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Executive Summary  

This deliverable D3.1 (Baseline and requirements for architecture-driver assurance) sets the stages of WP3. 
The stage is set by first of all recalling the AMASS context, motivation, objectives. Then, the problem in its 
multifaceted nature is stated. We analyse the state of art and the state of the practice concerning 
architecture-driven assurance. More specifically, the analysis aims at allowing AMASS to adopt the best 
features from existing approaches and to guarantee compatibility. We also analyse other ongoing and past 
projects, as well as available technology in the market. Moreover, when relevant, the state of the art and 
the state of the practice are compared in order to identify possible gaps. This comparative work ensures the 
identification of concrete needs, calling for new solutions, and ensuring the innovation of the project and 
future feasibility of exploitation of results. 
 
Finally, a way forward is proposed. The proposal ways consist of a consolidation of the existing results 
achieved within OPENCOSS, SafeCer and other ongoing and past projects, and of the available technology 
on the market and state of practice. Most specifically, regarding system architecture modelling for 
assurance, it appears that there is currently a trend towards extending modelling languages (e.g. SysML) to 
better and explicitly support the concepts and needs from assurance standards. This is also in line with the 
stated need in OPENCOSS CCL for better relating it with component and system models for safety-critical 
systems, such as those from SafeCer and CHESS. Based on prior work, a generic UML profile-based 
approach could be suitable. It will also be necessary to select the system modelling languages to extend 
and link with assurance models. Standard languages, and especially languages used in the case studies, are 
the main candidates. Concerning assurance patterns library management, we have observed that further 
investigation needs to be carried out to develop a more enhanced argumentation library which covers not 
only safety argumentation patterns but also some other aspects such as security. Concerning assurance 
activities concerning novel technologies, several standard requirements might need to be adapted or 
modified to include the special requirements that novel technologies demand. This includes not only new 
specific requirements but also novel V&V techniques. At the same time, argumentation patterns of several 
concerns will be further investigated and developed in AMASS to facilitate the reuse of specific 
technologies. Finally, concerning contract-based assurance composition approaches, standard architectures 
(such as AUTOSAR in the automotive industry, IMA in avionics, ETCS in railway) require some 
safety/security architectural patterns definition and application (3-level-monitoring, E2E protection, and 
partitioning, among others), and auto-generation of platform models and configurations based on these 
patterns (e.g. for AUTOSAR and IMA). The use of patterns speeds architecture specification and facilitates 
the (re)use of components targeted at being used in such patterns. We also observed that the architecture 
can be enriched with contracts that formalize the functional requirements to ensure that the system 
responds correctly to some safety requirements. 
 
To sum up, this deliverable will set the baseline for the development of the AMASS system architecture-
driven assurance and will specify the requirements that it has to meet. 
 
D3.1 relates to the AMASS deliverables D3.2 and D3.3 which are the outputs for task 3.2 (Conceptual 
Approach for Architecture-driven Assurance). 
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1. Introduction  

This introductory chapter is aimed at recalling the context of the AMASS project as well as the objectives 
and expected results that pertain to this document.  
 
Embedded systems have significantly increased in number, technical complexity, and sophistication, 
moving towards open, interconnected, networked systems (such as "the connected car" and the cloud), 
integrating the physical and digital world, thus justifying the term άŎȅōŜǊ-ǇƘȅǎƛŎŀƭ ǎȅǎǘŜƳǎέ ό/t{ύ. This 
άŎȅōŜǊ-ǇƘȅǎƛŎŀƭέ ŘƛƳŜƴǎƛƻƴ is exacerbating the problem of ensuring safety, security, availability, robustness 
and reliability in the presence of human, environmental and technological risks. Furthermore, the products 
into which these Cyber-Physical Systems (CPS) are integrated (e.g. aircrafts) need to respect applicable 
standards for assurance and in some areas they even need certification. The dimension of the certification 
issue becomes clear if we look at the passenger plane B 787 as a recent example ς it is reported in [181] 
that the certification process lasted 8 years and has consumed 200.000 staff hours at the FAA, just for 
technical work. The staff hours of the manufacturer even exceeded this figure as more than 1500 
regulations had to be fulfilled, with evidence reflected onto 4000+ documents. Although aircrafts are an 
extremely safety-critical product with many of such regulations, the situation in other areas (railway, 
automotive, medical devices etc.) is similar. 
 
Unlike practices in electrical and mechanical equipment engineering, CPS do not have a set of standardized 
and harmonized practices for assurance and certification that ensure safe, secure and reliable operation 
with typical software and hardware architectures. As a result, the CPS community often finds it difficult to 
apply existing certification guidance. Ultimately, the pace of assurance and certification will be determined 
by the ability of both industry and certification/assessment authorities to overcome technical, regulatory, 
and operational challenges. A key regulatory-related challenge has to be faced when trying to reuse CPS 
products from one application domain in another because they are constrained by different standards and 
the full assurance and certification process must be applied as if it were a totally new product, thus 
reducing the return on investment of such reuse decisions. Similarly, reuse is hindered often even within 
the same domain, when trying to reuse CPS products from one project to another, where assumptions 
change together with the criticality level. 
 
To face all these challenges, the AMASS approach focuses on the development and consolidation of an 
open and holistic assurance and certification framework for CPS, which constitutes the evolution of the 
OPENCOSS and SafeCer approaches towards an architecture-driven, multi-concern assurance, and 
seamlessly interoperable tool platform. 

 

The AMASS tangible expected results are: 
 

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual 
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as 
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability 
mechanisms (based on OSLC specifications). 

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment 
supporting CPS assurance and certification. This platform represents a concrete implementation of 
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will 
be released as an open technological solution by the AMASS project. AMASS openness is based on 
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on 
open-source release of the AMASS building blocks. 

c) The Open AMASS Community, which will manage the project outcomes, for maintenance, evolution 
and industrialization. The Open Community will be supported by a governance board, and by rules, 
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policies, and quality models. This includes support for AMASS base tools (tool infrastructure for 
database and access management, among others) and extension tools (enriching AMASS 
functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse 
community (www.polarsys.org) is a strong candidate to host AMASS. 

 
To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding project 
scientific and technical objectives are addressed by different work-packages. 
 

 
 

 

WP3 aims at addressing Architecture-Driven Assurance. More specifically, with respect to the AMASS goals, 
this deliverable presents the background in terms of problem and solution space related to: Goal 1 (G1) and 
Goal 3 (G3), the corresponding project objective O1, and to the project scientific and technical objective 
(STO) 1. G1, G3, O1 and STO1 are recalled here to make the deliverable self-contained. 
 
G1: to demonstrate a potential gain for design efficiency of complex CPS by reducing their assurance and 
certification/qualification effort by 50%. 
 
G3: to demonstrate a potential raise of technology innovation led by 35% reduction of assurance and 
certification/qualification risks of new safety/security-critical products. 
 
