ECSEL
\ Joint Undertaking * ek

European
Commission
I

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of CybeiPhysical Systems

Baseline and requirements for architecture
driven assurance
D3.1

Work Package: WP3 ArchitectureDriven Assurance
Dissemination level PU = Public

Status Final

Date: 9th March 2018

Responsible partner: Stefano Tonettand Ramiro DemagiFBK)
Contactinformation: {tonettas, demasiATfbk.eu

Document reference: AMASS D3.1 WPBBKV1. 1

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS Consofiemission to reproduce any
content for norcommercial purposes is granted, provided that thazdment and the AMASS project are credited
as source

This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European U
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France

mailto:tonettas@fbk.eu

Contributors

Names Organisation
Stefano Tonetta and Ramiro Demasi FBK
¢2Yt O YNPdirBadehONft | HON
Andreas Kager AVL
Bernhard Winkler ViF
Benito Caracuel TLV
Stefano PuriSilvia Mazni INT

Jose Luis de la Vara, Jose ida&lvarez, Gonzalo Géva, Eleng UC3
Gallego, Eugenio Parrduan Llorens

Jose Fuentes, Luis Alon&worja Lépez TRC
Xabier LarrucedAlejandra Ruizjudscar Espinoz&arazi Juez | TEC

Jiri Barnat, lvana Cerna, Jarodandik UOM
Juan Castillo TAS

Andrea Critelli, Luca Macchi RIN

MonajemiBehrangKaisemBernhard SuryoBuono,Yu BAI B&M
Irfan Sljivo MDH
Michael Soden KMT

Reviewers
Names Organisation

[Peer ReviewerMorayo Adedjouma CEA
[Peer ReviewerElenaAlafia Salazar GMV
[Peer Reiewer] JavieHerrero GMV
Jose Luis de laava uC3
Huéscar Espinoza TEC

Document History

Version Date Change Author (Partner)

V1.0 (20160929 |Approved by TC Stefano Tonetta and Ramiro Demasi
(FBK)

V1.1 [2018-03-09 |Revisedo considercomments from E(Stefano TonettdFBK)
reviewers(June 2017)

‘U‘i!!, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

TABLE OF CONTENTS

EXECULIVE SUIMIMALY.....eeieiitiiie ettt ies ettt e e nr e ettt e e ek et e e e e e e et e b e e e e e st et e e e e nsne e e e e e mnnees 7
S [1o o 11 o 1o o PSRRI 8
2. Problem Statement and CONCEPLS........uuiiiiuiriieiiiiit ettt rme e e e e e e e s snsemeee s 11
2.1 System Architecture Modelling fOr ASSUIANCE.uuuuuuiieiieeeeiiiiia e e e e e e eeeeees 11
2.1.1 Exploiting the System Architecture in the ASsurance Case..........cccceeeeerveeiiiieeeeeennn. 11
2.1.2 System ArchiteCture LaNQUAGES.uoii ittt eena e e e e e e eeennes 11
2.1.3 Architectures Trad®ff and COMPAriSON..........coovviiiiiiiiiiieee it 11
2.2 Architectural Patterns fOr ASSUIANCE.........ccviuueii e et eee e e et e e e et een e e e e ear e e e eaennnes 12
2.2.1 ArchiteCtural PatternScoioiiiiiiie et e e e e e e et e e e e eaeneees 12
2.2.2 Interaction between Assurance and Architectural Patterns.............ccccceevveeeeveeeeennnnn. 12
2.2.3 Architectural Patterns from Standards...........cooeeviiiiiiiieeiiiies e eee e 12
2.3 Assurance of Specific TEChNOIOGIES.........coiviiiiiiiiieee e 12
2.4 CONraCtBasSEd ASSUIANCE.........uuuieieiiii e etee e eeeetta e e eeeetraeeeettaaeeata e eeeett e eeesntn e aennaeees 13
2.4.1 Assurance Patterns for ContraBBsed DeSIgN..........couuuruuiiiiiieeeeeiiie e 13
2.4.2 Enriching the Evidence Produced by ContiBased DesSign............coovvvvviiiiiienieeeennnnns 13
2.4.3 Automation in ContracBased DeSIGIL..........ccuuuuuuuiiiiiiieeeiiiiie e 13
2.5 VEVDASEU ASSUIANCE......oiiiieiiiiii et e e e e e e s e e e e et e e e e e st e e e e e eeeaeaeeaes 13
3. State of the Art on ArchiBCtUre-DIVEN ASSUIANCE.........ccoiiiiiiiiiiiie e e e e e e s st e e e e e e s esevvsamreeereee e 14
3.1 Contracthased apPrOACNES..........oouuuiieii e e e e 14
3.1.1 Contractbased approaches based on Temporal I0giC...........cccoovveiiiieeiiiiiiieeeciin, 14
3.1.2 Contractbased approaches based on agreements among componentis.................. 15
3.1.3 Semiformal Notation Of CONTACTS........uuuuiiiiiiie e 17
3.1.4 Safety Analysis With CONIACES...........ccouuiii i e e e 18
3.1.5 PatterNs Of CONMTACES.......ciiiiiiiiiiiiiiie e ee ettt e e e e enn s 19
3.1.6 Generation of Safety Case Argumé&magments from Contracts.............cccceeveeevvvnennns 22
3.2 Requirement SPeCifiCatiQn...........coi i 23
3.2.1 Domain ONtology AUtNOIING.......ccuueiii i eee e e e e e e e enee 23
3.2.2 Requirement Grammars AUNOTING...........oii i e e e e 24
3.2.3 RequirementBased Engineering Approach.............ccooviiiiieeeii i, 25
3.3 Patern-based apPrOaChES............iiiiiiiiiii e ee e e 33
3.3.1 Argumentation patterns targeting fault tolerance.............ccccooeeiiiice i, 36
3.3.2 Argumentation patterns for specific technologies.............cccvviiiiiice i, 37
3.4 Assurance of Specific teChNOIOGIES..........ci i e 38
3.4.1 MultiProcessor Systeran-a-Chip: MUIBCOre.........cccoooiiiiiiiiiiiicee e 39
3.4.2 Programmable LOQIC DEVICES.........ciiiiiiiiiii e s e AL
3.4.3 COTS (Commercial AMeSelf).......coovuiiiieee e 41
3.4.4 IMA (Integrated Modular AVIONICS)..........coiieiiiiiiiiicie e evee e e AL
4.5 AUTOSAR ...ttt ettt e e et ettt ettt b e e e e e e e annna e e e e e e e eeeeenaaed 42
3.4.6 AJAPLVE SYSIBIMS ...uu it e e e e ee e e e e e e et e e e e e ab e en e eeean 42
3.5 System Modelling LANQUAGES.ooeiiiiiii et e e e e e e e e e et e e e nnn s 43
3.5.1 UML43
.52 SYSML it e e e e e e e e e e e eataaa s 45
ST T O | s 3 TP 46
3.5.4 SafeCer generic component Model..........ccoooiviiiiiiice e AT
.55 MOAEICA ... e 49
B ST G 85 | PP 50
TSI A ® =T gl I g o U = Vo T S 51

H2020JTIECSERO15 # 692474 Page3 of 88

U‘/A, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

3.5.8 Link of Assurance and 3151 MOEIS............ooeemiiimiiiii e 52

3.6 The MILS Architectural approach..............ooooiiiiiiiiee e 53
3.6.1 A brief overview of MILS architectural approach...............cccceeviimeniiiie e, 53

K T B | SO PP PP PPPPPPPP 54

3.7 Formal techniques for V&Wased ASSEINCE............uuuiiiiiiieiiiii e 56
3.7.1 Semantic Requirement ANAIYSIS..........uuuuuiiiiiieee e 56

3.7.2 Requirements Sanity ChECKING.........coiiiiiiiiiiiiiieee e e e 57

3.7.3 Automated FOrmal VerifiCatioN...........cooiiiieiiiiiiiiee e eee e 58

3.7.4 Toolchain &r Automated Formal VerifiCation..............ooooviiiiiiiee e e 58

3.8 ModelBased Safety ANGIYSIS........ccoiiiiiiiiiii ettt ennns 59

4. State of the Practice on ArchiteCtufrBriven ASSUIANCE.coccuuriieiiiiiee it 60
o U1 (o] 4o 1 (A7 =3 (0] 4 F= 11 o PP PP PSP PPPPTPT 60

4.2 RAINWAY QOMI@INL. ...t e et e ettt e e e e e ettt e ettt s e e e e e enna e e e e e eeeeeeennnnes 6l

G N/ To] g ot e (o]0 1 =] o I PP P PP PPP 65

S o T Lot 3o (o] 0 1 F= 1 o DTSSR 66
4.4.1 Avionics Architecture Modelling Language (AAML).......ccooviiiiiiiiiiieee e 66

