Input to Text2Test]

Figure 34. Checking and proposed error handling

2.2.3.4 Generate fault trees from the behavioral model and the fault injection

Generation of fault tree from the behavioural and fault model is supported by xSAP, a tool for safety
assessment of synchronous finite-state and infinite-state systems11,
CHESS implements a seamless integration with xSAP to allow automatic generation of fault tree starting

from the information made available in the CHESS model. In particular, the following information available
in CHESS is used for the transformation to xSAP:

e System components (hierarchical architecture), basically SysML Blocks/UML Component with ports
definition and composite relationships
e For each component:
o The nominal behaviour, modelled by using state machine; the activities in the state
machine have to be specified by using the NUSMV languagel?;
o The error behaviour, modelled by using a state machine stereotyped with <<ErrorModel>>
(see Figure 35) stereotype available from the CHESS dependability profile13. The CHESS

11 https://xsap.fok.eu/

12 The language used by XSAP to represent the nominal model, see
http://nusmv.fbk.eu/NuSMV/papers/sttt j/html/node7.html

13 CHESS comes with a dedicated profile for dependability for modelling safety aspects related to the system
architecture. The metamodel from which the CHESS dependability profile has been derived is the SafeConcert
metamodel; this metamodel is presented in AMASS D3.2 Appendix C.

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 62

https://xsap.fbk.eu/
http://nusmv.fbk.eu/NuSMV/papers/sttt_j/html/node7.html

@ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

dependability profile is also used to model error states, error propagation (e.g.
InternalPropagation in Figure 35) and failure condition (e.g. stuckAt value, inverted error)

upon component properties.

(«ErrorModel» R
BatteryErrorModel
InitialO
«InternalPropagation» (~ «StuckAt, ErrorStates 1
. Errorl
Nominal *StuckAts
property=energy
\value=0
_ <

Figure 35. CHESS error model state machine

An initial integration between CHESS and xSAP was originally developed in SafeCer. In AMASS this
integration has been reviewed; the model-to-text transformation has been extended and fixed according
to the latest modifications of the CHESS profile, in particular of the CHESS Contract sub-profile. Moreover,

some bugs have been discovered and fixed.

In the second prototype, CHESS provides a Fault Tree View to graphically represent the result of the
analysis as table or tree, see respectively Figure 36 and Figure 37.

Mame Description
w < Event fault_cfg_1 fault_cfg_1
w < Gate
<+ Event E3 E3 ps.StateMachineZ. mode_is_Errort
w <+ Event fault_cfg_2 fault_cfg_2
w <4 Gate
<4+ Event E1 E1 p=.backupBat.BatteryErrorModel. mode_is_Error1
~ 4 Eventfault_cfg_3 faul_cfg_3
w4 Gate
<+ Event E2 EZ pe.primaryBat. BatteryErroriModel mode_is_Errort

Figure 36. Example of fault tree represented as a table

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 62

@ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

Top_Level Event
0.0

OR

fault_cfig_1 fault_cig_2 faul_cfg 3
(0.0} 0.0y 0.0

E3 E1 £2
(0.0} (0.0 o

O O O

Figure 37. Example of fault tree represented as tree

2.2.3.5 Simulation-based Fault Injection

Model-based design combined with a simulation-based fault injection technique poses as a promising
solution for an early safety assessment of automotive systems. The fault injection functionality is
supported by means of the Sabotage simulation fault injection framework. So far, most of the work has
been developed as a set of manually coded Matlab scripts and C code. One of the main goals that AMASS
promotes is the use and creation of model-based solutions. In that direction, we are currently working on
an Eclipse-based fault injection framework, which will be further explained in this section. This framework
will provide a model-based approach to configure, create and run the fault injection experiments.

By applying such technique to the fault injection domain, the user does not need to be familiar with the
low-level configuration format of the fault injection technology (e.g. Xtend, Matlab or C).

It has to be noted that this is currently an ongoing work and it is thought to be released as part of the
Prototype 3. However, some preliminary results and concepts are already covered in this deliverable.

Figure 38 depicts the main technologies tackled in order to build up our Eclipse-based fault injection
framework.

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 62

@ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

connected to

connected to

Sabotage Sal i Massif
Meta-model f Meta-model

Xtend (template) for code generation

ReadOuts_
Monitor
Injector.m

Generated Files

Figure 38. Sabotage design architecture

After investigating several approaches that allow the modelling of the fault Injection experiments (e.g.
UML profile), the one based on Ecore meta-model has been selected. This meta-model is under
development and it is used to model the structure of the data models of the fault injection domain. As
explained in D3.2 [14], the Sabotage framework creates the faulty system model under test (SMUT) by the
fault injector module. Considering the SMUT a Simulink model, the new Eclipse feature Massif is used to
support the easy handling of Matlab/Simulink models and import that information to EMF. The complete
Massif Ecore description can be found in [13].

On the other hand, Model-to-text transformations are adopted for automation of an implementation step.
More specifically, the template language Xtend [12] is applied to generate Matlab and C code. It employs a
template-based code generation to export a resulting algorithm into those programming languages. The
template system allows readable string concatenation through including a set of tokens, which are
replaced by the algorithms computation code during the code generation process. The tokens to be
completed are the ones coming from the information specified in Sabotage and Massif meta-models.

In brief, Xtend technology generates the Matlab code through a template toolkit. Some dynamic areas
from those templates are completed adding the information coming from Sabotage and Massif
(SMUT.simulink) meta-model instances.

The following lines explain some of the functionalities in a more accurate way:

e Configuration of the fault injection experiments:

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 62

<—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

One of the major issues regarding the configuration of the fault injection experiments and the creation
of the fault list [14] is to define where to inject the faults. Those faults reproduce a failure behavior of a
certain component. In order to extract the necessary information regarding possible injection points,
Massif is used. Massif is a new Eclipse feature to support the easy handling of MATLAB Simulink
models by providing import and export capabilities to/from EMF [15].

By importing the Simulink model to Massif, the necessary information regarding possible injection
points (i.e. fault target) is extracted. This includes information regarding input and output ports or
component types that will be connected to our fault target class from the Sabotage meta-model.

The same concept applies to the observation points, monitor or read-outs. This information needs to
be specified based on the current model.