O1: define a holistic approach for architecture-driven assurance to leverage the reuse opportunities in 
assurance and certification by directly and explicitly addressing current technologies and HW/SW 
architectures needs 
 
STO1 focuses on Architecture-Driven Assurance, including: a) System Architecture Modelling for Assurance, 
b) Architectural Patterns for Assurance, c) Assurance of specific technologies, d) Contract-Based Assurance, 
e) V&V-based Assurance. 
 

WP3 
WP4 

WP5 
WP2 

WP3 
WP4 

WP6 

Figure 1: AMASS Building blocks 

file:///C:/Users/iaa01/Documents/Projects/AMASS/My%20tasks/post%20Barbara%20D6.1/www.polarsys.org
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This document is deliverable D3.1 (Baseline and requirements for architecture-driven assurance), which is 
the output of task 3.1 (Consolidation of Current Approaches for Architecture-driven Assurance), released by 
the AMASS WP3 (Architecture-Driven Assurance). WP3 shall develop the means necessary for providing the 
system architecture-driven assurance approach of AMASS. Such an approach will be based on the extension 
of OPENCOSS and SafeCer conceptual results and platform in order to:  

1. deal with architectural assurance patterns and with the assurance and certification needs of specific 
technologies (e.g., multicore), and 

2. link assurance and certification models with system models (e.g. the latter represented with SysML) 
and standard software architectures (e.g. AUTOSAR and IMA). Moreover, WP3 will integrate 
OPENCOSS and SafeCer approaches and will extend them in order to consider standard software 
architectures. 

Moreover, to achieve STO1, WP3 is structured into three tasks. The purpose of this deliverable is to 
document the work conducted during Task 3.1. More specifically, the goal of the deliverable is multi-fold:  

1) to analyse the problem related to architecture-driven assurance  

2) to present a corresponding state of the art 

3) to present the current state of the practice; and finally, based on these findings 

4) to present a consolidation of existing results and profit from ongoing and past projects.  
 

The rest of the deliverable is organised as follows. Section 2 states the main concepts and objectives on 
Architecture-Driven Assurance (ADA) in AMASS. In section 3 is described the state of the art on ADA. 
Subsequently, section 4 describes the state of the practice on ADA. Finally, section 5 presents a summary of 
the main points from previous sections, detecting the gaps between state of the art and state of the 
practice, and the way forward in AMASS. 
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2. Problem Statement and Concepts 

One of the main contributions of the AMASS project is to provide a modelling language (metamodel), tools, 
and techniques to support an architecture-driven assurance, i.e., an assurance that exploits and is linked to 
the system architecture in order to provide more structured evidences and arguments to show that the 
system is free of vulnerabilities. In particular, the system architecture is used for model-driven engineering, 
contract-based and pattern-based design and argumentation. In this respect, there are a number of 
challenges that must be addressed by the project, as discussed in the following sections. 

2.1 System Architecture Modelling for Assurance 

2.1.1 Exploiting the System Architecture in the Assurance Case 

The system architecture is one of the first artefacts produced by the development process and includes 
many design choices that should be reflected in the assurance case. Therefore, we have to understand 
which elements of the system architecture are important for the assurance case. The existing OPENCOSS 
CCL (Common Certification Language) metamodel corresponds mainly to an assurance metamodel, and 
should be extended with (or linked to) other modelling formalisms to enable a more detailed definition of 
ǎȅǎǘŜƳ ŀƴŘ ŀƴŀƭȅǎƛǎ ƻŦ ǎȅǎǘŜƳΩǎ ŘŜǇŜƴŘŀōƛƭƛǘȅ. In general, CCL needs to be extended for dealing with the 
linkage between its assurance framework and system architecture models. This will facilitate a finer-
grained management of artefacts, such as those involved in the management of a hazard log in the railway 
domain: a hazard in a fault tree analysis, a safety requirement in a requirements specification, a block in an 
architecture specification, an interface in a design specification, a step in a verification report, a test case in 
a validation report, a section of a safety case, and so on. For example, the CCL should be extended with 
concepts such as component decomposition and contract refinement, as developed in SafeCer, to enable 
an architecture-driven reuse of models and assurance artefacts. 

2.1.2 System Architecture Languages 

There are many languages suitable to describe the system architecture, but most of them share the main 
concepts that are relevant for the system architecture are in common to these languages. Therefore, we 
have to face the problem of defining a meta-model for a generic system component specification with such 
architectural concepts. The SafeCer project created a first generic model, implemented in CHESS, but the 
link with other architecture description languages remained at a conceptual level. The current OPENCOSS 
models allow the treatment of artefacts only at a coarse "black box" level. These models will be extended in 
AMASS so that they are linked to modelling formalisms for safety information (information necessary to 
ǊŜŀƭƛȊŜΣ ŀƴŀƭȅǎŜ ŀƴŘ ǾŜǊƛŦȅ ǎȅǎǘŜƳǎΩ ǎŀŦŜty) and to system modelling. The plan is to study the relation of the 
OPENCOSS and SafeCer assurance models with different system modelling languages (UML, SysML, AADL, 
EAST-ADL, etc.), safety modelling profiles, and specific platform models and architectures like AUTOSAR for 
automotive and IMA for avionics.  

2.1.3 Architectures Trade-Off and Comparison 

During the system development process, it is often the case that different system architectures are 
compared or one architecture is replaced by another one to trade-off different aspects. For example, a 
single-point-of-failure component is replaced by some redundant components, components may be 
removed or replaced for reducing the cost because of the project budget, the deployment and physical 
partitioning may have a completely different topology with respect to the logical decomposition of the 
system. Providing support to compare different system architectures will allow industry to make more 
informed decisions regarding what can be reused between systems (including difference versions of 
systems) and reuse consequences.  
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2.2 Architectural Patterns for Assurance 

2.2.1 Architectural Patterns 

An architectural pattern is a partial specification of a part of the system architecture that can be 
instantiated/used in a project-specific design. There are many opportunities to define architectural 
patterns, as the result of standard of practice applied in a specific domain or coming from the standards. 
Many patterns can be defined for fault tolerant mechanisms, including redundancy schemas and 
components for fault detection, isolation, and recovery. Other patterns can be created for specific domains 
(although they can be probably reused in other domains). For example, in the space domain, when 
considering the design of a satellite, the top-level architecture listing the sub-systems (AOCS, thermal, 
ǇƻǿŜǊΣ Χύ ƛǎ ŀƭƳƻǎǘ ǘƘŜ ǎŀƳŜ ŦƻǊ ŀƭƭ ǇǊƻƧŜŎǘǎΤ ƛƴ ǘƘŜ ŀǳǘƻƳƻǘƛǾŜ ŘƻƳŀƛƴΣ ǘƘŜ !¦¢h{!w ǎpecifies how the 
communication should be protected from failures. Architectural patterns can be used to reduce the cost of 
design, increase the quality of the developed system, but also for auto-generation of platform models and 
configurations based on these patterns. 