4.4.2 System architecture in the development ProCESS.covvvvvviiiiiiiiee e 67

4.4.3 APPlICADIE STANUAIASceuttiiiiiiie e et 68

4.5 Industrial automation AOMAIN..........coeiiiiii e eeee e ere e et e e e e aea e e e e e 68

5. Consolidation and Way FOrWAI............oeiiiiiiiiimieee e 71
Abbreviations and DefiNItIONS............ociiiii e rrr e e e a e e aaaa e 74
(ST (=T =] o L PSPPSR PPRPTPPRR 75
Appendix A. SafeCer generic component MOLEL...........coociiiiiiiiice e e 84
Appendix B. CHESS profile fOr CONIACES...........coiiiiiiiiiiiee e e e e e e e e 87

H2020JTIECSERO15 # 692474 Page4 of 88

‘U‘i!!, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

List of Figures

Figure 1 AMASS BUIldING DIOCKSuuiiiiee e eennnes 9
Figure 2: Contracts View fOr COMPONEIL.ooiiiiiiiiiiiiit et e e e e e e e e e eeeer s 16
Figure 3: Contracts definition teMPIALe..........oouiiuii e e e eeaas 16
Figure 4: Arguments over the use of enabling MONIOL............oooiiiiiiiee e 21
Figure 5: Safety Element oubf-context Metamodel (SEQOCMM)...........uuuuiiiiiiiiiiemeiiiiiieeeeeeeeeeeiinas 22
Figure 6: Contract satisfaction argument pattern [142]...........coooeiiiiiiiiiiee e 23
Figure 7: Process of formalization of structured requirements using ForReq.toal......................... 25
Figure 8: System KNowledge REPOSIIALY.........couuiiiririiiieeeeitiiie e e e et et e e e et e e e e e e ens 27
Figure 9: System KNOWIEAQE BaASE........cooiiiiiiiiiiiiieee ittt ettt eeenn s 28
Figure 10:Example of boilerplateS/Patternn............u e e 29
FIQUIE 11:IN0EXING PrOCESSt eeeeieeeitttittae e ettt e e e e e ettt e e e e e e et e e e e s bbb e e e e e eetbnnneeeeeeeeees 29
Figure 12:FormaliSation reqUITEIMENTS.u.u e eee ettt ettt eee e e e e e e e e e e 30
Figure 13:SemantiC SEArCh @NQINEouuuuuiuiii e eeeiiie ettt e e e e e e e eeas 30
FIQUIE 14:OSCL QOM@INS ...ceiiiitiiiieeee e et e ettt e e e et bbb s e e e e e e e et ettt e e e e e e e e eeenebnnn s 32
Figure 15:Model of passive faultolerance pattern with diversification................cccoeviiiiieeeiiiiinnneeenn. 34
Figure 16:Overview of architectural pattern definition...............ooooo e 35
Figure 17:Modelling elements to represent platform elements for security [L06]..............cceevvvrennne. 35
Figure 18:Top down and bottom up approaches to system certification..............cccoeevveeeeviiiiinnnnenn. 35
Figure 19:Arguments over the use Of CroSSCheCKING............uuuuuiiiiiieeeiiii e 36
Figure 20:Arguments OVer the USE OF VOUINGooviiiiiiiiiiiiiit et e e 36
Figure 21:Arguments over the use of timeout (watchdog)..........ccoevviiiiiiiiceeii e, 36
Figure 22:Arguments over the use of enabling MONItOr.............cooiiii e, 37
Figure 23:Excerpt of safety argumentation used for safe access to shared resaurces.................... 37
Figure 24:Preliminary pattern and its use on an example for shared resources..............ccccceeeeennn. 38
Figure 25:Classification of compleX €leCtrONICS..........viiiiiiiiii e e e 39
Figure 26:The 4+1 Model or Archite@tal VIEWS.........coouuiii i 44
FIQUre 27:SYSIML QIagramS.ceiiiii e eee e eeee ettt e e e e ee e e e e e e e e et e e e e e et e e etan s eaeeasanaeeeend 46
Figure 28:Contracts, properties and argumentation.............ccc.ocevvviiieeeiiiieeeiviic e eeenenn. . 48
Figure 29:Modelica MOAEl [L15]......ccoiiiiiiiee et eee e e e et e e e et e e et e e aeeee 50
Figure 30: The RSHP representation model using UMLooiiiiiiiiceiiiiin e eee e 51

Figure 31:The architecture is used for 1) formal reasoning to prove that the system requirements are
assured by the locgiolicies, 2) configuration of the platform to ensure the global information

flow policy and the integrity of the architeCture............ccooooeviiii i, 55
Figure 32:Approaches Towards Reusable Safety Concepts, 2012 Berner&Mattner, © Bernhard.Kéiker
Figure 33:Lifecycle defined in EN 50126 standard...............cooouiiieeeiiiiiiciiiiie e 62
Figure 34:Example of a possible hierarchy of Safety Case..........cooeviiiiiieeeiiiii e, 63
Figure 35:Example of Fault Tree ANalYSiS (FTA). ..o ee e e 64
Figure 36:Relation of ARP4761 and ARP4754A software and hardware development guidelines. .65
Figure 37:AAML MOAEHING PrOCESS........uiiiiiiiii e e e e e e e e e e e e et e e e e mneeennes 67
Figure 38:Overall framework of IEC B1508..........ccoiiiiiiieiiiicee et ee e e 69
Figure 39:Functional safety and risk reduction [185].........c.oiiiiiiiiiiiiieie e 70
Figure 40:Safety integrity level (SIL) estimates the probability of failure [185]............cccccooeiieeeiin 70
Figure 41:Component type, ports and ParameterS........cco e e i i ei e e e eaeans 84
Figure 42:Primitive and cOmpoSite COMPONENT tYPES. iiiiiiii e ieeiieee e e e e e en e e e e aaaans 85
Figure 43:Component instances and system madel............oooiiiiiiioe e 86
Figure 44:CHESS profile for CONLIaCL............oiiiiiiie e eeaaans 87

H2020JTIECSERO15 # 692474 Page5 of 88

file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D3.1_Final/D3.1_Baseline-and-Requirements-for-Architecture-Driven-Assurance_AMASS.doc%23_Toc513225332
file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D3.1_Final/D3.1_Baseline-and-Requirements-for-Architecture-Driven-Assurance_AMASS.doc%23_Toc513225357

‘U‘i!!, AMASS Baseline and requirements for architectudeiven assurance

D3.1V1.1
List of Tables
Table 1: Hardware and Softwa fault tolerance patterns.............uuvviiiiiii e 33
Table 2: Summary & methods/techniques that need further analysis to be applied on adaptive
S A=) IS 1) PP PP PPT T PPPRPPPY - ¥
Table 3: Characteristics of each vigwthe 4+1 Model.............oooviiiiiiiiiiiee e 45
Table 4: Selected Production rules of the Regular Tree Grammar of Modelica..............ccccceeeeeen. 49

H2020JTIECSERO15 # 692474

Page6 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

Execuive Summary

Thisdeliverable D3.1 (Baseline and requirements for architectineer assurancedets the stages of WP3.

The stage is set by first of all recalling the AMASS context, motivation, objedthess.the problem in its
multifaceted nature is tated. We analyse the stateof art and the state of the practice concerning
architecturedriven assuranceMore specifically, the analysis aims at allowing AMASS to adopt the best
features from existing approaches and to guarantee compatibilifg.alscanalyseother ongoing and past
projects, as well as available technology in the markfgireover, when relevant, the state of the art and

the state of the practice are compared in order to identify possible gaps. This comparative work ensures the
identificaon of concrete needs, calling for new solutions, and ensuring the innovation of the project and
future feasibility of exploitation of results.

Finally a way forward iproposed The proposal waysonsistof a consolidation of the existing results
achieved within OPENCOSS, SafeCer and other ongoing and past projects, and of the available technology
on the market and state of practiceMost specifically, regarding system architecture modelling for
assurance, it appears that there is currently a trend tadgaextending modelling languages (e.g. SysML) to
better and explicitly support the concepts and needs from assurance standards. This is also in line with the
stated need in OPENCOSS CCL for better relating it with component and system models foritediéty
systems, such as those from SafeCer and CHESS. Based on prior work, a generic UNdhsprbfile
approach could be suitable. It will also be necessary to select the system modelling languages to extend
and link with assurance models. Standard langsaged especially languages used in the case studies, are
the main candidatesConcerning assurance patterns library managemest haveobserved thatfurther
investigation needs to be carried out to develop a more enhanced argumentation library whials cmie

only safety argumentation patterns but also some other aspects such as se€lwitgerning assurance
activities concerning novel technologies, several standard requirements might need to be adapted or
modified to include the special requirementsathnovel technologies demand. This includes not only new
specific requirements but also novel V&V techniques. At the same time, argumentation patterns of several
concerns will be further investigated and developed in AMASS to facilitate the reuse oficspecif
technologiesFinally, oncerningcontractbased assurance composition approactsandard architectures

(such as AUTOSAR the automotive industry,IMA in avionics ETCS in railwayrequire some
safety/security architectural patternsdefinition and gplication (3levelmonitoring, E2E protectiorand
partitioning, among other}, and auto-generation of platform modeland configurations based on these
patterns (e.g. for AUTOSAR and IMA). The use of patterns speeds architecture specification adsfacilit
the (re)use of components targeted at being used in such pattékfesalsoobserved that lhe architecture

can be enriched with contracts that formalize the functional requirements to ensure that the system
responds correctly to some safety requiremsnt

To sum up, this deliverable will set the baselfoethe development of the AMASSystem architecture
driven assurancandwill specify the requirements that it has to meet.