An example of the Massif model for an ACC is shown in Figure 39 :

= T “Modeling - ¥ ~Eclipse Platform = x|
File Edit Navigate Search Project SimulinkEditor Run Window Help

® Q- i vl -y Yo

+ Sub Sy:

Block Term - Version

Selected Object: Simulink Mode! acc_end

Figure 39. Example of a Massif model

e Generation of the fault injection experiments:

One of the main remarkable features is the construction of the faulty Simulink model. After
importing Sabotage and Massif meta-models, the Xtend application (under development) creates
the Faultinjector.m which is the main responsible of constructing the faulty Simulink model.

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

11 - sys = SUT;
12 - open_system(SUT)

,strcat (SUT_Fa
(SUT_Faulty,
t)

add_line (SUT_Fad\t:
42 - add_line(SUT_Faul
43 - sec_param(SUT_Faulc

LZ'—» Fauty
—1

Readouts
m—b zSabotageV7

Ingtance
p

mj_. Sabotage
1—l Step]

Figure 40. Example of the generated Fault Injector code

The Fault Injector creates and completes the C code of the Saboteurs represented as S-functions.
Other alternatives can be explored as AMASS project evolves and depends on the project needs.
This is related to fault model representativeness and Simulink block solutions will be evaluated
versus purely C-based ones (S-functions).

Figure 41. Example of a saboteur code

As part of the future work initiative, we plan to enhance our approach in order to investigate and add the
following features as follows. The possible role and integration of other architecture-driven assurance
functionalities with Sabotage will be studied during the project, especially establishing relations to
contracts-based approach and model-based safety analysis. This means that the information regarding the
fault type to be introduced can be linked as information contained in the system architecture (failure
mode). In order to complete the information describing the faulty behaviour of a certain component and
reproduce that behaviour in a form of a saboteur. As specified in Section 2.2.1.1, the failure modelling
feature is currently supported via the CHESS profile but not as part of the AMASS building block.

To sum up, as future work, connections to other AMASS meta-models will be considered. This will allow
relating information such as the aforementioned failure mode of a certain component defined as part of

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

the system architecture (Papyrus/CHESS) to the Sabotage framework. Furthermore, connections to model
safety analysis solutions will be analysed.

These functionalities will be provided in the next release of this deliverable (D3.6).

2.2.3.6 Traceability between different kinds of V&V evidence

This requirement is about traceability of different artefacts produced during the model based design and
implementation process. For instance, the requirement cites “a contract-based, component-based
specification should be traced with the corresponding analysis-results”.

Support for this requirement has been implemented in CHESS modelling language, in order to be able to
trace analysis results with the set of model entities and assumptions used to perform that particular
analysis. The adopted approach has been inherited by the MARTE modelling language, which comes with
the concept of analysis context allowing to represent the set of model information needed to run a given
analysis.

CHESS modelling language has been extended with AMASS specific analysis context; for instance the new
stereotype named ContractRefinementAnalysisContext (see Figure 42) allows to collect the information
available in the CHESS model that has to be used to run a given contract refinement analysis. The
aforementioned information is basically the set of components with associated contracts that has to be
analysed; in fact the CHESS model can comprise different views (e.g. functional, logical, physical) and
different analysis can be run on each of the different views, or even different parts of the same view.

«Stereotypes
GaAnalysisContext
(MARTE::MARTE_AnalysisModel: GOAM)

Eg + platform: GaResourcesPlatform [1..%]

T

«Stereotypes
[{CHESSContract)
ContractRefinementAnalysisContext
=1 + checkAllWeakContracts: Boolean [1]

Figure 42. Analysis Context

The ContractRefinementAnalysisContext stereotype comes also with a Boolean attribute
checkAllWeakContracts which can be used to specify which weak contracts have to be considered for the
analysis; if the value is true all weak contracts available in the current components set identified by the
analysis context are considered, otherwise only the weak contracts marked by the modeller as valid are
given in input to the analysis.

According to the new modelling language support, CHESS tool has been modified to allow the user to
invoke contract refinement analysis, the latter performed thanks to the integration with the OCRA tool
(see section 2.2.3.3), by selecting an existing ContractRefinementAnalysisContext. Once the analysis has
finished, analysis results can then be linked to the analysis context, and so to the target analysed set of
components and associated contracts; this last step is not currently automatized and has to be made by
the user by using the traceability capabilities discussed in section 2.2.2.1.

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

2.2.3.7 Generation of product-based assurance arguments from CHESS model

The generation of product-based assurance arguments is based on the assurance information associated
with the strong and weak contracts. To include only the relevant weak contracts in generation we need to
first know which of those hold in the current system. To achieve that, we have extended the CHESS tool by
using the checkAllWeakContracts attribute when performing contract refinement analysis to transform all
the weak contracts in OCRA format such that all strong contracts C=(A,G) are transformed into normal
OCRA contracts C=(A,G), while the weak contracts Cs=(B,H) are transformed into guaranteed implications
in OCRA as C,=(TRUE,B=>H). The refinement connection of C, is inherited from the corresponding weak
contracts. To check consistency of the weak assumptions in the given context and identify which weak
contracts should be used in argument generation, we have extended CHESS tool to allow for property
validation in OCRA of the weak contract assumptions. The result of both OCRA commands are saved in a
file and previewed to the user. The results are used to update the status of the contracts. To perform the
contract refinement analysis with all weak contracts, the wuser sets the Boolean attribute
checkAllWeakContracts of the ContractRefinementAnalysisContext stereotype to TRUE and selects the
Check Contract Refinement functionality. Then, to validate the weak contract assumptions, the user makes
sure the checkAllWeakContract attribute is set to TRUE, and selects Validate Weak Contracts functionality.

Based on the contract status we create a set of argument-fragments in the corresponding assurance case
project where they can be viewed in the assurance case editor. The generator uses a pre-existing argument
pattern for the generation and the information from the traceability editor of the contracts and the
assurance evidence. The generated argument-fragments include only assurance evidence of those
contracts relevant in the given context, which is determined by the status attribute of the contracts. The
argument-fragments generation can be performed once refinement analysis is successfully completed and
contract validity check is done. The generation is performed from the ContractRefinementAnalysisContext
argument generator property tab.

2.2.4 Contract-based Assurance Composition

2.2.4.1 Contract Editor with content assist

In the second AMASS prototype (Prototype P1), the contract definition and the property definition can be
edited using an editor with content assist, see Figure 43. The latter provides two utilities: (1) it notifies
whether a word does not belong to the language used or whether it is not a port or an attribute of the
component of the editing contract/property. (2) It suggests the keyword of the language used and the
ports and attributes of the component.