2.2.2 Interaction between Assurance and Architectural Patterns 

OPENCOSS and SafeCer have straightforward mechanisms to specify assurance patterns for argumentation 
and for compliance with standards. However, further research and case studies are necessary to integrate 
cohesively these patterns with the architectural patterns and to integrate them into specific assurance and 
certification activities. The use of patterns speeds architecture specification and facilitates the (re)use of 
components targeted at being used in such patterns. Moreover, it enables the reuse of analysis results 
associated with the patterns. Therefore, we want to address the problem of defining the assurance 
patterns that can be associated to specific architecture patterns or design mechanisms. For example, a 
specific assurance pattern can be associated to the tolerance on failure communication associated with E2E 
protection of AUTOSAR or to the security-related non-interference associated with partitioning in MILS 
systems. 

2.2.3 Architectural Patterns from Standards 

There are many standards, in many domains, that specify parts of the system architecture such as sub-
systems decomposition, component interfaces, communication packets. For example, the ETCS standard 
specifies how the train on-board system should interface with the track-side system, the AUTOSAR provides 
standardized interfaces for components at different layers of the design; in the space domain, the ECSS 
Packet Utilization Standard (PUS) specifies telecommands and telemetry packets for asynchronous 
communication to and from satellites. We will use architectural patterns to formalize the architectural 
elements specified in standards. 

2.3 Assurance of Specific Technologies 

Some specific technologies offer many benefits in terms of performance, reconfiguration or adaptability. 
However, their use in safety critical domains still lacks from maturity due to certification issues.  Devices 
such as FPGA need to be safely deployed so that they can be certified.  

Taking into account that OPENCOSS and SafeCer results are technology-agnostic, the assurance and 
certification of many characteristics of the new technologies of CPS are not supported. AMASS will tackle 
those issues addressing different technology patterns. More specifically, certification issues regarding 
MultiProcessor System-on-a-Chip (FPGA or Microcontroller based), Programmable Logic Devices, 
Commercial Off-The-Shelf, IMA, AUTOSAR or adaptive systems will be addressed.  The detailed 
characteristics of the most recent and future technologies for CPSs will set under what circumstances reuse, 
assure, and certification of CPSs is possible. 



              

         AMASS Baseline and requirements for architecture-driven assurance  D3.1 V1.1 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 13 of 88 

 

2.4 Contract-Based Assurance 

2.4.1 Assurance Patterns for Contract-Based Design 

An important issue in AMASS is the integration and consolidation of the concept of contracts from the 
existing results of the OPENCOSS and SafeCer projects. In particular, the AMASS assurance for the 
argumentation that a system architecture is compliant with the system properties will follow the contract 
refinement defined in the system model.  

2.4.2 Enriching the Evidence Produced by Contract-Based Design 

A general challenge for those tools (e.g., OCRA) that are used for analysing and verifying contract 
specifications using formal methods is to provide useful evidences in order to enrich the contracts 
refinements argument. Similarly, in the context of safety analysis based on the contract specification, the 
goal is to enrich the assurance case with fault trees showing the dependency of system failures on the 
component failures.  

2.4.3 Automation in Contract-Based Design 

Another challenge is to increase the automation capabilities that are provided by tools supporting 
contracts. Such automations will include pre-defined properties and contracts derived from the standards 
as done for the Catalogue of System and Software Properties (CSSP) defined in the CATSY project [184] or 
associated to architectural patterns derived from the standards. Also, user guidance during the design of 
safety critical systems (like the selection, based on contracts, of appropriate components under 
consideration of their safety properties) is a subject for a higher automation degree that would also 
increase the re-usability of critical system components even cross-domain. 

2.5 V&V-based Assurance 

Another challenge of the AMASS project is to enrich the OPENCOSS and SafeCer assurance approaches with 
V&V techniques. For example, formal techniques can be used to validate that a requirements specification 
is complete, correct, and unambiguous and to verify that the deployed system satisfies those requirements. 
In fact, many safety issues in the deployed system are due to errors in the requirements specification, 
which are typically discovered very late in the development process. Therefore, the AMASS assurance 
approach will make sure that evidence for arguing that the requirements specification is valid are provided 
as part of the assurance case. When the requirements specification is formalised and validated, it is then 
employed in the development of system designs and of the final system. All intermediate stages will also 
be checked for compliance with requirements using automated V&V tools. The situation and needs 
described for requirements specifications could also be applied to other artefact types, e.g. V&V of design 
models. 
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3. State of the Art on Architecture-Driven Assurance 

This chapter provides an overview concerning the state of the art on Architecture-Driven Assurance. The 
overview is structured by topics, where many results came from previous related projects to AMASS such as 
SafeCer and OPENCOSS.  

3.1 Contract-based approaches  

In this section we review diverse contract-based approaches related to subsection 2.2 ά!ǊŎƘƛǘŜŎǘǳǊŀƭ 
tŀǘǘŜǊƴǎ ŦƻǊ !ǎǎǳǊŀƴŎŜέ and 2.4 ά/ƻƴǘǊŀŎǘ-ōŀǎŜŘ !ǎǎǳǊŀƴŎŜέ. We study the concepts of contracts defined in 
OPENCOSS and SafeCer, which will be integrated in AMASS. In addition, we present some formalisms to 
specify and analyse contracts and the related tool supports implemented in different projects. We also 
analyse the extension of some of the approaches to cover safety analysis. 

3.1.1 Contract-based approaches based on Temporal logic  

Contract-based design, first conceived for software specification [10] and now applied also to embedded 
systems [1], [2], [3], [4], [5], [6], [7], [8], [9], [12], [13], is a very promising paradigm, amenable to stepwise 
refinement, compositional reasoning, and reuse of components. The idea is to annotate the architectural 
decomposition with contracts that specify the relevant behavioural aspects of each component interface. 
More specifically, a contract is composed by an assumption and a guarantee. The former specifies the 
expected behaviour of the component environment, and the latter specifies how the component must 
behave in response. The system resulting from the composition of implementations satisfying the contracts 
according to the annotated architecture is guaranteed to satisfy the overall system contracts. 
 
In many formal modelling approaches, in the underlying model of communication, the components 
receiving an input are blocking, in the sense that if they cannot receive the input, they block the component 
generating such data or event. As in some architecture languages, input/output are just a syntactic way to 
represent shared labels. For example, in the framework described in [7], contracts are specified with a 
temporal logic defined over a set of variables, their product is given by language intersection, and the 
contract satisfaction and refinement is defined in terms of language inclusion. This framework has been 
implemented in a tool, called OCRA [20]. In more details, the approach is very efficient, because the overall 
correctness proof is decomposed into proofs local to each component. However, part of the complexity is 
delegated to the designer, who has the burden of specifying the contracts. Typical problems include 
understanding which contracts are necessary, and how they can be simplified without breaking the 
correctness of the refinement. In [86], the authors tackle these problems by proposing a new technique to 
understand and simplify a contract refinement. The technique, called tightening, is based on parameter 
synthesis. The idea is to generate a set of parametric proof obligations, where each parameter evaluation 
corresponds to a variant of the original contract refinement, and to search for tighter variants of the 
contracts that still ensure the correctness of the refinement. 
 