D3.1 relates to the AMASS deliverables D3.2 and D3.3 which are the outputsk 3.2 Conceptual
Approach for Architectur@riven Assurande

H2020JTIECSERO15 # 692474 Page7 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

1. Introduction

This introductory chapter is aimed at recalling the context of the AMASS project as well as the objectives
and expected results that pertain to this document.

Embedded syems have significantly increased in number, technical complexity, and sophistication
moving towards open, interconnected, networked systems (such as "the connected car" and the ,cloud)
integrating the physical and digital world, thus justifying the teinO &-BJR BIA A O f &.8Thisi SY & ¢
G Oe-BIRBE A OF f éisexrddeNs&iygdhk groblem of ensuring safety, security, availability, robustness
and reliability in the presence of human, environmental and technological risks. Furthermore, the products
into which these CybePhysical Systems (CPS) are integrated (e.g. aircrafts) need to respect applicable
standards for assurance and in some areas they even need certification. The dimension of the certification
issue becomes clear if we look at the passergane B 787 as a recent examglé is reported in[181]

that the certification process lastl 8 years and has consumed 200.000 staff hours at the, fusAfor
technical work. The staff hours of the manufacturer even exedethis figure as more than 1500
regulations had to be fulfilledyith evidence reflected ont@000+ documents. Although aircrafts are an
extremely safetycritical product with many of such regulations, the situation in other areas (railway,
automotive, melical devices etc.) is similar.

Unlike practices in electrical and mechanical equipment engineering, CPS do not have a set of standardized
and harmonized practices for assurance and certification that ensafe, secure and reliable operation
with typicd software and hardware architectures. As a result, the CPS community often finds it difficult to
apply existing certification guidance. Ultimatetlye pace of assurance and certification will be determined

by the ability of both industry and certificatitassessment authorities to overcome technical, regulatory,
and operational challenges. A key regulatoglated challenge has to be faced when trying to reuse CPS
products from one application domain in another because they are constrained by diffeagntastls and

the full assurance and certification process must be applied as if it were a totally new product, thus
reducing the return on investment of such reuse decisions. Similarly, reuse is hindered often even within
the same domain, when trying to rea CPS products from one project to another, where assumptions
change together with the criticality level.

To faceall these challenges, the AMASS approach focuses on the development and consolidation of an
open and holistic assurance and certificatioanflework for CPSwhich constitutes the evolution of the
OPENCOSS and SafeCer approaches towards an archidrotere multiconcern assurance, and
seamlessly interoperable tool platform.

The AMASS tangible expected results are:

a) TheAMASS Reference Tobichitecture,which willextend the OPENCOSS and SafeCer conceptual
modelling and methodological frameworksr architecturedriven and multiconcern assurance, as
well asfor further crossdomain and intradomain reuse capabilitieand seamless interopability
mechanisms (based on OSigécifications).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Referendmol Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools includintpalg\Vand on
opensource release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance, evolution
and industrialization. The Open Community will be supported by a governance bodrdy rules,

H2020JTIECSERO15 # 692474 Page8 of 88

@AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

policies,and quality models. This includes support for AMASS base tools (tool infrastructure for
database and access management, among others) and extension tools (enriching AMASS
functionality). As Eclipse Foundation is part of the AMASS consortium, tleesyEclipse
community (vww.polarsys.orjjis a strong candidate to host AMASS.

To achieve the AMASS results, as depictelligurel, the multiple challenges and corresponding project
scientific and technical objectives are addressed by different yadkages.

AMASS Reference Tool Architecture
Architecture-Driven Assurance (STO1) Multi-Concern Assurance (STO2)

@ 1

Interface

—— T e e -

=1
Syst_em Architecture V&V-based Assurance System Dependability Dependability — % Certification Safety/S€curity
Modeling for Assurance Impact Assessment Co-Analysis/Assessment Assurance Modelling = Liaison Assessment
Assurance Patterns Contract-Based Contract-Based Multi-

Library ment y. Composition concern Assurance
Technological Architectural AR qE §
Patterns r Patterns AU _/“‘“ d
— P &
=

Interface

P - T

Component Module Assurance
Release Case Development

ST
I

AMASS Platform Basic Building Blocks

.) Common Assurance &

l Assurance Case Evidence Compliance Certification Metamodel

Specification I nent Mar (CACM) Product Engineering
¥ > = i
1 1
1 5| . Q
1 (O] og
' i 83> 23

. \ o
1 Reuse Assistant 2 i@ Tool Integration = < Design Validation &
1 (Cross/Intra-Domain) e e wl Verification
1 X 0E
1 38 38 0
1 Semantic Standards Product/Process/Assurance Collaborative Work Tool Quality Assessment 2 | °Z2 @ 2 :&
: Equivalence Mapping Case Line Specification Management and Characterization 1 4%,
ogl og g

: . - > _§ <:> 7@ & Development Quality
I Cross/Intra-Domain Reuse (STO4) Seamless Interoperability (STO3) oz : cZ Management
} e e e e e e e e e e e e e e e o e F

Figurel: AMASS Building blocks

WP3aims at addressingrchitectureDriven AssuranceMore specitally, with respect to the AMASS goals,
this deliverable presents the background in terms of problem and solution space relatédabl G1) and
Goal 3 (G3)the corresponding project objectivelQand to the project scientific and technical objective
(STOL. GL, G3,01 and SD1arerecalledhere to make the deliverable setfontained.

G1l:to demonstrate a potential gain for design efficiency of complex CPS by reducing their assurance and
certification/qualification effort by 50%.

G3:to demonstratea potential raise of technology innovation led by 35% reduction of assurance and
certification/qualificationrisksof new safety/securitycritical products.

O1: define a holistic approach faarchitecturedriven assurancéo leverage thereuse opportunités in
assurance and certification by directly and explicitly addressing current technologies and HW/SW
architectures needs

STOIfocuses orArchitectureDriven Assurangencluding:a) System Architecture Modelling for Assurance,
b) Architectural Patterngor Assurancec) Assurance of specific technologies, d) ConBasted Assurance,
e) V&\Vhased Assurance.

H2020JTIECSEROLS # 692474 Page9 of 88

file:///C:/Users/iaa01/Documents/Projects/AMASS/My%20tasks/post%20Barbara%20D6.1/www.polarsys.org

‘U‘i!!, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

This document is deliverable D3.1 (Baseline and requirements for architedrinen assurance), which is
the output of task 3.1Gonsolidation of @rrent Approaches for Architecturgriven Assurangereleased by
the AMASS WP3 (Architectubriven Assurance). WRBalldevelop the means necessary for providing the
system architecturariven assurance approach of AMASS. Such an approach will bedvetbexdextension

of OPENCOSS and SafeCer conceptual results and platform in order to:

1. deal with architectural assurance patterns and with the assurance and certification needs of specific
technologies (e.g., multicore), and

2. link assurance and certificationodels with system models (e.g. the latter represented with SysML)
and standard software architectures (e.g. AUTOSAR and. IM&)eover, WP3 will integrate
OPENCOSS and SafeCer approaches and will extend them in order to consider standard software
architectures.

Moreover, to achieve STO1, W3 structured ito three tasks. The purpose of this deliverable is to
document the work conducted during Ta3K. More specifically, thgoalof the deliverable is multiold:

1) to analyse the problem related to arntecture-driven assurance

2) to present a corresponding state of the art

3) to present the current state dhe practice; and finally, based on these findings

4) to present a consolidation of existing results and profit from ongoing and past projects

The rest 6 the deliverable is organised as follows. Seciostates the main concepts and objectives on
ArchitectureDriven Assurance (ADA) in AMASS. In se@id described the state of the art on ADA.
Qbsequently, sectiod describes the state of the practice on ADA. Finally, seé×ents ssummaryof
the main points from previous sectiondetecting the gapdetween state of the art and ate of the
practice,and theway forward in AMASS

H2020JTIECSERO15 # 692474 Pagel0 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

2. Problem Statement and Concepts

One of the main contributiosiof the AMASS project is to providemodelling language (metamodei)pls,

and techniques to support an architectudeiven assurance, i.ean assurance that exploiend is linked to
the system architecturén orderto provide more structured evidences and arguments to show that the
system is free of vulnerabilities. In particular, the system architecture is used for rdodeh engineering
contractbased and pattersfbased design and argumentatioimn this respect, there are a number of
challenges that must be addressed by the project, as discussed in the following sections.