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 62

AN AMASS

Prototype for architecture-driven assurance (b) D3.5V1.0

[Properties &1 | J Model Va.. 57 Referenc.. & Hierarchi.. [5] Contract.. ©)Emorlog (%] Problems [Console &gProgress 8] Trace = 8
= B
—

B brake_time : System_Brake_Time

UML WheelBrakingSystermn:modelSystemView:Physical Architectures:System:System_Brake_Time Selected Contract

Comments

SysML

Profile

Style Assume Guarantee

Appearance

Rulers And Grid &3 always (Pedal_Pos1iff Pedal_Pos24) and ~ always ((change(FedaI_Pos‘I] or change(Pedal_Pos2)) -»

(always ((not bscul_fault_Monitor) and (time_until{ ¢ .
Advanced (not bscul_fault_Command) and El Brake_Line
CustomContractEditor (not bscu2_fault_Monitar)) or B bscul_fault_Command

always ((not bscul_fault_Monitor) and
(not bscul_fault Command) and
(not bscuZ_fault Command)) or

B bscul_fault_Monitor
B bscu?_fault_Command
| B bscu2_fault_Maonitor
& Pedal_Pos1
H Pedal_Pos2
= |
' abs
'= always

 Export
: '= chanae

Figure 43. Contract Editor with content assist

In this example, in the editing area of the assume property, a wrong port name is notified. In the editing
area of the guarantee property, it is suggested which are the compatible keywords to insert.

2.2.4.2 Contract-based Views

In the second AMASS prototype (Prototype P1), CHESS provides a hierarchical view that shows the
decomposition of the system component into sub-components. It shows also the contracts assigned for
each component. The system is graphically represented as the top element of the view (see Figure 44).

[C] Properties o Model Validation %7 References & Hierarchical Model View 52 | [=] Contract R

Fs

Systern Architectures
w & Systemn
W E becu:BSCU
v 8] bscul:5ubBSCU
=] SubBSCU_CMD_Time
(=] SubBSCU_Safety
v 3] bscuZ:SubB5CU
=] SubBSCU_CMD_Time
(=] SubBSCU_Safety
W a switch:Select_Switch_lmpl
[=] Select_Switch_Sell_Time
[=] Select_Switch_Sell_Time
=] BSCU_CMD_Time
[=] BSCU_Safety
W @ hydraulic:Hydraulic
[=] Hydraulic_Brake_Time
E| Systern_Brake_Time

Mumber of Subcomponents and Contracts

3
5
2

Figure 44. Hierarchical view of the system decomposed into sub-components and contracts

H2020-JTI-ECSEL-2015 # 692474

Page 44 of 62

U_A AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

CHESS also provides a hierarchical view that shows the contracts with their refining contracts, see Figure
45. The weak contracts are graphically represented as a document with a “W” on top.

] Properties J Model Validation %" References & Hierarchical Model View [=] Contract Refinement View 52

2
Refined Contracts Mumber of sub-contracts

v E| Systern.brake_time
v [od] bscu.cmd_time
[=] bscul.emd_time

E| bscul.safety
E| bscul.cmd_time

(=] bscu2.safety
[l switch.sell_time
E.rl switch.sell_time

W D bscu.safety
[=] bscul.safety

[=] bscu2.safety
E| hydraulic.brake_time

Lo R e R e R L R == [= R e R e B = Y = 4 B ® A

Figure 45. Contract Refinement View

2.2.4.3 Contract refinement analysis

Contract refinement analysis is supported by the OCRA tool. CHESS comes with a seamless integration with
OCRA which allows to invoke the analysis starting from the components and associated contracts available
in the CHESS model. When the analysis is invoked through the CHESS tool the following steps are
performed:

1. a validation is performed on the CHESS model to check that the modelled information is available
and syntactically correct with respect to what is required by OCRA,;

2. the user selects the analysis context that has to be taken into account;

3. model-to-text transformation from CHESS model to OCRA language is executed (.oss artefact
derivation, see Figure 46);

4. the OCRA tool is invoked with the produced .oss and with the appropriate command option;

5. the results from the OCRA analysis are showed to the modeller in a dedicate window, and saved as
output artefacts in a specific folder under the current CHESS project.

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 62

AN AMASS

Prototype for architecture-driven assurance (b) D3.5V1.0

COMPONENT system
INTERFACE

INPUT Pedal Posl :
INPUT Pedal Pos2 :

boolean ;
boolean ;

INPUT bscul fault Monitor : boolean
INPUT bscu2_fault_Monitor : boolean
INPUT bscul fault Command : boolean ;
INPUT bscu2 fault Command : boolean ;

OUTPUT Brake_Line : continuous ;
CONTRACT System_Brake_Time assume :
and (always ((not bscul_fault_Mon
always ((not bscul_fault_Monito
always ((not bscul_fault_Monito
always ((not bscul_fault_Comman
guarantee : always ((change (P
REFINEMENT
SUB hydraulic : Hydraulic ;
SUB bscu : BSCU ;
CONNECTION bscu.Pedal_Posl := Pedal_|
CONNECTION bscu.Pedal_Pos2 := Pedal_|
CONNECTION Brake_Line := hydraulic.B
CONNECTION hydraulic.CMD_AS := bscu.
CONNECTION hydraulic.Valid := bscu.V
CONNECTION

CONNECTION
CONNECTION
CONNECTION
CONTRACT System_Brake_Time REFINEDBY
COMPONENT Hydraulic

INTERFACE

INPUT CMD_AS : boolean ;

INPUT Valid : boolean ;

OQUTPUT Brake_Line : continuous ;

CONTRACT Hydraulic_Brake Time assume :

huarantee : always (change (CMD_AS
COMPONENT BSCU
TNTFREACF

bscu.bscul_fault_Meoniter :
bscu.bscu2_fault_Moniter :
bscu.bscul fault Command :
bscu.bscu2_fault_Command :

3
H
i
3

always (Pedal Posl iff Pedal_Posz)
itor) and { not bscul_fault_Command) and (not bscu2_fault_Monitor)) or

r) and (not bscul fault Command) and (not bscu2 fault Command)) or
r) and (not bscu2_fault Command) and (not bscu2 fault Monitor)) or
d) and (not bscu2 fault Command) and (not bscu2 fault Monitor))) ;

edal_Posl) or change (Pedal_Pos2)) -»> (time_until (change (Brake_Line)) <=12)) ;

Posl ;
Pos2 ;
rake_Line ;
CMD_AS ;
alid ;
bscul_fault_Monitor ;
bscu2_fault_Monitor ;
bscul fault Command ;
bscul_fault_Command ;
s

bscu.BSCU_CMD_Time , bscu.BSCU_Safety , hydraulic.Hydraulic_Brake_Time ;

TRUE ;
)} -» (time_until (change (Brake_Line)) <=5)) 3

Figure 46. Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the system architecture
represented by a tree of components (given by the decomposition into sub-components)

<P “WBS.di &I

‘6' Operaticn in progress...