One of the main concerns in model-based system engineering is to design the architecture of systems so 
that the components are properly integrated in order to satisfy the system properties. Architecture 
description languages specify the syntactic interfaces of components in terms of data and event ports, their 
connections and decomposition. Contract-based design provides a formal framework to specify the 
semantic interface of components detailing the assumptions on the input received from the environment 
and the guarantee on the input/output relationship. 
 
In SafeCer, Linear-time Temporal Logic (LTL) [11] has been used to express the assertions in the contracts 
over data and event ports. In this context, the behavioural model of a component is verified to satisfy the 
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contract associated to that component. In order to be reused, the behavioural model must also be 
compatible with the environment of the component provided by the system design. It exploits the contract 
specification to ensure that the component implementation is compatible with any environment satisfying 
the assumption of the contract. In addition, the framework for contract-based design has been extended to 
take explicitly into account the problem of the component to be compatible with any environment that 
satisfies the assumptions, in the sense that the component must accept all the inputs that are produced by 
such an environment. Moreover, a compositional method is provided to solve this problem exploiting the 
refinement of contracts.  
 
As we said, Linear-time Temporal Logic (LTL) has been used to express the assertions in the contracts over 
data and event port, where they reduce the problem to LTL model checking. The main novelty came from 
the fact that the compatibility is local and is composed exploiting trace-based inclusion checks based on the 
contracts. This is important to remark due to it is a great advantage, given that the receptiveness check 
turns out to be very expensive, and tackling it on the final system implementation is impractical. 
 
One of the main contributions in this area is the extension of the framework in [7] to input/output 
components, and taking into account standard problems of interface theory such as the compatibility of the 
implementations. A key finding is that the same notion of contract refinement based on trace inclusion can 
be used as compositional rule for checking the receptiveness of component implementations. This enables 
us to fully exploit mature technology of temporal satisfiability and symbolic model checking. 

3.1.2 Contract-based approaches based on agreements among components  

OPENCOSS project defined compositional assurance approaches where safety case contracts are playing a 
key role [158]. 
 
Contract-based approaches are hard to apply from a safety perspective. In fact, several companies and 
standardisation bodies are reluctant to consider this kind of contracts during certification processes. 
However, we can consider that a contract can be designed in a way that it considers agreements among 
components. The main interfaces are defined in order to facilitate interoperability and integration among 
these components. A component has a correct functionality when the interaction with its interfaces is well 
defined, and its preconditions and postconditions are satisfied. From a safety perspective, system 
properties should be verified as a whole. A system composed by safe components may not be safe. 
Therefore, quality assurance activities, including safety assessment, are set in order to verify and validate 
system properties. Several aspects should be considered. For example, failures modes are also analysed, 
and all assumptions and contexts are considered. Standards address this problem in different ways. ISO 
26262 defines a development Interface Agreement (DIA) document, which is an agreement between OEM 
and suppliers, by defining procedures and responsibilities. In addition, ISO26262 also refers to Safety 
Element Out Of Context (SEooC) which defines and interprets concepts, procedures and functionalities (also 
non-functionalities) by manufacturers, suppliers and developers. In the avionics domain we can find similar 
requirements while talking about modules and application reuse on an IMA (Integrated Modular Avionics) 
platform. DO-297 requires the definition of component limitations and assumptions, among others, for 
component acceptance. In this context we need to analyse its usage domain to ensure that it is being 
reused in the same way as it was originally intended. 
 
The process of composition varies depending on the focus: 

¶ Compositional Argumentation. A contract module contains the relationship between two modules, 
and how a claim in one module supports the argument in another. Arguments are encapsulated in 
a module, or in a set of modules. The argumentation editor of OPENCOSS is able to define 
argumentations from a compositional point of view, so-called "modular argumentation". 
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¶ Project Reuse. A safety assurance project can reuse parts of another project. Traditionally this is 
carried out in industrial settings. Artefacts used as evidences to support assurance on a given 
project, want to be used as evidences in another project. Contracts can play a keystone for the 
reuse of components.  

¶ Component composition. This is the traditional approach component based engineering 
approaches.  

Guidelines and standards prescribe the information needed to manage at the assurance project level. 
When analysing guidelines and standards, we noticed that the data required for assurance are classified in 
three main categories (Figure 2): 

¶ Artefacts: referring to the data required by an entity when doing the safety assessment 

¶ Properties: these are characteristics that must be present after the integration in order to confirm 
that there are no concerns or an emerging unknown behaviour.  The properties need to be verified, 
and the verification needs to be included as part of the evidence. 

¶ Processes: refers to the activities that shall be performed in order to prepare the reuse and after 
the reuse itself in order to comply with the standards requirements. 

 

 

Figure 2: Contracts View for Component 

A contract is characterised by the following sections (Figure 3):  

 

Figure 3: Contracts definition template 

What is assumed 
- Activities/processes that shall be done by the integrator of the component 
- Properties of the component that shall be checked after the integration 
- Artefacts that shall be completed or done after the integration of the component 

What is guaranteed 
- Activities/processes that shall be done by the developer of the component 
- Properties of the component that shall be checked after the integration 
- Artefacts that should be completed or done after the integration of the component 

Strategy 
- Impacts on the guarantees if any of the assumptions is not valid 
- Trace between risk mitigation needs and protection mechanism 
- Rationale about the limits, conditions, and use of the component 

Definition 
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OPENCOSS defined a Common Certification Language (CCL) ([160]) relying on three aspects: Compliance 
management, safety argumentation and evidences management. Contracts are based on this CCL. Contract 
data related to a component need to include information about assured properties and behaviours of that 
component, the artefacts that should be accessible to the authorities and the evidence of the process and 
activities executed to fulfil ǘƘŜ ŎƻƳǇƻƴŜƴǘΩǎ ŀǎǎǳǊŀƴŎŜ ǊŜǉǳƛǊŜƳŜƴǘs. All this information is related to an 
evidence meta-model Contract references to the artefacts and their properties, and the rest of the 
information from evidence meta-model is considered as a black box. Activity on the contract defines a unit 
of behaviour for the component lifecycle that must be executed to demonstrate compliance. Activity is the 
modelling entity, which relates the contract with the process meta-model.  
 
All these aspects are linked intertwined. Contract validation is necessary to take into account not only 
component properties, but also how properties have been assured. An argumentation meta-model 
captures these entities. Claims reference properties (which define the behaviour) and standards' 
objectives, and Information Elements reference the evidences used to support those claims.  

3.1.3 Semi-formal notation of contracts  

Contract-based design has shown many evidences of its applicability in industry. They have also been 
proposed for the functional safety domain (e.g., [38], [39], [40]). Although such contract-based 
developments have gained popularity as an approach for supporting distributed development by explicitly 
annotating assumptions and guarantees to components, an integrated process covering specification of the 
nominal behavior and safety was missing. In [42] such an integrated development approach is presented. 
The approach encompasses the systematic breakdown of the nominal system behavior using contracts, the 
consistent derivation of the safety analysis by interpreting several types of contract violations as a 
specification for failure modes, and the subsequent integration of safety mechanisms that cover these 
failure modes through safety contracts. There have also been proposals for the usage of contracts to specify 
real-time properties of continuous-valued controller structures and the control error of technical systems 
(e.g., [29]).  Furthermore, contracts have also been applied to UML/SysML models as well as Simulink 
models (e.g., [30]). 
 