2.1 System Architecture Modelling for Assurance

2.1.1 Exploiting the SystenArchitecture in the Assurance Case

The system architecture is one of the first artefacts produced by the development process and includes
many design choices that should be reflected in the assurance case. Therefore, we have to understand
which elements othe system architecture are important for the assurance cd$e existing OPENCOSS
CCL(Common Certification Language)etamodel corresponds mainly to an assurance metamodel, and
should be extended with (or linked to) other mdteg formalisms to enabla more detailed definition of
aedaidsSy FyR Fylfe@eaaa.regeneral SCLL BaU b beReSidrddey fRrl-déaking with &he
linkage between its assurance framework and syswmhitecture models. This will facilitate a finer
grained managemenf artefacts, such as those involved in the management of a hazard log in the railway
domain: a hazard in a fault tree analysis, a safety requirement in a requirements specification, a block in an
architecture specification, an interface in a design speatibn, a step in a verification report, a test case in

a validation report, a section of a safety case, and soFonexample, the CCL should be extended with
concepts such as component decomposition and contract refinement, as developed in SafeDa)l

an architecturedriven reuse of models and assurancestatts.

2.1.2 System Architecture Languages

There are many languages suitable to describe the system architecture, but mosthoktiae the main
conceptsthat are relevant for the system architectiare in common to these languages. Therefore, we
have to face the problem of defining a metzodel for a generic system component specification with such
architecturalconcepts The SafeCer project created a first generic model, implemented in CHE®% but
link with other architecture description languages remained at a conceptual [&hel.current OPENCOSS
models allow the treatment of artefacts only at a coarse "black box" I&hebe models willbe extended in
AMASSs0 that they areihked to modeling formalisms for safety information (information necessary to
NEFEAT ST Iyl feas ty)aido sgsfeIngdeling: €tan iSteysiugy the Feftdn of the
OPENCOSS and SafeCer assurance models with different system modelling lafiéag&ysML, AADL,
EASTADL, etc.), safety modelling profiles, and specific platform models and architectures like AUTOSAR for
automotive and IMA for avionics.

2.1.3 Architectures TradeOff and Comparison

During the system development process, it is often tlasec that different system architectures are
compared or one architecture is replaced by another one to traffedifferent aspects. For example, a
singlepoint-of-failure component is replaced by some redundant components, components may be
removed or rephced for reducing the cost because of the project budget, the deployment and physical
partitioning may have a completely different topology with respect to the logical decomposition of the
system. Providing support to compare different system architectuvédk allow industry to make more
informed decisions regarding what can be reused between systems (including difference versions of
systems) and reuse consequences.

H2020JTIECSERO15 # 692474 Pagellof 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

2.2 Architectural Patterns for Assurance

2.2.1 Architectural Patterns

An architectural pattern is gartial specification of a part of the system architecture that can be
instantiated/used in a projeespecific design. There are many opportunities to define architectural
patterns, as the result of standard of practice applied in a specific domain ongdnam the standards.
Many patterns can be defined for fault tolerant mechanisms, including redundancy schemas and
components for fault detection, isolation, and recovery. Other patterns can be created for specific domains
(although they can be probablyewsed in other domains). For example, in the space domain, when
considering the design of a satellite, the ttgvel architecture listing the suflystems (AOCS, thermal,
L26SNE X0 Aa lFfyvyzald GKS alryS F2N I ff peciicBBo@®é &aT A
communication should be protected from failures. Architectural patterns can be used to reduce the cost of
design, increase the quality of the developed system, but alsauti-generation of platform models and
configurations based on tise paterns.

2.2.2 Interaction between Assurance and Architectural Patterns

OPENCOSS and SafeCer have straightforward mechanisms to specify assurance patterns for argumentation
and for compliance with standards. However, further research and case studies assagcto integrate
cohesively these patterngith the architectural patterns and to integrate theimto specific assurance and
certification activities.The use of patterns speeds architecture specification and facilitates the (re)use of
components targedd at being used in such patterns. Moreovergitables the reuse odnalysis results
associated with the patternsTherefore, we want to address the problem of defining the assurance
patterns that can be associated to specific architecture patterns orgdesiechanisms. For example, a
specific assurance pattern can be associated tadterance on failure communication associated with E2E
protection of AUTOSAR or to theecurityrelated noninterference associated with partitioninip MILS
systems.

2.2.3 Architectural Patterns from Standards

There are many standards, in many domains, that specifyspdrthe system architecture such as sub
systems decomposition, component interfaces, communication packets. For example, the ETCS standard
specifies how the traimn-board system should interface with the traslde system, the AUTOSAR provides
standardized interfaces for components at different layers of the design; in the space domain, the ECSS
Packet Utilization Standard (PUS) specifies telecommands and telempatikets for asynchronous
communication to and from satellites. We will use architectural patterns to formalize the architectural
elements specified in standards.

2.3 Assurance oBpecificTechnologies

Some specific technologies offer mabenefits in terms operformance, reconfiguration aadaptability.
However, their use in safety critical domains still lacks from maturity due to certification issues. Devices
such as FPGA need to be safely deployed so that they can be certified.

Taking into account thaODFENCOSS and SafeCer results are technalgggstic,the assurance and
certification ofmany characteristics of the new technologies of @RSnot supported. AMASS will tackle
those issues addressing different technology patterns. More specifically, icatith issues regarding
MultiProcessor Systeran-a-Chip (FPGA or Microcontroller basedRrogrammable Logic Deviges
Commercial OfTheShelf, IMA, AUTOSAR or adaptive systems will be addressdok détailed
characteristics of the most recent and futuerhnologies for CPSs wa#tunder what circumstances reuse,
assure, and certidation of CPSs is possible.

H2020JTIECSERO15 # 692474 Pagel2 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

2.4 Contract-Based Assurance

2.4.1 Assurance Patterns for Contra@ased Design

An important issue in AMASS is the integration and consolidation of theepbo€ contractsfrom the
existing results of theOPENCOSS ar®hfeCer projectsin particular, the AMASS assurance for the
argumentation that a system architecture is compliant with the system properties will follow the contract
refinement defined in thesystem model.

2.4.2 Enriching the Evidence Produced by Contr&8esed Design

A general challenge for those tools (e.g., OCRA) that are used for analysing and verifying contract
specifications using formal methods is to provide useful evidences in order tohetiméc contracts
refinements argument. Similarly, in the context of safety analysis based on the contract specification, the
goal is toenrich the assurance case with fault trees showing the dependency of system failures on the
component failures

2.4.3 Automation in ContractBased Design

Another challenge is to increase the automation capabilities the provided by tools supporting
contracts.Such automations will includere-defined properties and contracts derived from the standards
as done for the Cataloguof System and Software Properties (CSSP) defined in the CATSY[]8d]jemnt
associated to architectural patterns derived from the standaslso,user guidance during the design of
safety critical systems (like the seliest, based on contractspf appropriate components under
consideration of their safety properties) is a subject for a higher automation degree that would also
increase the reusability of critical system components even crdssnain.

2.5 V&V-based Assurance

Another challenge of the AMASS project is to enrtel ©@PENCOSS and SafeCer assurance appreatthes
V&YV techniques. For example, formal techniques can be usedlidate thata requirements specification

is complete, correct, and unambiguoasd to verif that the deployed system satisfies those requirements

In fact, many safety issues in the deployed system are due to errors in the requirements specification,
which are typically discovered very late in the development process. Therefore, the AMASS@ssur
approach will make sure that evidence for arguing that the requirements specification is valid are provided
as part of the assurance cas&’hen the requirements specification is formalised and validated, it is then
employed in the development of systedesigns and of the final system. All intermediate stages will also
be checked for compliance with requirements using automated V&V tools. The situation and needs
described for requirements specifications could also be applied to other artefact typed/&of design
models.

H2020JTIECSERO15 # 692474 Pagel3of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

3. Sate of the Arton ArchitectureDriven Assurance

This chapter provides an overview concerning the state of the arr@hitectureDriven AssurancelThe
overview is structured btopics where many resultsame from previous rel@d projects to AMASSuch as
SafeCer and OPENCOSS.