& Select Analysis Context for Contracts Refinement

Analysis contexts found in model:

Root element:
el

2

Cancel

= 08
«Block, System, CHGaResourcePlatform= ~ | 5% Palette [
System [y ® e i -B-
properties —
& in Pedal_Pos1: Boolean = Associations i
[# in Pedal_Pos2: Boolean /‘ DirectedComposition
El out Brake_Line: Continuous -
=l Mo_Double_Fault: Boolean <" Dependency
#% ModelElements e
= [0 Package
operations
System (Block)
constraints lock
= brake_time: System_Brake_Time -
Signal
o
i+ I=1 Part =
% PortAndFlows 0
E FlowPort
#% DataTypes e
DataType
Analysis m} X
‘WheelBrakingSystem:modelAnalysisView:modelDependabilityAnalysisView: OCRA analysis B
‘WheelBrakingSystem: modelSystemView: Physical Architecture:System W P

straintBlock)
rty

w1 rrrrenmarroperdy (Constraint)

Figure 47. Selecting analysis context for contract refinement

The integration between CHESS and
has been improved, in particular by

OCRA was originally developed in SafeCer. In AMASS, this integration
introducing the analysis context support; moreover the model-to-text

transformation has been reviewed according to the latest modifications of the CHESS profile, in particular

of the CHESS Contract sub-profile.

2.2.4.4 Contract-based Safety Ana

lysis

The contract-based safety analysis detects the component failures identified as the failure of its
implementation in satisfying the contract. When the component is composite, its failure can be caused by

H2020-JTI-ECSEL-2015 # 692474

Page 46 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

the failure of one or more subcomponents and/or the failure of the environment in satisfying the
assumption. This dependency can be automatically computed based on the contract refinement. CHESS
interacts with OCRA to produce a fault tree in which each intermediate event represents the failure of a
component or its environment.

2.2.4.5 Contract-based verification of the behavioural model

The Contract-based verification of the behavioural model is supported by the OCRA tool. This functionality
verifies if the finite state machines defined in the CHESS model verify the contracts. The state machines are
translated in the SMV language, where the behaviour is described by means of logical formulas that
describe the initial states and the state transitions, see Figure 48. Meanwhile, the contracts, as already
mentioned in Section 2.2.3.3, are translated to OCRA language in a .oss file. CHESS sends such information
as input to OCRA, and then in the Trace View, for each contract the result of the check is shown, see Figure
49,

MODULE AlternateCommandCalculator(power, as_cmd_in_1, as_cmd_in_2)
VAR
as_cmd_out : real;

AS5IGN
as_cmd_out := case

(power & as_cmd_in_1 »>= as_cmd_in_2) : as_cmd_in_1;
(power & !(as_cmd_in_1 »= as_cmd_in_2)) : as_omd_in_2;
!power : 8;
TRUE : @,
£53C;

LTLSPEC NAME alternate_command_computation_norm_guarantee := (TRUE -»> ((G ((power & as_c

MODULE MormalCommandCalculator(power, brake_cmd, as_cmd)
VAR
brake_as_cmd : real;

AS5TGN
brake_as_cmd := case
(power & as_cmd = 1) @ @;
(power & as_cmd = @) : brake_cmd;
TRUE : @,
esac;
LTLSPEC NAME normal_command_computation_norm_guarantee := (TRUE -»> ((G ((power & as_cmd

-- End of module

Figure 48. Part of an .SMV file representing the behaviour of the leaf components of the model

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 62

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

[Properties J Model Validation T, References 5] Trace i1 & Hierarchic:

~ /' Contract [whbs_arch2.braking_wheel_5_implies_cmd]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
w / Contract [whs_arch2.never_inadvertent_braking_of_wheel_5]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
w ' Contract [whs_arch2.braking_wheel_4_implies_cmd]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
w 7 Contract [wbs_arch2.never_inadvertent_braking_of_wheel_3]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
w ' Contract [whbs_arch2.braking_wheel_3_implies_cmd]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
w /' Contract [whs_arch2.never_inadvertent_braking_of_wheel_1]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
w ' Contract [whs_arch2.sanity_check_WB5_normal_mode]

Check Type [ocra_check_implementation] success at 9/4/17 10:13 AM
~ /' Contract [whs_arch2.braking_wheel_2_implies_cmd]

Figure 49. In this example, for each contract the results of the Contract-based verification are listed in the Trace View

3. Installation and User Manuals

The steps necessary to install the second prototype are going to be exhaustively described in the AMASS
User Manual (currently in progress) and will not be repeated here. That document will contain all required
steps and document references to set up the tools. There is currently no pre-packaged distribution.

In summary, this document is a user manual of the second AMASS tool prototype implementation
(Prototype P1). The users can find the installation instructions, the tool environment description, and the
functionalities for the creation of Standards and Process models (models representing Standards,
Regulations, or Company-specific Processes), Assurance Projects and the associated Evidence models
(Artefacts), Compliance Maps (so far, compliance maps from Reference Artefacts to Artefacts), and
Argumentation models, in addition to Architecture models.

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

4. Implementation Description

4.1 Implemented Modules

4.1.1 System Component Specification Block

As documented in AMASS deliverable D2.3 [6], the System Component Specification logical building block
decomposes into two sub-blocks (see Figure 50): the Component Editor and the Contract Editor. The
purpose of the first tool module is to provide services for architecture specification; the second tool
module provides services to store and instantiate contracts and to associate them to the architectural
entities.

The two aforementioned blocks and associated services are made available in the AMASS platform through
the usage of the Eclipse-Based Papyrus UML/SysML Editor extended with the CHESS plugins. In particular,
Papyrus contains plugins for edition of architectural/component-based models, together with the
possibility to model requirements (by using the SysML profile support). CHESS provides plugins for
management of formal properties and contracts specification and their association to the architectural
components.

The CHESS profile for Contract (see D3.1) is implemented as a UML/SysML profile; the profile has been
designed using the Papyrus editor facilities.