Contracts can be specified in a natural language, in a set of semi-formal languages (such as template-
languages), or in formal languages.  
 
Formal languages (as temporal logics [34] or IO-Automata [35]) allow automatic verification of refinement 
and implementation of contracts, but they are often hard to understand for practitioners from the different 
involved disciplines and therefore difficult to promote in industry. A proposal that bridges this gap are the 
pattern-based Requirements Specification Language RSL [36] or the Contract Specification Language CSL 
from the SPEEDS project [37]. Text patterns, consisting of static text elements and attributes, provide both a 
well-defined syntax and semantics. To cope with the needs of the different aspects of a design, various sets 
of patterns have been defined [31], they build upon parametrized requirements patterns that have been 
known for a long time (e.g. [32], [33]). 
 
Natural language contracts are often accompanied by ambiguity, incompleteness or inconsistency. Some 
proposals have been made with semi-formal languages (the syntax is defined and restricted, but 
verification has to be performed by human experts) to avoid these drawbacks of natural language while 
providing an understandable language for experts from different domains (e.g., [41]).  In [41] a semi-formal 
approach is proposed, which allows specifying assumptions and guarantees at component interfaces in a 
language with well-defined syntax, but leaving the verification of fulfillment of the contract by a 
component to expert decision. However, the approach allows formalizing and automatically checking some 
relevant refinement relations. The paper presents a prototypical Eclipse tool (SAVONA), which allows the 
annotation of components with assumptions and guarantees, and the partial checking of the 
decomposition. It also shows its applicability based on an automotive electric drive system case study. 



              

         AMASS Baseline and requirements for architecture-driven assurance  D3.1 V1.1 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 18 of 88 

 

The OPENCOSS Common Certification Language (CCL) provides a Thesaurus-type vocabulary [161], which 
defines and records key concepts relevant to safety assurance within the target domains and the 
relationships between them. A further use case for the vocabulary aspects of OPENCOSS is to provide a 
means for regularizing the structure of expressions used in claims in assurance argumentation. This work 
has been written up in detail in [161]. 
 
Having a common syntactic structure for argument claims makes it easier for a reader to parse claims, and 
avoids issues such as confusion over the scope of a given term in a sentence. It is quite common in 
άŜƴƎƛƴŜŜǊƛƴƎ ƭŀƴƎǳŀƎŜέ ŦƻǊ ǘƘŜǊŜ ǘƻ ōŜ ǳƴŎŜǊǘŀinties over the interpretation of the scope of qualifiers, as in 
ǘƘŜ ǇƘǊŀǎŜ άŦŀƛƭǳǊŜ ƳƻŘŜǎ ŀƴŘ ŜŦŦŜŎǘ ŀƴŀƭȅǎƛǎέΣ ǿƘŜǊŜ άŀƴŀƭȅǎƛǎέ ǎŜǊǾŜǎ ǘƻ ǉǳŀƭƛŦȅ ōƻǘƘ άŦŀƛƭǳǊŜ ƳƻŘŜέ ŀƴŘ 
άŜŦŦŜŎǘέ ŀƴŘ ǿƘŜǊŜ άŦŀƛƭǳǊŜέ ǉǳŀƭƛŦƛŜǎ ōƻǘƘ άƳƻŘŜέ ŀƴŘ άŜŦŦŜŎǘέ. A non-specialist reader (or a machine) 
ǿƻǳƭŘ ōŜ ƭƛƪŜƭȅ ǘƻ ƭƻƻƪ ƻƴƭȅ ŦƻǊ ǘƘŜ Ƴƻǎǘ ƭƛƳƛǘŜŘ ǊŀƴƎŜΣ ŀƴŘ ŀǎǎƻŎƛŀǘŜ άŀƴŀƭȅǎƛǎέ ƻƴƭȅ ǿƛǘƘ άŜŦŦŜŎǘέ ŀƴŘ 
άŦŀƛƭǳǊŜέ ƻƴƭȅ ǿƛǘƘ άƳƻŘŜέΦ 
 
Structured expressions can be used to characterise the types of concepts that are discussed at a particular 
point in an argument, and the relevant features which can be asserted about them. Typically, a structured 
expression comprises a fixed verb phrase, which carries the main sense of the claim, while noun phrases, 
providing the subject and object over which the verb phrase ranges, are parameterisable. For example, a 
ǾŜǊȅ ǎƛƳǇƭŜ ǎǘǊǳŎǘǳǊŜŘ ŜȄǇǊŜǎǎƛƻƴ ƛƴ ŀƴ ŀǎǎǳǊŀƴŎŜ ŎŀǎŜ ŎƭŀƛƳ ƳƛƎƘǘ ǘŀƪŜ ǘƘŜ ŦƻǊƳ άϑŦŀǳƭǘ ƻŦ ǘȅǇŜ ǎȅǎǘŜƳŀǘƛŎ 
Ŧŀǳƭǘϒ ƛǎ ŀŘŜǉǳŀǘŜƭȅ ƳƛǘƛƎŀǘŜŘ ōȅ ϑŦŀǳƭǘ ƳƛǘƛƎŀǘƛƻƴ ǘŜŎƘƴƛǉǳŜϒέΣ ǿƘŜǊŜ ōƻǘƘ άŦŀǳƭǘ ƻŦ ǘȅǇŜ ǎȅǎǘŜƳŀǘƛŎ Ŧŀǳƭǘέ 
ŀƴŘ άŦŀǳƭǘ ƳƛǘƛƎŀǘƛƻƴ ǘŜŎƘƴƛǉǳŜέ ŀǊŜ ōǊƻŀŘ ǇŀǊŀƳŜǘŜǊǎΦ {ƛƳǇƭŜ ŜȄǇǊŜǎǎƛƻƴ ǎǘǊǳŎǘǳǊŜǎ Ŏŀƴ ōŜ ŎƻƳōƛƴŜŘ ǘƻ 
form larger syntactic units, e.g., ŦƻǊƳ άϑŦŀǳƭǘ ƻŦ ǘȅǇŜ ǎȅǎǘŜƳŀǘƛŎ Ŧŀǳƭǘϒ ƛǎ ŀŘŜǉǳŀǘŜƭȅ ƳƛǘƛƎŀǘŜŘ ōȅ ϑŦŀǳƭǘ 
mitigation techniquŜϒ ǿƘƛŎƘ ŀŘŘǊŜǎǎŜǎ ϑƘŀȊŀǊŘϒέΦ 
 
In the OPENCOSS approach defines a series of generic structures. They are used to refine the logical 
structures summarised in argument fragment templates captured in patterns such as those defined in [165] 
by specifying the types of concept which are in focus at particular points in the argument. 

3.1.4 Safety Analysis with contracts  

Fault-tree analysis is a safety technique applied to a system description in order to check the dependency of 
system properties on the occurrences of faults. In particular, given a system implementation, a set of faults 
events, and a top-level failure condition, the fault-tree analysis produces a tree structure that shows how 
the top-level condition depends on different sets of occurrences of fault events. 
 