3.1 Contractbased approaches

In this section we review diverse contrdmsed approacheselated to subsection2.2 ¢! NOKA G SO d:
t FGGSNya 7TFanddida 2 gzNJaGRE | & \WedghdiytyierSnéepts of contracts defined in
OPENCOSS and Safe@ich will be integrated in AMASS. In addition, we presarhe formalisns to

specify and analyse contracts and the related tool supports imphteakin different projects. We also
analysethe extension of some of the approaches to cover safety analysis.

3.1.1 Contractbased approaches based on Temporal logic

Contractbased design, first conceived for software specificafit®] and now applied also to embedded
systemd1], [2], [3], [4], [5], [6], [7]. [8]. [9], [12], [13], is a very promisingaradigm, amenable to stepwise
refinement, compositional reasoning, @meuse of components. The idea is to annotate the architectural
decomposition with contracts that specify the relevant behavioural aspects of each component interface.
More specifically, a contract is composed &y assumptionand a guarantee. The formespecifes the
expected behaviour of the component environmeand the latter specifes how the component must
behave in response. The system resulting from the composition of implementations satisfying the contracts
according to the annotated architectuige guaranteed to satisfy the overall system contracts.

In many formal modelling approaches, in the underlying model of communication, the components
receiving an input are blocking, in the sense that if they cannot re¢ceé/aput, they block the compoent
generating such data or event. As in some architecture languages, input/output are just a syntactic way to
represent shared labeldzor example, in the frameworttescribed in[7], contracts are specified with a
temporal Iagyic defined over a set of variables, their product is given by language intersection, and the
contract satisfaction and refinement is defined in terms of language inclusion. This framework has been
implemented in a tool, calle@CRAZ20]. In more detailsthe approach is very efficient, because the overall
correctness proof is decomposed into proofs local to each component. However, part of the complexity is
delegated to the designer, who has the burden of specifying the castrag/pical problems include
understanding which contracts are necessary, and how they can be simplified without breaking the
correctness of the refinement. [i86], the authors tackle these problems by proposing a new techmiigu
understand and simplify a contract refinement. The technique, caitgttening, is based on parameter
synthesis. The idea is to generate a set of parametric proof obligations, where each parameter evaluation
corresponds to a variant of the originabrdract refinement, and to search for tighter variants of the
contracts that still ensure the correctness of the refinement.

One of the main concerns in modehsed system engineering is to design the architecture of systems so
that the components are pmerly integrated in order to satisfy the system properties. Architecture
description languages specify the syntactic interfaces of components in terms of data and event ports, their
connections and decompositiorContractbased designprovides a formal frmework to specify the
semantic interface of components detailing the assumptions on the input received from the environment
and the guarantee on the input/output relationship.

In SafeCerLineattime Temporal Logic (LTI)1] has been usetb express the assertions in the contracts
over data and event ports. In this context, the behavioural model of a component is verified to satisfy the

H2020JTIECSERO15 # 692474 Pagel4 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

contract associated to that component. In order to beused the behavioual model must also be
compatible with the environment of the component provided by the system desigrxploits the contract
specification to ensure that the component implementation is compatible with any environment satisfying
the assumption of the cdract. In addition,the framework for contact-based design has been extended to
take explicitly into account the problem of the component to be compatible with any environment that
satisfies the assumptions, in the sense that the component must accepedhputs that are produced by
such & environment. Moreovera compositional methods providedto solve this problem exploiting the
refinement of contracts.

As we saidl.ineartime Temporal Logic (LThds been usetb express the assertions in thertracts over
data andevent port, where theyreduce the problem to LTL model checking. The main noeate from

the factthat the compatibility is local and éomposel exploiting tracebased inclusion checks based on the
contracts. This is important taemark due to it & a great advantage, given that the receptiveness check
turns out to be very expensive, and tackling it on the final system implementation is impractical.

One of the main contributions in this area is the extensionth& framework in[7] to input/output
components, and taking into account standard problems of interface theory such as the compatibility of the
implementations. A key finding is that the same notion of contract refinement based on trace incbasio

be used as compositional rule for checking the receptiveness of component implementations. This enables
us to fully exploit mature technology of temporal satisfiability and symbolic model checking.

3.1.2 Contractbased approaches based @ygreements amongomponents

OPENCOSSoject defined compositional assurance approaches whafetg case contractare playing a
key role[158].

Contractbased approacheare hard to apply from a safety perspective. In fact, several compaaniel
standardisation bodies are reluctant to consider this kind of contracts during certification processes.
However we can consider that a contract can be designed in atlayit consides agreements among
components. The main interfaces are definadorder to facilitate interoperability and integration among

these components. A&omponen has a correcfunctionalitywhen the interaction with its interfaces is well
defined, and its preconditions and postconditions are satisfiedom a safety perspectie, system
properties should be verified as a whole. A system composed by safe components may not be safe.
Therefore, quality assurance activities, including safety assessment, are set in order to verify and validate
system properties. Several aspects sldobe considered. For example, failures modes are also analysed,
and all assumptions and contexts are considered. Standards address this problem in different ways. ISO
26262 defines aevelopment Interface Agreement (DIA) documenhich is an agreement beeen OEM

and suppliersby defining procedures and responsibilities. In additit 026262 also refers to Safety
Element Out Of Context (SEooC) which defines and interprets concepts, procedures and functionalities (also
non-functionalities) by manufacturs, suppliers and developers the avionics domain we can find similar
requirements while talking about modules and application reuse on an IMA (Integrated Md«dtitarics)
platform. DG297 requires the definition of component limitations aagsumptios, among others, for
component acceptanceln this context we need to analyse iisage domain to ensure that it is being
reused in the same way as it was originally intended

The process ofampositionvaries dependingn the focus

9 Compositional Argumetation. A contract module contains the relationship between two modules,
and how a claim in one module supports the argument in another. Arguments are encapsulated in
a module, or in a set of module§he argumentation editor of OPENC®$%able to define
argumentations from a compositional point of view;caled "modular argumentation”.

H2020JTIECSERO15 # 692474 Pagel5 of 88

< ‘l!,-" AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

91 Project ReuseA safety assurance project can reuse parts of another project. Traditionally this is
carried out in industrial settings. Artefacts used as evidences tp@t@ssurance on a given
project, want to be useds evidencs in another project. Contracts can play a keystone for the

reuse of components.

1 Component composition This is the traditional approach component based engineering

approaches.

Guidelines andstandards prescribghe information needed to manage at the assurance project level

When analysing guidelines and standards, we notitleat the data required ér assurancere classifiedn
three main categorieéFigure2):

1 Artefacts referring to the data required by an entity when doing the safety assessment

91 Properties these are chaacteristics that must be presemtfter the integration in order to confirm

that there are no concerns or an emerging unknown behavidine propeties need to be verified,
and the verification needs to be included as part of the evidence.

1 Processesrefers tothe activities that shalbe performed in oder to prepare thereuse and after
the reuse itself in order to comply with the standards reqoients.

p) 7’
’ g - ’
7 D ‘9‘{/ C: Contract
D s A: Assumptions
“““ _._'EbFnBo_me_nt_’ G: Guarantees

R: Rationale

Figure2: Contracts View for @mponent

A contract is characterised by the following sectidfigre3):

What is assumed
- Activities/processes that shall be done by the integrator of the component
- Properties of the component that shall be checked after the integration
- Artefacts that shall & completed or done after the intearation of the component

What is guaranteed
- Activities/processes that shall be done by the developer of the component
- Properties of the component that shall be checked after the integration
- Artefacts that should be compied or done after the integration of the component

Strategy
- Impacts on the guarantees if any of the assumptions is not valid
- Trace between risk mitigation needs and protection mechanism
- Rationale about the limits. conditions. and use of the combnonent

Figure3: Contracts definition tempate

H2020JTIECSEROLS # 692474 Pagel6 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

OPENCOS#fined a Common Certification Language (CRBP] relying on three aspects: Compliance
management, safety argumentation and evidences management. Contracts are based on this CCL. Contract
data related to acomponent need to include information aboassuredpropertiesand behavioursf that
component, the artefacts that should be accessible to the authorities and the evidence of the process and
adivities executed to fulfii KS O2 YLR Yy Sy (i Qa I saAll diNinfgr@aion NBdjath thldnY Sy
evidence metanodel Contract references to the artefacts and their properties, and the rest of the
information from evidence metanodel is considered as a black box. Activity on the contract defines a unit

of behavour for the component lifecyclghat must be executed to demonstrate complianéetivity is the
modelling entity which relates the contract with thprocessmeta-model.

All these aspects are liell intertwined. ©ntract validation is necessary to takato account not only
component properties, but also howroperties have ben assured. An argumentation metaodel
captures these entities. Claims reference properties (which define the behaviour) and standards'
objectives, and Information Elements refeganthe evidences used to support those claims.