System Component

I[UserComponentinfo IUserContractinfo

IRequirementinfo
BF—0------>— E

IRequirementinfo Contract Editor ,

—0 ITracelnfo

<L ICompaonentArgumentinfo <L
[Contractinfo

IComponentinfo

Component Editor

Figure 50. Tool modules for System Component Specification

4.1.2 Architecture-Driven Assurance Block

As documented in AMASS deliverable D2.3 [6], the Architecture-Driven Assurance allows for explicit
integration of assurance and certification activities with the CPS development activities, including
specification and design. It decomposes into four sub-blocks: system architecture modelling for assurance,
V&V-based Assurance Impact Assessment, Contract-Based Assurance Composition, and Assurance Patterns
Library Management. The latter will be implemented in the third AMASS Prototype (Prototype P2).

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

4.2 Source Code Description

4.2.1 System Component Specification Block
Papyrus!4 is an Eclipse project and its source code is freely available through the Eclipse GIT serverl>.

The source code of the CHESS contract editor is available through the Polarsys CHESS project16.

Extensions to the Polarsys CHESS project are foreseen during the context of AMASS project; the extensions
will be developed by working on an AMASS dedicated code repository
(https://services.medini.eu/svn/AMASS source). Then, once the extensions are sufficiently mature, they
will be pushed to the Polarsys CHESS repository as AMASS contribution.

The additional CHESS plugins that need to be installed on top of Papyrus environment to enable the CHESS-
based AMASS Contract Editor features are the following (see also Figure 51):

e org.polarsys.chess.contracts.chessextension: provides the Papyrus extension to
easily work with the CHESS Contract profile, for instance to facilitate the creation of CHESS
stereotypes.

e org.polarsys.chess.contract.integration: implements the integration with the OCRA
and XSAP tools; in particular, it allows automatically invoking the aforementioned tools and getting
back the obtained results within the Eclipse environment.

e org.polarsys.chess.contracts.profile: implements the CHESS profile for contracts.

e org.polarsys.chess.contracts.transformations: implements the model of text
transformation for the integration with the OCRA and XSAP tools; in particular a corresponding
OCRA model can be generated starting from the components and contracts modelled in
UML/SysML and CHESS profile. The plugin adds dedicated command to the CHESS Eclipse menu to
invoke the transformations.

e org.polarsys.chess.contracts.validation: implements the validation of the constraints
that the CHESS model has to satisfy in order to allow the mapping to the OCRA language and then
the integration with the OCRA tool.

e org.polarsys.chess.contracts.feature: allows to deploy/undeploy the CHESS plugins
related to contract-based design support.

e org.polarsys.chess.contracts.contractPropertyManager: allows the automatic
generation of the contract component when a contractinstance is associated to a component.

e org.polarsys.chess.utils: contains methods related to CHESS elements, contracts, and
elements selected by the user via the GUI.

14 https://eclipse.org/papyrus/

15 https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/

16 https://git.polarsys.org/c/chess/chess.git?h=develop

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 62

https://services.medini.eu/svn/AMASS_source
https://eclipse.org/papyrus/
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/
https://git.polarsys.org/c/chess/chess.git?h=develop

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

S Java - Eclipse
File Edit Source Refactor MNavigate Search Proje

C1= R RN RN ER:-NCRSle
[Package Explorer 3 — <§>| 7

;djf org.polarsys.chess.contracts.chessextension!

= org.polarsys.chess.contracts.feature

=¥ org.polarsys.chess.contracts.integration

=¥ org.polarsys.chess.contracts.profile

% org.pelarsys.chess.contracts.transformations
=¥ org.pelarsys.chess.contracts.validation

Figure 51. CHESS plugins supporting Contract Based Design

One important point to mention is that, in addition to the aforementioned support for contract design, the
Polarsys CHESS project provides additional features.

In particular, the Polarsys CHESS project provides a set of core plugins that allow the application of the
CHESS methodology ([1][2]). This is the base upon which the AMASS methodology will build. The actual
CHESS methodology allows the design, verification and implementation of cyber physical software
systems; CHESS adopts a dedicated component model language [4] and ad-hoc model transformations to
enable timing/dependability analysis and code generation. Moreover, the CHESS methodology defines a
multi-view approach for modelling the different aspects/concerns of the system; for each view, the
diagrams and entities that can be created/viewed/modified are fixed and formalized in the view definition.
The CHESS plugins extend the Papyrus editor to support the CHESS modelling language and design-by-view
approach; so, by using the CHESS Papyrus extension, the constraints imposed by the CHESS methodology
are enforced in a live-manner, at modelling time, to avoid late discovery of modelling activities which can
violate the correctness-by-construction approach implemented by CHESS.

The CHESS-based AMASS Contract plugins use some utilities provided by other core CHESS plugins; in
detail, the core CHESS plugins used are:

e org.polarsys.chess.core: provides some facilities regarding selections and diagram status.

e org.polarsys.chess.services: provides functionalities about the CHESS editor (as extension
of the Papyrus one).

e org.polarsys.chess.validation: provides functionalities about model validation.

e org.polarsys.chessmlprofile: provides the SysML/UML/MARTE profile implementation of
the CHESS modelling language [3]. Moreover, it provides dedicated diagram palettes extending the
Papyrus ones to easily manage the creation of CHESS stereotypes in a given diagram. Therefore,
CHESS core plugins are required in order to use the CHESS Contract feature.

In order to allow the AMASS platform’s stakeholders to use the CHESS-based AMASS Contract features on
top of the Papyrus editor without having to use the CHESS methodology for SW development, an extension
has been made to the CHESS core plugins. In particular, the user can decide to disable the live-check of the
constraints associated to the CHESS multi-views support; in this way, the modeller can use the full Papyrus
and UML features, together with the CHESS extension for contract based design.

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

Figure 52 below provides a snapshot of the CHESS methodology constraints that can be enabled/disabled
through the Eclipse preferences page.