Contract-based design and fault-tree analysis can be integrated in order to improve both techniques. In 
particular, SafeCer applies safety analysis to the contract-based specification by extending the specification 
with failure conditions and analyzing when the contract refinement is preserved in case of failures. On the 
other side, the contract failures are exploited as intermediate events in order to enrich the fault-tree 
analysis. The integration is described in [14]. 
 
In a nominal architectural design, the one that is later implemented, the failures of components are not 
modelled explicitly. Failures may be artificially introduced in the model for the analysis of the safety 
mechanisms. However, the design that is later implemented in real software and hardware components 
contains only the nominal interfaces and behaviours. It may contain redundancy mechanism or failure 
monitoring, but not the failures themselves. Unfortunately, there is often a gap between the design of the 
nominal architecture and the safety analysis, which are carried out by different teams, possibly on out-of-
sync components. This requires substantial effort, and it is often based on unclear semantics. 
FBK proposed a new formal methodology to support a tight integration between the architectural design 
and the analysis of failures. The approach builds on two main ingredients: Contract-Based Design (CBD) and 
symbolic fault injection.  
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An important aspect of CBD is the ability to provide feedback in the early stages of the process, by 
specifying properties of blocks in abstract terms (e.g. in terms of temporal logic), without the need of a 
behavioural model (e.g. in terms of finite state machines). 
 
The idea of (symbolic) fault injection, also referred to as model extension, is to transform a nominal model 
into one that encompasses the faults. This is done by introducing additional variables, describing whether a 
fault has occurred or not and controlling whether the system is behaving according to the original (nominal) 
or extended (faulty) model. Within this setting, it is possible to generate automatically fault trees by means 
of model checking techniques. This approach focuses on behavioural models, and is flat, thus unable to 
exploit the hierarchical decomposition of the system. 
 
The novel contribution of the proposed approach is the extension of CBD for safety analysis: given a 
contract-based decomposition of the system under nominal conditions, we obtain automatically a contract-
based decomposition of the model with fault injections. The insight is that the failure mode variables are 
directly extracted from the structure of the nominal description; basically, a failure variable models the 
failure of the component to satisfy its contract. The approach is proved to preserve the correctness of 
refinement: the extension of a correct refinement of nominal contracts yields an extended model where 
the refinements are still correct. Once the contracts are extended, it is possible to construct automatically 
hierarchical fault trees that mimic the structure of the decomposition, and formally characterize how lower 
level or environmental failures (to satisfy the respective contracts) may cause failures at higher levels. 
 
The approach has several important features. First, it is fully automated since the models required to 
support the analysis of safety mechanisms are directly obtained from the models used in design, without 
the need of further human intervention. Second, the approach can be applied early in the development 
process and stepwise along the refinement of the design providing a tight connection between the design 
and the safety analysis. Third, it produces artefacts that are fundamental in safety assessment, in particular 
fault trees, which follow the hierarchical decomposition of the system architecture. 
 
The framework has been implemented extending the OCRA tool, where the input is an OCRA description of 
the architecture with the specification of component contracts and the output of the new functionality is a 
hierarchical fault tree. An application of this framework has been used to formalize and analyse the 
AIR6110 Wheel Brake System. 
 
Both the integration of nominal system development with failure analysis and the augmentation of failure 
analysis with fault injection, as elaborated in the SafeCer approach, can profit from the formalization of 
failure modes through the contracts: As the set of contracts specify the correct behaviour of a component 
in all relevant operation situations, it is obvious that a contract violation of a component (i.e. one of its 
guarantees is violated, although all of its assumptions towards the environment hold) constitutes a failure. 
Additional classification schemes for failure modes help automating the model-based failure analysis to a 
ƘƛƎƘ ŘŜƎǊŜŜ όŜΦƎΦ CƻǊ ǇƻǊǘǎ ŘŜƭƛǾŜǊƛƴƎ ŀ Ŏƻƴǘƛƴǳƻǳǎ ǎƛƎƴŀƭΣ ǘƘŜ ŦŀƛƭǳǊŜ ƳƻŘŜǎ άǘƻƻ ƭƻǿέ ŀƴŘ άǘƻƻ ƘƛƎƘέ ŀǊŜ 
standard ones. If the guarantee says that a value shall be between 1 and 99 in a certain situation, then 
clearlȅ л ƻǊ ŜǾŜǊȅǘƘƛƴƎ ōŜƭƻǿ ƛǎ ŀ άǘƻƻ ƭƻǿέ ŦŀƛƭǳǊŜΣ ǿƘƛƭŜ млл ŀƴŘ ŜǾŜǊȅǘƘƛƴƎ ŀōƻǾŜ ƛǎ ŀ άǘƻƻ ƘƛƎƘέ ŦŀƛƭǳǊŜύΦ 
Details about the integration of contract-based development with safety analysis can be found in Section 4 
of [42]. 

3.1.5 Patterns of contracts   

The increasing complexity through highly integrated and advanced driver assistance systems challenges the 
safety and security demands on the different domains at industry. Patterns for safety and security contracts 
enable robust and fast design for such complex systems, while at the same time enabling the reuse of 
design/components across systems and domains. Nowadays we see a number of best practices in the 
industry for safety/security design patterns ranging from high-level system architectures down to idioms 
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for the design of components and basic parts. Examples include redundancy (dual channels, 1oo2, 2oo3, 
lockstep, etc.), online failure monitoring (3-level-monitoring, watchdogs, EDCs, intrusion detection, etc.), or 
communication and data protection (E2E, checksums, error bits, partitioning), and so on. 
 
At the core, safety (and security) contracts define how fault avoidance, fault detection and recovery and/or 
mitigation is handled by a single element or between a set of elements. For this purpose, the contract must 
include a statement about potential failures of the element(s) and mechanisms how they are covered. 
¢ƘŜǊŜŦƻǊŜΣ ǎŀŦŜǘȅ ŎƻƴǘǊŀŎǘǎ ŀǊŜ ƻŦǘŜƴ ǊŜƎŀǊŘŜŘ ŀǎ ŀƴ ŜȄǘŜƴǎƛƻƴ ǘƻ ŀƴ ŜƭŜƳŜƴǘΩǎ ƛƴǘŜǊŦŀŎŜ ǿƛǘƘ ŀ ǎŜǘ ƻŦ 
specific requires/guarantees properties, and there exists a number of proposals on how they can be 
expressed and formalized (cp. Section 3.1.3). However, as state of the art there is almost no formalization 
and explicit modelling of these patterns/contracts applied during the development process on the different 
domains at industry. 
 
The key points to enable safety and security contracts are the following: 

1. A formalization of the design is required, where the nominal specification of a hierarchically 
decomposed system can be augmented with relevant information for safety/security contracts. 
This information includes the formalization of the contracts by means of interfaces as well as the 
addition of failures, mechanisms, constraints, context/environment dependencies, etc. to the 
design. 