3.1.3 Semiformal notation of contracts

Contractbased design has shown many evidences of its applicability in industry. They have also been
proposed for the functional safety domain (e.d38], [39], [40]). Although such contradbased
developments hae gained popularity as an approach for supporting distributed development bijcakp
annotating assumptions and guarantees to componeartsintegrated process covering specification of the
nominal behavior and safety was missing[48] such an integrated development approach is prdedn

The approach encompasses the systematic breakdown of the nominal system behavior using contracts, the
consistent derivation of the safety analysis by interpreting several types of contract violations as a
specification for failure modes, and the sulgsent integration of safety mechanisms that cover these
failure modes through safety contracts. There have also been proposals for the usage of contracts to specify
reaktime properties of continuousalued controller structures and the control error ofctenical systems
(e.g.,[29]). Furthermore, contracts have also been applied to UML/SysML models as well as Simulink
models (e.g.[30]).

Contracts can be specifigd a natural language, in a set of seimimal languages (such as template
languages), or in formal languages.

Formal languages (as temporal lodi@d] or IG-Automata[35]) allow automatic verification of refinement

and implementation of contracts, but they are often hard to understand for practitioners from the different
involved disciplines and therefore difficult to promote in industry. A proposal that briddeg#p are the
pattern-based Requirements Specification Language [BBLlor the Contract Specification Language CSL
from the SPEEDS proj¢87]. Text patterns, coristing of static text elements and attributes, provideth a
well-definedsyntax andsemantics. To cope with the needs of the different aspects of a design, various sets
of patterns have been definef81], they build upon parametrized requirements patterns that have been
known for a long time (e.d32], [33]).

Natural language contracts are often accompanied by ambigimtpmpleteness or inconsistency. Some
proposals have been made with sefoimal languages (the syntax is defined and restricted, but
verification has to be performed by human experts) to avoid these drawbacks of natural language while
providing an understndable language for experts from different domains (d44]). In[41] a semiformal
approach is proposed, which allows specifying assumptions and guaranteespborent interfaces in a
language with weltlefined syntax, but leaving the verification of fulfilment of the contract by a
component to expert decisiotdowever the approach allows formalizing and automatically checkimme
relevant refinement relatios. The paper presents prototypical Eclipséool (SAVONA)whichallows the
annotation of components with assumptions and guarantees, and the partial checking of the
decompositionlt also shows itapplicability lmsed onan automotive electric drive syt case study

H2020JTIECSERO15 # 692474 Pagel7 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

The OPENCOSS Common Certification Language (CCL) provides a Hypsauvogsbulary161], which

defines and records key concepts relevant to safety assurance within the target domains and the
relationships bewveen them. A further use case for the vocabulary aspects of OPENCOSS is to provide a
means for regularizing the structure of expressions used in claims in assurance argumentation. This work
has been written up in detail if161].

Having a common syntactic structure for argument claims makes it easier for a reader to parse claims, and
avoids issues such as confusion over the scope of a given term in a sentence. It is quite common in
GSYIAYSSNAY3I I y3dz miees over théNihtaipketatid of he2scopeSof quafifierS, Mdiirt

0KS LIKNI} &S aFFAftdzNB Y2RSa FyR STFSOG Fylrfearaéds ¢
GSTFSOGE YR BGKSNB aFl At dzNB A nolrsizkcialistTeld& gor adngachite) a Y 2 R
g2dAZ R 0SS tA1Sfe (G2 €221 2yfteé F2N) GKS Y2ad fAYAGS
GFIFAfdz2NBe 2yfe gAUK GY2RS¢ o

Structured expressions can be used to characterise the types of cortbeptae discussed at a pactilar

point in an argument, and the relevant features which can be asserted about them. Typically, a structured
expression comprises a fixed verb phrase, which carriesnihie sense of the claim, while noun phrases,
providing the subject and object overhich the verb phrase ranges, are parameterisable. For example, a
BSNE &AAYLX S aiGNHZOGdZNBR SELINBa&aAz2y Ay |y | aadaNI yoOS
FldzZ Y Aa FRSldzZ G§4Ste YAGAIINGSR o0& 2FF HidfLi®E WMRENBIVE A
FYR aFldzA & YAGAIFGAZ2Y GSOKYyAljdzS¢é FNBE ONBFR LI NI Y

form larger syntactic unitse.g., F2 NY a9 Fl dzf & 2F GeLlS adaaSYraaAodo FI

mitigation technigf ¥ ¢ KA OK | RRNBaasSa 9KIFTIFNRYE®D

In the OPENCOSS approalgfines a series of generic structureShey are sed to refine the logical
structures summarised in argument fragment templates captured in patterns such as those defibéd]in
by specifying the types of concept which are in focus at particular points in the argument.

3.1.4 Safety Analysis with contracts

Faulttree analysis is aafetytechnique applied to a system description in order to check the dependency of
system propeties on the occurrences of faults. In particular, given a system implementation, a set of faults
events, and a togevel failure condition, the faultree analysis produces a tree structure that shows how
the top-level condition depends on different satf occurrences of fault events.

Contractbased design and faultee analysis can be integrated in order to improveatbtechniques. In
particular, SafeCeappliessafety analysito the contractbased specification by extending the specification
with failure conditions and analyzing when the contract refinement is preserved in case of failures. On the
other side, the contract failureare exploitedas intermediate events in order to enrich the fatrite
analysisThe integration is described jh4].

In a nominal architectural design, the one that is later implemented, the failures of components are not
modelled explicitly. Failures may be artificially introduced in the model for the analysis of the safety
mechanisms. Howevethe design that is later implemented in real software and hardware components
contains only the nominal interfaces athaviours It may contain redundancy mechanism or failure
monitoring, but not the failures themselvednfortunately, there is often gap between the design of the
nominal archiecture and the safety analysighich are carried out by different teams, possibly on-ofit

sync components. This requires substantial effort, and it is often based on unclear semantics.

FBK proposed aew formal methodology to support a tight integration between the architectural design
and theanalysis of failuresThe approach builds on two main ingredients: Contiased Design (CBD) and
symbolic fault injection.

H2020JTIECSERO15 # 692474 Pagel8of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

An important aspect of CBD is the ability provide feedback in the early stages of the process, by
specifying properties of blocks in abstract terms (e.g. in terms of temporal logic), without the need of a
behaviouraimodel (e.g. in terms of finite state machines).

The idea of (symbolic) fauhjection, also referred to as model extension, is to transform a nominal model
into one that encompasses the faults. This is done by introducing additional variables, describing whether a
fault has occurred or not and controlling whether the system isavéig according to the original (nominal)

or extended (faulty) model. Within this setting, it is possible to genesatematicallyfault trees by means

of model checking techniques. This approach focusebaaviouralmodels, and is flatthus unable to

exploit the hierarchical decomposition of the system.

The novel contribution of the proposed approach is the extension of CBD for safelysis given a
contractbased decomposition of the system under nominal conditions, we olataiomaticallya contact-

based decomposition of the model with fault injections. The insight is that the failure mode variables are
directly extracted from the structure of the nominal descriptidasically a failure variable models the
failure of the component to satisfydtcontract. The approach is proved to preserve the correctness of
refinement: the extension of a correct refinement of nhominal contracts yields an extended model where
the refinements are still correct. Once the contracts are extended, it is possiblestrgct automatically
hierarchical fault trees that mimic the structure of the decomposition, and formally characterize how lower
level or environmental failures (to satisfy the respective contracts) may cause failures at higher levels.

The approach haseseral important features. Firstf is fully automated since the models reqed to
support the analysis of safety mechanisare directly obtained from the models used in design, without
the need of further human intervention. Second, the approach campfyaied early in the development
process and stepwise along the refinement of the design providing a tight connection betwedadiga
and the safety analysighird, it producesartefactsthat are fundamental in safety assessment, in particular
fault trees, which follow the hierarchical decomposition of the system architecture.

The framework has been implemented extending the OCRAwt@re the input is an OCRA description of
the architecture with the specifation of component contracts andié¢ output of the new functionality is a
hierarchical fault tree.An application of this framework has been used to formalize and analyse
AIR6110 Wheel Brake System

Both the integration of hominal system development with failure analysistaeaciugmentationof failure
analysis with fault injection, as elaborated in the SafeCer approach, can profit from the formalization of
failure modes through the contracts: As the set of contracts specify the correct behaviour of a component
in all relevant operation situ#ns, it is obvious that a contract violation of a component (i.e. one of its
guarantees is violated, although all of its assumptions towards the environment hold) constitutes a failure.
Additional classification schemes for failure modes help automatieagnodetbased failure analysis to a

KAIK RSINBS 06SPa3d C2NJ LRNIa RSEAGSNAYy3IA | O2y(Aydz
standard ones. If the guarantee says that a value shall be between 1 and 99 in a certain situation, then
clearB n 2NJ SOSNRGKAY3I 06St26 Aa ad22 f26¢é FlI AL dzNB:

Details about the integration of contratiased developmentith safety analysis can be found in Section 4
of [42].