& Preferences O >
type filter text Constraints (=T g v v
i:::lr:l " CHESS Core Constraints
Ant A predefined profile cannot be removed |
ATL A view cannot be modified or removed Il
CDO a predefined stereotype cannot be removed |
v CHESS Cannot apply further profiles in the model |
Constraints Interface realization is not allowed because owned operations does not match.]
NuSMV3 Analysis Preferences Interface operations in the Functional View must have public visibility. |
StateBased Preferences
ConstraintWithVsLI Cannot modify dependency for ComponentType]
EMF Compare Appling a view stereotype is forbidden.]
EMF-IncCuery Creation of interfaces is only allowed in the Functional View and Deployment View. []
Expressions The view "{0}" has no write access on the {1} "{2}", therefore it cannot be modified. []
FlaDs| Cannet modify inherited cperations.]
:::::IIIUpdate Diagrams must be created inside the proper CHESS views |
Java ' Hide Diagram Palettes according to the current CHESS views]
Medel Validation
Muwe2 Restore Defaults Apply

¥, L7 P

@
Figure 52. CHESS methodology constraint

4.2.2 Architecture-Driven Assurance Block

4.2.2.1.1 Requirements Formalization with Temporal Logics — RQA approach

To create the custom-coded metric needed to detect linear temporal logic consistency issues in the
requirements is necessary to add the following information to RQA:

e Assembly: the .DLL file generated after building the project. It is necessary to include the entire
path of the .DLL file or add it into the RQA installation path.

e C(lass: the name of the class in the project. RQA should help you choosing this field using the
provided assembly.

e Method: the name of the method containing the code of the metric. RQA should help you choosing
this field using the provided class.

4.2.2.1.2 Simulation-based Fault Injection

As specified in Section 2.2.3.5, MASSIF Simulink Integration Framework for Eclipse is used for accessing
Simulink model information. It has to be mentioned that importing is done using the command line
interface of Matlab and not directly parsing mdl or slx files. This is the APl recommended by Mathworks for
accessing Simulink model information.

Following the procedure explained in [https://github.com/viatra/massif], the user needs to install MASSIF
on its Eclipse Neon environment. The most remarkable prerequisites are the following:

1. Clone the Massif "Master" branch from https://github.com/viatra/massif (Massif 0.6.0).

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 62

https://github.com/viatra/massif
https://github.com/viatra/massif

AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

2. Install VIATRA Query and Transformation SDK 1.5.0 from
http://download.eclipse.org/viatra/updates/release/. It is important to remark that there is a
dependency between VIATRA and EMF. To avoid any incompatibilities with the VIATRA version,
EMF 2.12 must be installed.

3. Install Xtext Complete SDK 2.10.

Another important point to have into account is the one referring to association between different meta-
models. Especially between Sabotage and Massif meta-models.

e tecnalia.sabotage.ecore = Sabotage meta-model defines all the faults injected in the Simulink
model. This meta-model is currently under development.

e hu.bme.mit.massif.simulink 2 Massif meta-model is designed to store all information for each
MATLAB block.

B Model Explorer Eg v = o
type filter text

» & > hubme.mitmassif.simulink [massif viatra-master]

- & hubme.mitmassifsimulink.edit [massif viatra-master]

- F hubme.mit.massif.simulink.editor [massif viatra-master]
+ [tecnalia.sabotage.faultlist

- [tecnaliasabotage.faultlistedit

> = tecnalia.sabotage.faultlist.editor

Figure 53. Massif and Sabotage meta-models

Load resource functionality needs to be carried out at both meta-model and model level in order to
establish the connection.

& faultlist #] faultlistecore 2 | [faultlist.genmodel
4 &) platform:/resource/tecnalia.sabotage.faultlist/model/faultlist.ecore
4 # faultlist
. B FaultList
4 [Fault
= pame : EString
= target : IdentifierReference
= type : FaultType
= injectionTime : EFloat
= duration : EFloat
€ FaultType
4 @) platform:/resource/hu.bme.mit.massif.simulink/model/simulink.ecore
simulink

Figure 54. Connection between Sabotage and Massif meta-models

In order to perform the code generation activity by means of Xtend (cf. Section), those meta-models are
included as dependency plugins. Together with these plugins, other ones are required as well:

e hu.meb.mit.massif.simulink: provides the generated java files from Massif EMF meta-
model. Massif meta-model is designed to store all information for each MATLAB block.

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 62

http://download.eclipse.org/viatra/updates/release/

@ AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

e tecnalia.sabotage.faultlist: provides the generated java files from Sabotage EMF meta-
model. This meta-model defines all the faults injected in the Simulink model.

e org.eclipse.core.runtime: provides support for the runtime platform, core utility methods
and the extension registry.

e org.eclipse.xtext.generator: provides Generator facilities for Xtext.

e org.eclipse.emf.mwe2.launch: MWE2 (Modeling Workflow Engine) allows to compose
object graphs declaratively in a very compact manner.

e org.eclipse.emf.mwe2.language.ui: provides user interface for MWE2 facilities.

e org.apache.log4j: provides most of the logging operations, except configurations.

e org.apache.commons.logging: provides a Log interface that is intended to be both
lightweight and an independent abstraction of other logging toolkits. It provides the
middleware/tooling developer with a simple logging abstraction allowing the user (application
developer) to plug in a specific logging implementation.

All of them are included in the manifest file.

[t Project Explorer &2 =+ ¥ = 08

4 % matlab.code.generator.xtend
» Bh JRE System Library [JavaSE-1.8]
> Bk Plug-in Dependencies
4 [# gre
4 H matlab.code.generator.xtend
. [J] MatlabcodeGeneratorModule,java
. [J] MatlabcodeGeneratorSetup.java
: [J1 MatlabcodeGeneratorSupport java
[B MatlabcodeGenerator.mwe?2
MatlabcodeGeneratorxtend
: [xtend-gen
4 (= META-INF
= MANIFEST.MF
4 = model
& mdl_03_08_2017original_terminator.simulink
4 (= src-gen
=| mdl_03_08_2017_faulty.m
ot build.properties
¢ pluginxml

Figure 55. Code Generation workspace

4.2.2.1.3 Fault Trees generation

The plugin to visualize fault tree is named eu.fbk.eclipse.standardtools.faultTreeViewer and does not
depend on CHESS, it is an Eclipse plugin located in the git repository: https://gitlab.fbk.eu/adebiasi/EST. It

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 62

https://gitlab.fbk.eu/adebiasi/EST

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

is derived from the open source tool EMFTAL’, to embed the fault tree viewer inside the CHESS platform.
The plugin requires the Sirius Eclipse tool18 to work correctly.

4.2.2.2 Metrics

4.2.2.2.1 Metrics for requirements

4.2.2.2.1.1 Correctness metrics

Following, the information relative to the functions of the source code is presented. For each metric two
function are specified: one relative to numerical value and other to feature information.

Metric to nouns
In-System Conceptual Model Nouns (SCM Nouns)
ScmNounCount: return a double with the result of the metric.

ScmNounFeatures: return a list of strings with the resultant features of the metric.