2. A formal definition of failures, failure dependencies, and safety mechanisms as well as their 
detailed semantics in relation to the model. This implies the element behaviour in case of fault 
occurrence and the characteristics of the countermeasures, e.g. detection capabilities with a certain 
diagnostic coverage, timing aspects, avoidance/protection against the fault, and so on. 

3. A method to define and exchange patterns/contracts and to build libraries, so that actual reuse can 
be accomplished across systems. Modelling wise there is the need to have a technology that allows 
the definition of contracts and exchange of components that encompass the safety/security 
contracts (e.g. data or exchange format). 

 
Model-driven design and development defines the state of the art addressing these points and providing a 
solid and sound foundation for the required extensions. Section 3.5 gives an overview on typically used 
languages such as UML and SysML. Thereby, the type and interface concepts are key to a contractual 
design, since ports and interfaces make up the interactions/connections of a structural element. 
 
The usage of metamodels for the modelling languages constitute a precise and concise technique to define 
the information from a structural point of view. The definition of the safety contract related information ς 
such as failures, dependencies, or safety mechanisms ς can be achieved by extending the language 
metamodels with the safety/security related concepts. An example of such a metamodel is the safety core 
part of mediniTM analyze as shown in the figure below. 
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Figure 4: Arguments over the use of enabling monitor  

The safety core model defines the modelling concepts of failures and measures as a central metamodel 
that is shared across all language models such as SysML, UML, AUTOSAR, Simulink, etc. We use the term 
"failure" as a general classification across domains of all abnormal conditions that are in the focus of an 
analysis, i.e. Hazard Analysis and Risk Assessment, FMEA, FMEDA, or FTA. Failures can be connected via a 
cause-effect relationship to model failure nets (usually hierarchies). In structural/physical models, they're 
quantified by means of a failure rate (e.g. from computations along the SN29500, IEC62380 or other 
sources). Measures are the generic concept to express all means to prevent, detect, control, mitigate or 
correct failures of a system. In addition, Safety Mechanisms are specific measures that are implemented 
into systems and that provide a diagnostic coverage (DC) of failures, i.e. they cover a proportion of the 
failure rate of a failure mode (not shown in the excerpt). These definitions are intended to be as generic as 
possible to fit to multiple domains (e.g. ISO 26262, IEC 61508, DO 178, etc.) and imply only a few limitations 
in their usage regarding the semantics of the underlying model. For example, malfunctions are contained 
only in behavioural elements (activities/actions/operations) and functions, failure modes are contained in 
all components or parts, errors are dedicated to software/logical blocks, and so on. 
 
Based on these state of practice metamodels, the definition of a safety contract is modelled by an extended 
type definition where the type itself and its ports receive annotated failure modes/malfunctions, failure 
cause/effect relations, and safety mechanisms that address the failures. Thereby, the ports of a type as well 
as the type itself maintain a list of potential failures of its instances. Consequently, the failure (modes) of all 
instances of a type/ports are synchronized with the type definition, but the specific cause-effect relations 
are specific to the instance, since they often depend on location and connections of a concrete part. 
Similarly, the failure rates and distributions are modelled at the type and synchronized with all instances, 
which define context specific stress parameters based on a given mission profile (e.g. temperature, 
voltage/current, mechanical stress, and so on). 
 
Given a set of parts, failures/failure modes, and failure rates, the safety mechanisms model the fault 
detection and control at the instance level and are linked to the failures of the instances. The safety 
mechanisms of a system usually come with a maximum Detection Coverage (DC), which might not always 
be achieved for all instances, so some flexibility is required to adapt the DC per instance. Hence, it is 
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important to note that many safety properties ς failure rates and diagnostic coverage values ς vary 
depending on the application context (system) and mission profiles (environment). Therefore, the designer 
of a safety contract (usually the safety engineer) must review whether all assumed conditions are met and 
adapt the design or analysis based on specific product constraints. 
 
In order to enable reuse of contracts and patterns, all the safety design information must be stored in some 
sort of database of library. (Element) Libraries are used to share definitions of re-usable elements of system 
modeƭǎ ŀŎǊƻǎǎ ǇǊƻƧŜŎǘ ōƻǳƴŘŀǊƛŜǎ ŀƴŘ ǇǊƻǾƛŘŜ ǘƘŜ ōŀǎƛǎ ǘƻ άƛƴǎǘŀƴǘƛŀǘŜέ ǇŀǘǘŜǊƴǎ ŦƻǊ ŀ ŎƻƴŎǊŜǘŜ ǎȅǎǘŜƳ 
design. The usage of libraries is only partly established and this topic is subject of further research, 
especially in the context of WP6. 

3.1.6 Generation of Safety Case Argument-Fragments from Contracts  

In the context of SYNOPSIS project [162], component contracts were used to (semi)-automatically generate 
safety-case argument fragments [142].  SYNOPSIS assumes that the component contracts and the safety 
requirements allocated to the same component are closely related, but not the same. On the one hand, 
safety requirements describe behaviours that a certain context/system requires from a component. On the 
other hand, the contracts represent the actual behaviours of the component, which can be used to check 
whether the component satisfies the allocated requirements by checking the component guarantees with 
the corresponding safety requirements.  
 
The safety case is represented with an argument that connects the requirements with the supporting 
evidence. Such argument should demonstrate how the specified safety requirements have been satisfied in 
a particular context. Since both the contracts and the argument serve the same purpose to show that the 
requirements are satisfied, the existing contracts could be used to speed up the creation of the 
corresponding arguments. A SEooCMM metamodel [142], see Figure 5, is defined as an extension of the 
SafeCer generic component metamodel, to capture the needed information around the notion of contracts 
and enable the generation of argument-fragments directly from such contracts. Since SEooCMM addresses 
the out-of-context setting it deals with strong and weak contracts. Regardless of that, the requirements and 
evidence in SEooCMM are related to the abstract safety contract class to allow for extensions of the 
metamodel to include different types of contracts. 
 

 

Figure 5: Safety Element out-of-context Metamodel (SEooCMM)  

To generate the argument-fragment from SEooCMM, we map the contract guarantees with the argument 
claims, the supporting evidence with solutions, and the contract assumptions with claims and contexts.  
Based on this mapping, the contract satisfaction argumentation pattern (Figure 6) is used to generate an 
argument-fragment that a particular component contract is satisfied with sufficient confidence. A set of 
such argument-fragments is used to support the satisfaction of a safety requirement allocated to the 
component.  
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Figure 6: Contract satisfaction argument pattern [142] 

The contract satisfaction argument-pattern starts with a claim that a contract is satisfied with sufficient 
confidence, which means that the contract guarantees are offered. To support such claim, the pattern 
argues over the satisfaction of the contract assumptions, and the confidence in sufficient completeness of 
the contract. While the argument over each assumption points to the contracts in the environment that 
satisfy that assumption, the contract completeness sub-argument should establish sufficient confidence 
that the specified contract assumptions are sufficient to claim that the guarantee is offered. 
 
Based on the potential for generation of contract-based argument-fragments from SEooCMM, the 
metamodel and the contract-based argument-fragments can be used to instantiate different pre-
established argumentation patterns such as Handling of Software Failure Modes argument pattern [143]. 
Furthermore, to facilitate better evidence management in SEooCMM, an extension is proposed in [144] 
where SEooCMM is aligned with the standardised SACM evidence metamodel. 
 