3.1.5 Pattems of contracts

The increasing complexity through highly integrated and advanced driver assistance systems challenges the
safety and security demandasm the different domainat industry. Patterns for safety and security contracts
enable robust and fastlesign for such complex systems, while at the same time enabling the reuse of
design/components across systems and domains. Nowadays we see a number of best practices in the
industry for safety/security design patterns ranging from Higtel system archéctures down to idioms

H2020JTIECSERO15 # 692474 Pagel9 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

for the design of components and basic parts. Examples include redundancy (dual channels, 1002, 2003,
lockstep, etc.), online failure monitoring-{8velmonitoring, watchdogs, EDCs, intrusion detection, etc.), or
communication and ata protection (E2E, checksums, error bits, partitioning), and so on.

At the core, safety (and security) contracts define how fault avoidance, fault detection and recovery and/or
mitigation is handled by a single element or between a set of elementshisgourpose, the contract must

include a statement about potential failures of the element(s) and mechanisms how they are covered.
CKSNBEF2NBz al¥Sde O2y (NI} Oda IINB 2FGSy NBEIIFINRSR |
specific requires/guantees properties, and there exists a number of proposaishow they can be
expressed and formalized (cgection 3.1.3. However, as state of the art there is almost no formalization

and explicit modelling of these patterrgintracts appliedluringthe developmentprocesson the different
domainsat industry.

The key points to enable safety and security contracts are the following:

1. A formalization of the design is required, where the nominal specification of a hierarchically
decomposed system can be augmented with relevant information for safety/security contracts.
This information includes the formalization of the contracts by means of interfaces as well as the
addition of failures, mechanismsgonstraints, context/environmet dependencies, etc. to the
design.

2. A formal definition of failures, failure dependencies, and safety mechanisms as well as their
detailed semantics in relation to the model. This implies the element behaviour in case of fault
occurrence and the characistics of the countermeasures, e.g. detection capabilities with a certain
diagnostic coverage, timing aspects, avoidance/protection against the fault, and so on.

3. A method to define and exchange patterns/contracts and to build libraries, so that actual cans
be accomplished across systems. Modelling wise there is the need to have a technology that allows
the definition of contracts and exchange of components that encompass the safety/security
contracts (e.g. data or exchange format).

Model-driven desigrand development defines the state of the art addressing these points and providing a
solid and sound foundation for the required extensions. SecBdingives an overview on typically used
languages such as UML and SysML. élherthe type and interface concepts are key to a contractual
design, since ports and interfaces make up the interactions/connections of a structural element.

The usage ammetamodelsfor the modelling languages constitute a precise and concise technigdefine

the information from a structural point of view. The definition of the safety contract related information
such as failures, dependencies, or safety mechanigntsn be achieved by extending the language
metamodels with the safety/security relatl concepts. An example of such a metamodel is the safety core
part of mediniManalyze as shown in the figure below.

H2020JTIECSERO15 # 692474 Page20 of 88

U‘d!, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

Failable 1 | FailureRelation
= failureRate : EBigDecimal
= failureRateMode : FailureRateMode
r ailurer EBigDecimal

rage : EBigDecimal
on ; EString

eRelations

H FailureCollection

) name : EString

‘ E Malfunction El Hazard Error

rawfailureRate n : EBigDecimal
= failure ailureCategory
= failureRateKind : FailureRateKind

represents
0.1

E MeasureCatalog

= name : EString

&5 Measure

detectionMeasures | |
R © id : EString
0.* 0.* ¢ prooes
measureGroups . = 0. *

E MeasureGroup) measures
1

Figure4: Arguments over the use of enabling monitor

The safety core model defines the modelling conceptfadiires and measuresas a central metamodel

that is shared across all language models such as SysML, UML, AUTOSAR, Simulink, etc. We use the term
"failure" as a general classification across domains of all abnormal conditions that are in the focus of an
analysis, i.e. Hazard Analysis and Risk Assessment, FMEA, FMEDA, or FTA. Failures can be connected via
causeeffect relationship to modefailure nets(usually hierarchies). In structural/physical models, they're
guantified by means of a failure rate (e.ffom computations along the SN29500, IEC62380 or other
sources).Measuresare the generic concept to express all means to prevent, detect, control, mitigate or
correct failures of a system. In additioBafety Mechanismare specific measures that are plemented

into systems and that provide diagnostic coverag€éDC) of failures, i.e. they cover a proportion of the

failure rate of a failure mode (not shown in the excerpt). These definitions are intended to be as generic as
possible to fit to multiple dmains (e.g. ISO 26262, IEC 61508, DO 178, etc.) and imply only a few limitations

in their usage regarding the semantics of the underlying model. For example, malfunctions are contained
only in behavioural elements (activities/actions/operations) and fundj failure modes are contained in

all components or parts, errors are dedicated to software/logical blocks, and so on.

Based on these state of practice metamodels, the definition of a safety contract is modelled by an extended
type definition where thetype itself and its ports receive annotated failure modes/malfunctions, failure
cause/effect relations, and safety mechanisms that address the failures. Thereby, the ports of a type as well
as the type itself maintain a list of potential failures of itstamces. Consequently, the failure (modes) of all
instances of a type/ports are synchronized with the type definition, but the specific ateset relations

are specific to the instance, since they often depend on location and connections of a conarete p
Similarly, the failure rates and distributions are modelled at the type and synchronized with all instances,
which define context specific stress parameters based on a given mission profile (e.g. temperature,
voltage/current, mechanical stress, andaw).

Given a set of parts, failures/failure modes, and failure rates, the safety mechanisms model the fault
detection and control at the instance level and are linkedthe failures of the instances. The safety
mechanisms of a system usually come withhaximumDetection CoverageDQ, which might not always

be achieved for all instances, so some flexibility is required to adapt the DC per instance. Hence, it is

H2020JTIECSERO15 # 692474 Page21 of 88

U m‘ AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

important to note that many safety propertieg failure rates and diagnostic coverage valugyary
depending on the application context (system) and mission profiles (environnidrgjefore, the designer

of a safety contract (usually the safety engineer) must review whether all assumed conditions are met and
adapt the design or analysis basedspecific product constraints.

In order to enable reuse of contracts and patterns, all the safety design information must be stored in some
sort of database of library. (Element) Libraries are used to share definitionsustl#e elements of system

modef & F ONRPaa LINRP2SOG o02dzyRIFNASa YR LINRPDARS GKS ¢
design. The usage of libraries is only partly established and this topic is subject of further research,
especially in the context of WP6.

3.1.6 Generation of Safgy Case ArgumenEragments from Contracts

In the context ofSYNOPS|I8oject[162], component contracts were used to (serai)tomatically generate
safetycase argument fragmengd42]. SYNOPSK&sumes that the component contracts and the safety
requirements allocated to the same component are closely related, but not the same. On the one hand,
safety requirements describe behaviours that a certain context/system requires from a component. On the
other hand, the contracts represent the actual behaviours of the component, which can be used to check
whether the component satisfies the allocated requirements by checking the component guarantees with
the corresponding safety requirements.

The safety ase is represented with an argument that connects the requirements with the supporting
evidence. Such argument should demonstrate how the specified safety requirements have been satisfied in
a particular contextSince both the contracts and the argumeetg the same purpose to show that the
requirements are satisfied, the existing contracts could be used to speed up the creation of the
corresponding argumentA SEooCMM metamod§l42], seeFigureb, is defined as an extension of the
SafeCer generic component metamodel, to capture the needed information around the notion of contracts
and enable the generation of argumefiagments directly from such contracts. Since SEooCMM addresses
the outof-context setting it deals with strong and weak contracts. Regardless of that, the requirements and
evidence in SEooCMM are related to the abstract safety contract class to allow for extensions of the
metamodel to include different types of contriac

Assumed Safety Requirement 1. Evidence
-id 1.* l -id
c t -title
omponen -evidenceType
Strong Safety Contract . -confidence
0. | Strong Assumption (A) satisfiedBy
Property 0.. 1..° 1..* T 0.* '
id Strong Guarantee (G) 0..* " |{«enumeration»
1.* d dentO Safety Cont Evidence Type
-value ependentn afety Contract
. id SUDDDI‘tEdBY +consistency
Weak Assumption {B)L‘ Weak Safety Contract [completeness
+correctness
1.7 P
Weak Guarantee (H)

Figureb: Safety Element oubf-context Metamodel (SEoOCMM)

To generate the argumeritagment from SEooCMM, we map the contract guarantees with the argument
claims, the supporting evidence with solutions, and the contrastuenptions with claims and contexts.
Based on this mappindhe contract satisfactiorargumentation pattern(Figure6) is used to generate an
argumentfragment that a particular component contract is satisfied with sufficientfidemce. A set of
such argumenfragments is used to support the satisfaction of a safety requirement allocated to the
component.