Out-of-System Conceptual Model Nouns (Out-of-SCM Nouns)
OutOfScmNounCount: return a double with the result of the metric.

outOfScmNounFeatures: return a list of strings with the resultant features of the metric.

In-Semantic Clusters Nouns (SCC Nouns)
SccNounCount: return a double with the result of the metric.

SccNounFeatures: return a list of strings with the resultant features of the metric.

Out-of-Semantic Clusters Nouns (Out-of-SCC Nouns)
Out0fSccNounCount: return a double with the result of the metric.

OutOfSccNounFeatures: return a list of string with the resultant features of the metric.

In-Hierarchical Views Nouns (SCV Nouns)

ScvNounCount: return a double with the result of the metric.

ScvNounFeatures: return a list of strings with the resultant features of the metric.
Out-of-Hierarchical Views Nouns (Out-of-SCV Nouns)

OutOfScvNounCount: return a double with the result of the metric.

OutOfScvNounFeatures: return a list of strings with the resultant features of the metric.

Metric to verbs

In-System Conceptual Model Verbs (SCM Verbs)

17 https://github.com/julil/emfta

18 https://eclipse.org/sirius/

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 62

https://github.com/juli1/emfta
https://eclipse.org/sirius/

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

ScmVerbCount: return a double with the result of the metric.

ScmVerbFeatures: return a list of string with the resultant features of the metric.

Out-of-System Conceptual Model Verbs (Out-of-SCM Verbs)
OutOfScmVerbCount: return a double with the result of the metric.

OutOfScmVerbFeatures: return a list of strings with the resultant features of the metric.

In-Semantic Clusters Verbs (SCC Verbs)
SccVerbCount: return a double with the result of the metric.

SccVerbFeatures: return a list of strings with the resultant features of the metric.

Out-of-Semantic Clusters Verbs (Out-of-SCC Verbs)
OutOfSccVerbCount: return a double with the result of the metric.

OutOfSccVerbFeatures: return a list of strings with the resultant features of the metric.

In-Hierarchical Views Verbs (SCV Verbs)
ScvVerbCount: return a double with the result of the metric.

ScvVerbFeatures: return a list of strings with the resultant features of the metric.

Out-of-Hierarchical Views Verbs (Out-of-SCV Verbs)
OutOfScvVerbCount: return a double with the result of the metric.

OutOfScvVerbFeatures: return a list of strings with the resultant features of the metric.

4.2.2.2.2 Applying machine learning to improve the quality of requirements

This functionality is implemented in an external tool and uses libraries of RQA.

4.2.2.2.3 Metrics for models

The structure of the source code previously implemented to generate the completeness and consistency
metric relative to requirements has been adapted to evaluate quality of the models. The information
extracted of the models is processed by the metrics to evaluate the quality. Following is showed the
function of each metric.

Completeness

e Terminology coverage:
TerminologyCoverageMetric_Evaluation:

e Relationships from SCM View Coverage
SCMCoverageMetric_Evaluation

e Relationship types coverage

RelationshipTypeCoverageMetric_Evaluation

e Model-content coverage

ModelContentCoverageMetric_Evaluation

e Properties coverage

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 62

U\/ AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

PropertiesCoverageMetric_Evaluation

Consistency

e Property values

PropertiesConsistencyMetric_Evaluation

e Arithmetic operation compliance with SCM

ArithmeticOperationConsistencyMetric_Evaluation

e Overlapping requirements

OverlappingConsistencyMetric_Evaluation

e Measurement units for specific property
MeasurementUnitsSpecificPropertyConsistencyMetric_Evaluation

4.2.2.2.4 Quality evolution (with respect to time)

The quality evolution is represented with three general functions: save snapshot, show graphical quality
evolution, and open snapshot information.

CreateAndSaveSnapshot: this function creates one snapshot with the quality information of the project.

LoadQualityEvolutionVview: this function recovers the quality value of the snapshot saved in the project
and a graphical area chart is showed.

LoadQualityEvolutionSnapshot: this function shows the information contained in one snapshot.

4.2.2.3 Contract-Based Assurance Composition

The plugins that need to be installed on top of the CHESS environment to enable the editor with content
assist are the following:

e org.polarsys.chess.contracts.contractEditor: it provides a contract editor with content assist. It
enables also the possibility to create a new contract directly from the editor view.

e org.polarsys.chess.constraints.constraintEditor: it provides a constraint editor with content assist.

e org.polarsys.chess.properties.propertyEditor: it provides a property editor with content assist.

The CHESS plugins to enable different hierarchical views based on contracts are the following:

e org.polarsys.chess.contracts.hierarchicalContractView: it provides a view that shows the
decomposition of the system component into sub-components. It also shows the contracts
assigned for each component.

e org.polarsys.chess.contracts.refinementView: it provides a view that shows the contracts with
their refining contracts.

The complete set of contract-based analysis is provided by the following plugin:

e org.polarsys.chess.ocraService: it provides different analysis command invoking the OCRA tool.

They depend on a set of Eclipse plugins that are available at the following source code repository:
https://gitlab.fbk.eu/adebiasi/EST. The plugins are:

e eu.fbk.eclipse.standardtools.contractEditor.core: it contains the core functionalities used in the
CHESS plugin contractEditor.

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 62

https://gitlab.fbk.eu/adebiasi/EST

U_A AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

eu.fbk.eclipse.standardtools.constraintEditor.core: it contains the core functionalities used in the
CHESS plugin constraintEditor.

o eu.fbk.eclipse.standardtools.propertyEditor.core: it contains the core functionalities used in the
CHESS plugin propertyEditor.
o eu.fbk.eclipse.standardtools.hierarchicalContractView.core: it contains the core functionalities

used in the CHESS plugin hierarchicalContractView.

o eu.fbk.eclipse.standardtools.refinementView.core: it contains the core functionalities used in the
CHESS plugin refinementView.

o eu.fbk.eclipse.standardtools.xtextService: it contains the core functionalities used in the three
CHESS plugins editors.

o eu.fbk.eclipse.standardtools.ocraService: : it contains the core functionalities used in the CHESS
plugin ocraService.

There are some Eclipse plugins used by the Eclipse plugins as external libraries but not implemented in the
project. They <can be installed from the following Eclipse wupdate site http://es-
static.fbk.eu/tools/amass sde. The available plugins are:

e eu.fbk.tools.editor.*: plugins provided by FBK that enrich a text area with content assist for an LTL
grammar.

e org.eclipse.xtext.*: xText library is needed for of the editor plugins.