3.2 Requirement Specification   

In this section we review diverse requirement specification approaches related to subsection 2.5 ά±ϧ±-
ōŀǎŜŘ !ǎǎǳǊŀƴŎŜέ. 

3.2.1 Domain Ontology Authoring  

The system engineers need to have considerable knowledge and experience in the domain in order to 
define the system requirements and design the system architecture. They also need to have clear vision 
about the ultimate result of the development effort that will raise from the implementation of their system 
architecture and requirements. This section provides yet another example, how the system architecture 
and requirement authoring activities can be based on an ontology and what benefits that brings (e.g. the 
ontology can be used as a unified consistent language).  
 
Ontology as a language 
 
The ontology is perceived as a kind of specification language, which offers the user: 

1. A list of textual expressions (names of types/sorts/classes of things, names of individual 
things/values/parameters/constants, names of processes, names of relations, possibly 
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supplemented with corresponding definitions of these concepts and bound to examples of contexts 
in which they occur) tightly related to (stemming from) the application domain. Such list of symbols 
is sometimes called the signature. The signature helps to suppress the ambiguity of the text, e.g. by 
limiting the usage of several synonyms for the same thing, which is okay when stylistic issues are 
important, but which is undesirable from an engineering point of view. The symbols of the 
signature together with the symbols of the logical operations like conjunction, negation, etc. of the 
chosen logic represent the constituent blocks of formal system specifications. 

2. The possible compositions of the lower-level expressions into higher-level expressions and even 
into the whole sentences. These potential compositions are inscribed in the diagrammatic structure 
of the underlying ontology captured in the UML. When the sentences are created, the user 
traverses appropriate continuous paths in the UML diagrams from one concept (class) to another 
concept via the existing connections (associations, generalizations, aggregations) and composes the 
names of classes and relations encountered along the way into a sentence. 

 
Ontology employment 
 
The basic structure of the process to apply ontology in the system architecture creation and requirement 
authoring and formalization can be summarized in the following steps: 

1. Create the (UML) ontology. 

2. Write a (tentative, sketchy) informal system architecture and requirement. 

3. For the most important notions of the informal system architecture and requirement find the 
corresponding terms in the ontology. 

4. Select the most appropriate paths in the ontology graph, which connect/include the important 
notions found in the previous step. 

5. Compose meaningful sentences by concatenating the names of the elements (classes, objects, 
relations) traversed along the selected paths. 

6. Repeat the steps 2 ς 5 for all informal artefacts. 

 
This approach is also applicable when the goal is to improve the quality of the current system architecture 
or requirements and rewrite them in a more clear a consistent form. In that case, the step 2. does not 
involve writing of new parts of system architecture or requirements, but taking the existing artefacts from 
their last iteration. 
 
LŦ ǿŜ ŎƻƴǎƛŘŜǊ ŀƴ ŜȄǘǊŜƳŜ ōǳǘ ŘŜǎƛǊŀōƭŜ ŎŀǎŜ ǘƘŀǘ ŀ ƴŜǿ ǎȅǎǘŜƳΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜ ƛǎ Ƨǳǎǘ ŀ ŎƻƳǇƻǎition of 
reused components that have been developed separately around different ontologies, it is obvious that the 
ontology of the new and more complex system should be some composition of the simpler ontologies of its 
subsystems. Therefore, for the development of Cyber-Physical Systems it is highly desirable to have 
appropriate means of gluing ontologies together to obtain ontologies that are more complex. 

3.2.2 Requirement Grammars Authoring  

Both requirement authoring supported with domain ontology and requirements formalization increases 
the quality of requirements and improves the capacity later to verify compliance to these requirements. In 
the case of requirements formalization, the benefits that this process brings are automatic formal 
verification, guaranteed verifiability, and the removal of ambiguity among requirements. 
 
In some aerospace domains, e.g. Flight Controls, Flight Management Systems, Display and Graphics, the 
Honeywell requirements are written in a structured and restricted way to improve their quality. Yet these 
restrictions are not sufficient to guarantee machine readability and the subsequent automatic verification. 
The requirements language needs to be further restricted to be unambiguous and to have clear semantics, 
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before a machine could read such. Honeywell internal tool ForReq [57] allows requirement authoring based 
on a grammar for structured English requirements that serves two separate purposes. For the requirements 
already written that conform to this grammar, ForReq allows automatic translation into Linear Temporal 
Logic (LTL) and thus automatic verification. Yet, more importantly, the machine readability can be enforced 
for new requirements by the use of auto-completion. This new functionality suggests the requirements 
engineer the set of possible words to continue their requirements within the boundaries of the restricted 
requirements language. Thus, the requirements engineers save effort that would be needed for writing 
twice each of the requirements, i.e. the human readable version for stakeholders and the machine-
readable version for verification.  
 
In the case requirements do not use exact artefacts (variables or states) from the system (for example some 
system requirement are prohibited to contain such link), the ForReq tool now guides the user to create 
mapping from artefacts in requirements to the corresponding artefacts in the system. Moreover, 
requirements defining mapping between variable names and its textual descriptions used in requirements 
are supported to automate fully the process. These requirements are also verified and any inconsistency is 
reported to be fixed by the user. 
 
However, the user has to specify the exact timing of each requirement, i.e. whether the effects shall 
happen immediately or in the next time step or after specified number of time steps or seconds. Honeywell 
ForReq tool supports this requirement formalization process as depicted in Figure 7 in order to enable 
automatic semantic requirement analysis as described in Section 3.7.1 and automated formal verification 
against system design as described in Section 3.7.3. 
 

 

Figure 7: Process of formalization of structured requirements using ForReq tool 

The requirements formalization is not a straightforward process and a considerable number of steps is 
required for incorporating formalization into real-world development of embedded systems. The goal of 
the ForReq development is to guarantee that the authored requirements are unambiguous, automatically 
verifiable (machine-readable) and conforming to the requirements reference (template, pattern, 
boilerplate, standard). Auto-completion, requirement standard grammar and requirement guidelines were 
implemented in ForReq to cover this need and to proceed further towards fully incorporating requirements 
formalization into the development process. 

3.2.3 Requirements-Based Engineering Approach  

The Requirements-Based Engineering (RBE) approach was developed by The REUSE Company, Carlos III 
University of Madrid and OFFIS in the CRYSTAL project. It provides an answer to the use cases initially 
drawn by SAGEM and CASSIDIAN as well as other use cases that stated their interest on this RBE approach 
during the project. Lǘ ǊŜƭŀǘŜǎ ǘƻ ǘƘŜ ƻōƧŜŎǘƛǾŜ ά±ϧ±-ōŀǎŜŘ !ǎǎǳǊŀƴŎŜέΣ ŀǎ ƛǘ ǇǊƻǾƛŘŜǎ automatic V&V 
techniques, e.g., validate that a requirements specification is complete, correct, and unambiguous. 






























































































