H2020JTIECSEROLS # 692474 Page22 of 88

U“!!, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

C3.k.1.n _,_{ G3.k.1.n

(-
_All assumed properties from {x}{n} / ~ |Contract {x}{n} is satisfied with sufficient confidence

G3.k.1.n.1
Every contract supporting assumed properties of the

‘ G3.k.1.n.2 ‘
contract {x}{n} is satisfied with sufficient confidence

Contract {x}{n} is sufficiently complete

53 S4
Argument by satisfaction with sufficient confidence Describe all the attached evidence
of all contracts supporting assumed properties related to completeness of {x{n}/
1..M 1..Z / N\

G5.m

G6.z [S1z)
Contract {y{m} supports the {Evidence:title} supports completeness of }—"I\{Evidence:id} /J
assumption {Property:value} the contract with {Evidence:confidence} L /

&N S

S .

Figure6: Contract satisfaction argument patterfil42]

The contract satisfactiorargumentpattern starts with a claim that a contract is satisfied with sufficient
confidence, which means that the contract guarantees are offered. To support such claim, the pattern
argues over the satisfaction of the contragsumptions, and the confidence in sufficient completeness of
the contract. While the argument over each assumption points to the contracts in the environment that
satisfy that assumption, the contract completeness -anpument should establish sufficienbnfidence

that the specified contract assumptions are sufficient to claim that the guarantee is offered.

Based on the potential for generation of contrdidsed argumenfragments from SEooCMM, the
metamodel and the contradbased argumenfragments canbe used to instantiate different pre
established argumentation patterns such ldandling of Software Failure Modasgument pattern[143].
Furthermore, to facilitate better evidence management in SEooCltMextension is promedin [144]
where SEoOCMM is aligned with the standardised SACM evidence metamodel.

3.2 Requirement Specification

In this section we reviewdiverserequirement specification approacheslated to subsection2.54 + 3 +
0FaSR ! aadz2N) yOS¢

3.2.1 Domain Ontology Authoring

The system engineersieed to have considerable knowdige and experience in the domain in order to
define the system requirementand design the system architectur&hey also need to have clegsion
about the ultimate result of the development effort that will raise from the implementation of thgatem
architecture and requirementsThis section provides yet another example, how $getem architecture
and requirement authoring activies can be based on an ontology and what benefits that bsif@g. the
ontology can be used as a unified consistent language).

Ontology as a language

The ontology is perceived as a kind of specification language, which offarsehe

1. A list of textual expessions (names ofypes/sorts/classes ofthings, names of individual
things/values/parameters/constants,names of processes, name®f relations, possibly

H2020JTIECSEROLS # 692474 Page23 of 88

‘\,U'm, AMASS Baseline and requirements for architectudeiven assurance D3.1V1.1

supplemented with corresponding definitions of these concepts and bound to examples of contexts
in which they occur) tightly related to (stemming from) the application dom8&urch list of symbols

is sometimes called thsignature The signaturdnelps to suppress the ambiguity of the text, e.g. by
limiting the usage of several synonyms for the same thivtgch is okay when stylistic issues are
important, but which is undesirable from an engineering point of vidle symbols of the
signature together with the symbols of the logical operations like conjunction, negation, etc. of the
chosen logic represetihe constituent blocks of formal system specifications.

2. The possible compositions of the lowlewvel expressions into highdéevel expressions and even
into the whole sentences. These potential compositions are inscribed in the diagrammatic structure
of the underlying ontology captured in the UML. When the sentences are created, the user
traverses appropriate continuous paths in the UML diagrams from one concept (class) to another
concept via the existing connections (associations, generalizations, aggregatnd composes the
names of classes and relations encountered along the way into a sentence.

Ontology employment

The basic structure of the procets apply ontology in thesystem architecture creation armgquirement
authoring andormalization carbe summarized in t following steps

1. Create thg(UML) ontology.
2. Write a (tentative, sketchy) informalystem architecture antequirement.

3. For the most important notions of the informalystem architecture andequirement find the
corresponding terms irhie ontology.

4. Select the most appropriate paths in the ontology graph, which connect/include the important
notions found in the previous step.

5. Compose meaningful sentences by concatenating the names of the elements (classes, objects,
relations) traversed ahg the selected paths.

6. Repeat the steps @5 for allinformal artefacts

This approach is also applicable when the goal is to improve the quality of the csystatn architecture
or requirements and rewrite them in a more clear a consistent fohmthat case, the step 2. does not
involve writing of newparts of system architecture aequirements, but taking the existirgrtefactsfrom
their last iteration.

LT 6S O2y&ARSNI Iy SEGNBYS odzi RS&aANIofS iomhefS (KL
reused components that have been developed separately around different ontologies, it is obvious that the
ontology of the new and more complex system should be some composition of the simpler ontologies of its
subsystems. Therefore, for the devplnent of CybeiPhysical Systems it is highly desirable to have
appropriate means of gluing ontologies together to obtain ontologfies are more complex

3.2.2 Requirement Grammars Authoring

Both requirement authoring supported with domain ontology and reguiests formalization increases

the quality of requirements and improves the capacity later to verify compliance to these requirements. In
the case of requirements formalization, the benefits that this process brings are automatic formal
verification, guarateed verifiability, and the removal of ambiguity among requirements.

In some aerospace domains, e.g. Flight Controls, Flight Management Systems, Display and Graphics, the
Honeywell requirements are written in a structured and restricted way to improve theality. Yet these
restrictions are not sufficient to guarantee machine readability and the subsequent automatic verification.
The requirements language needs to be further restricted to be unambiguous and to have clear semantics,

H2020JTIECSERO15 # 692474 Page24 of 88

\U, AMASS Baseline and requirements for architectudeiven assurance D3.1v1.1

before a machine coulcead such. Honeywell internal tool ForRéq] allows requirement authoring based

on a grammar for structured English requirements that serves two separate purposes. For the requirements
already written that conform to this @mmar, ForReq allows automatic translation into Linear Temporal
Logic (LTL) and thus automatic verification. Yet, more importantly, the machine readability can be enforced
for new requirements by the use @uto-completion This new functionality suggesthe requirements
engineer the set of possible words to continue their requirements within the boundaries of the restricted
requirements language. Thus, the requirements engineers save effort that would be needed for writing
twice each of the requirementd,e. the human readable version for stakeholders and the maehine
readable version for verification.

In the case requirements do not use exact artefacts (variables or states) from the system (for example some
system requirement are prohibited to contaimah link), the ForReq tool now guides the user to create
mapping from artefacts in requirements to the corresponding artefacts in the system. Moreover,
requirements defining mapping between variable names and its textual descriptions used in requirements
are supported to automatdully the process. These requirements are also verified and any inconsistency is
reported to be fixed by the user.

However, the user has to specify the exact timing of each requirement, i.e. whether the effects shall
happen immedately or in the next time step or after specified number of time steps or seconds. Honeywell
ForReq tool supports this requirement formalization process as depictédgure 7in order to enable
automatic semantic requirement analysis as described ini@e8t7.1and automated formal verification
against system design as described in Se@ia@r8

System-level requirements

High-level requirements
i (ForReg gamsis
Structured Requirements : ~{:}

Requirement Intechange Format
text Metric Temporal Logic

Linear Temporal Logic

Specify exact timing Map requirements to system artifacts

Figure7: Process of formalization of structured requirements using FogReol

The requirements formalization is not a straightforward process and a considerable number of steps is
required for incorporating formalization into realorld development of embedded systemiBhe goalof

the ForReq developmeris to guarantee thathe authored requiremergare unambiguous, automatically
verifiable (machingeadable) and conforming to theequirements reference(template, pattern,
boilerplate,standarg. Auto-completion, requirement standard grammar and requirement guidelines were
implemented in ForRetp cover this neednd to proceedurther towards fully incorporating requirements
formalization into the development process.

3.2.3 RequirementsBased Engineering Approach

The RequirementBased Engineering (RBiproach was developed by 8RREUSE Company, Carlos Il
University of Madrid and OFFiis the CRYSTAL projett providesan answer to the use cases initially

drawn by SAGEM and CASSIDIAN as well as other use cases that stated their interest on this RBE approach
during the projectL & NBf I 1Sa G2 -0iKaSS R2 0 2aSQaNil @0 Suditeeatis WM&V A G LI
techniguese.g, validate thatarequirements specification is complete, correct, and unambiguous

H2020JTIECSERO15 # 692474 Page25 of 88