Figure 56 shows more in details the dependences among the plugins. The set org.polarsys.chess.* are the
plugins described in Section 4.2.1.

CHESS Plugins Eclipse Plugins
org.polarsys.chess.
Ly
- org.polarsys.chess.constraints.constraintEditor — eu.fbk.eclipse.standardtools.contractEditor.core
—— - org.polarsys.chess.properties.propertyEditor — — eu.fbk.eclipse.standardtools.propertyEditor.core
- org.polarsys.chess.contracts.contractEditor — eu.fbk.eclipse.standardtools.constraintEditor.corei|

eu fbk.eclipse.standardtools.xtextService
|
v

eu.fbk.tools.editor.*®

.

org.eclipse.xtext.*

- org.polarsys.chess.contracts.refinementView — —1 + eu.fbk.eclipse.standardtools.hierarchicalContractView.core
- org.polarsys.chess.contracts.hierarchicalContractView —{—{—* eu.fbk.eclipse.standardtools.refinementView.core
- org.polarsys.chess.ocraService eu.fbk.eclipse.standardtools.ocraService

Figure 56. Diagram showing the dependences among the plugins. The direction of the arrow means that the origin
plugin depends on the target plugin

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 62

http://es-static.fbk.eu/tools/amass_sde
http://es-static.fbk.eu/tools/amass_sde

U—A AM[ASS Prototype for architecture-driven assurance (b) D3.5V1.0

5. Conclusions

This deliverable D3.5 “Prototype for Architecture-Driven Assurance (b)” is the second output of the AMASS
task T3.3 Implementation for Architecture-driven Assurance, whose objective is the development of a
tooling framework to support architecture-driven assurance.

With three planned prototype iterations for the framework; this deliverable reports the status for the
second prototype release (Prototype P1), in particular for the system component specification and the
tooling framework supporting architecture-driven assurance, by describing the supported functionalities
and the details about implementation.

Insofar, all partners made significant progress with the implementation of their individual features and
functionalities.

The remaining deliverable D3.6 “Prototype for architecture-driven assurance (c)” will strongly focus in the
integration of different approaches and ideas into one unified AMASS tooling framework supporting
architecture-driven assurance.

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 62

U—A AM[ASS Prototype for architecture-driven assurance (b)

D3.5V1.0

Abbreviations
Abbreviation Explanation
AADL Architecture Analysis and Design Language
API Application Programming Interface
BNF Backus-Naur Form
CACM Common Assurance and Certification Meta-model
CHESSML CHESS Modelling Language
CPS Cyber Physical System
ECSEL Electronic Components and Systems for European Leadership
EMF Eclipse Modeling Framework
GUI Graphical User Interface
IDE Integrated Development Environment
JU Joint Undertaking
LTL Linear Temporal Logic
NLP Natural Language Processing
MARTE Modeling and Analysis of Real Time and Embedded systems
OCRA Othello Contracts Refinement Analysis
OoOMG Object Management Group
OosLC Open Services for Lifecycle Collaboration
0SS OCRA System Specification
RQA Requirement Quality Analyzer
RSHP RelationSHiP
ScC Semantic Clusters
SCM System Conceptual Model
SCV Hierarchical Views
SMUT System Model Under Test
SMV
SW Software
SysML System Modelling Language
TRL Technology Readiness Level
UML Unified Modelling Language
V&V Verification and Validation

H2020-JTI-ECSEL-2015 # 692474

Page 60 of 62

<~A./ AM[ASS Prototype for architecture-driven assurance (b)

D3.5V1.0

WP Work Package
XMI XML Metadata Interchange
XSAP eXtended Safety Assessment Platform

H2020-JTI-ECSEL-2015 # 692474

Page 61 of 62

U_A AMASS Prototype for architecture-driven assurance (b) D3.5V1.0

References

(1]

(2]

(3]
(4]

(5]
(6]
(7]

(8]
(9]
(10]

(11]
(12]
(13]

(14]

[15]
[16]
(17]

Mazzini S., J. Favaro, S. Puri, L. Baracchi., “CHESS: an open source methodology and toolset for the
development of critical systems”, 2nd International Workshop on Open Source Software for Model
Driven Engineering (OSS4MDE), Saint-Malo, October 2016

L.Baracchi, S.Mazzini, S.Puri, T.Vardanega: “Lessons Learned in a Journey Toward Correct-by-
Construction Model-Based Development”, Reliable Software Technologies — Ada-Europe 2016
Volume 9695 of the series Lecture Notes in Computer Science pp 113-128, 31 May 2016
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf

CONCERTO ARTEMIS JU project, D2.2 The CONCERTO Component Model, 9 May 2014, available at
http://www.concerto-project.org/results

Papyrus Eclipse project: https://eclipse.org/papyrus/
AMASS D2.3 AMASS Reference Architecture (b) deliverable, 29 September 2017

M. dos Santos Soares, J. Vrancken: “Model-Driven User Requirements Specification using SysML”,
JOURNAL OF SOFTWARE, VOL. 3, No. 6, June 2008

XML Metadata Interchange, www.omg.org/spec/XMI/

AMASS D3.1 Baseline and requirements for architecture-driven assurance, 30 September 2016

CONCERTO D3.3 — Design and implementation of analysis methods for non-functional properties -
Final version, 18 November 2015, Public Distribution, http://www.concerto-project.org/results

Acacia+, http://lit2.ulb.ac.be/acaciaplus/
Xtend, https://eclipse.org/xtend/documentation/2.7.0/Xtend%20User%20Guide. pdf

Massif Ecore description,
https://github.com/viatra/massif/tree/master/plugins/hu.bme.mit.massif.simulink/model

AMASS D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a)
deliverable, 30 June 2017

Massif: MATLAB Simulink Integration Framework for Eclipse, https://github.com/viatra/massif

AMASS D2.1 Business cases and high-level requirements, 28 February 2017
AMASS D2.2 AMASS Reference Architecture (a) deliverable, 30 November 2016

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 62

https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
http://www.concerto-project.org/results
https://eclipse.org/papyrus/
http://www.omg.org/spec/XMI/
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.1_Baseline-and-Requirements-for-Architecture-Driven-Assurance_AMASS_final.pdf
http://www.concerto-project.org/results
http://lit2.ulb.ac.be/acaciaplus/
https://eclipse.org/xtend/documentation/2.7.0/Xtend%20User%20Guide.
https://github.com/viatra/massif/tree/master/plugins/hu.bme.mit.massif.simulink/model
https://github.com/viatra/massif

