
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Integrated AMASS platform (a)
D2.6

Work Package: WP2 Reference Architecture and Integration
Dissemination level: PU = Public
Status: Final
Date: 28 March 2017
Responsible partner: Morayo Adedjouma/ Bernard Botella (CEA)
Contact information: {morayo.adedjouma, bernard.botella } AT cea.fr
Document reference: AMASS_D2.6_WP2_CEA_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the AMASS Consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or
in parts, except with prior written consent of the AMASS consortium.

Contributors

Reviewers

Names Organisation

M. Adedjouma, B. Botella Commissariat a L’energie Atomique et aux
Energies Alternatives

A. Debiasi Fondazione Bruno Kessler
P. Böhm AIT Austrian Institute of Technology
L. Alonso, B. López The REUSE Company
Alejandra Ruiz TECNALIA Research & Innovation
S. Baumgart Ansys Medini Technologies

Names Organisation
S. Medawar, D. Scholle, M. Tillman, S. Skogby (Peer
reviewers)

ALTEN SE

Garazi Juez (Peer reviewer) TECNALIA Research & Innovation
J.L. de la Vara Universidad Carlos III de Madrid
Barbara Gallina Maelardalen Hoegskola
Cristina Martínez (Quality Manager) TECNALIA Research & Innovation

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 44

TABLE OF CONTENTS

Executive Summary .. 6

1. Introduction.. 7
1.1 Scope ... 7
1.2 Purpose of the deliverable ... 8
1.3 Relations to others deliverables ... 8
1.4 Structure of the document ... 8

2. AMASS Platform Architecture .. 10
2.1 Conceptual Architecture .. 10
2.2 Implementation Architecture ... 10
2.3 AMASS Platform Prototype Core .. 14

3. Testing and Validation Methodology .. 16

4. Testing and Validation for System Component Specification Basic Building Block 18
4.1 System Component Specification Functionalities for Prototype Core.. 18
4.2 System Component Specification Test Cases .. 18
4.3 System Component Specification Test Results .. 23

5. Testing and Validation for Assurance Case Specification Basic Building Block 25
5.1 Assurance Case Specification Functionalities for Prototype Core .. 25
5.2 Assurance Case Specification Test Cases .. 25
5.3 Assurance Case Specification Test Results .. 27

6. Testing and Validation for Evidence Management Basic Building Block ... 30
6.1 Evidence Management Functionalities for Prototype Core ... 30
6.2 Evidence Management Test Cases ... 30
6.3 Evidence Management Test Results ... 32

7. Testing and Validation for Compliance Management Basic Building Block ... 34
7.1 Compliance Management Functionalities for Prototype Core ... 34
7.2 Compliance Management Test Cases ... 34
7.3 Compliance Management Test Results ... 36

8. Prototype Core Validation Synthesis .. 38
8.1 Analysis of Test Results .. 38
8.2 Recommendations ... 39

Abbreviations and Definitions.. 40

References ... 42

Appendix A: Validation status of the basic building blocks .. 43

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 44

List of Figures

Figure 1. Scope of the AMASS Prototype Core in the overall AMASS Platform .. 10
Figure 2. AMASS Implemented Architecture .. 11
Figure 3. AMASS Reference Architecture focused on the Prototype Core basic building blocks 12
Figure 4. AMASS System Component Specification Block with screenshots associated 12
Figure 5. AMASS Assurance Case Specification Block with screenshots associated 13
Figure 6. AMASS Evidence Management Block with screenshots associated .. 13
Figure 7. AMASS Compliance Management Block with screenshots associated .. 14

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 44

List of Tables

Table 1. System Component Specification basic building block functionalities ... 18
Table 2. Defined Test Case WP3_TC_01 for WP3_SC_001 functionality.. 19
Table 3. Defined Test Case WP3_TC_02 for WP3_SC_002 functionality.. 19
Table 4. Defined Test Case WP3_TC_19 for WP3_SC_006 functionality.. 19
Table 5. Defined Test Case WP3_TC_25 for WP6_RA_003 functionality ... 19
Table 6. Defined Test Case WP3_TC_14 for WP3_SC_004 functionality.. 20
Table 7. Defined Test Case WP3_TC_16 for WP3_SC_005 functionality.. 20
Table 8. Defined Test Case WP3_TC_30 for WP3_CAC_002a functionality ... 21
Table 9. Defined Test Case WP3_TC_31 for WP3_CAC_002b functionality ... 21
Table 10. Defined Test Case WP3_TC_29 for WP3_CAC_004 functionality ... 21
Table 11. Defined Test Case WP3_TC_05 for WP3_CAC_013 functionality ... 22
Table 12. Defined Test Case WP3_TC_15 for WP3_CAC_003 functionality ... 22
Table 13. Defined Test Case WP3_TC_03 for WP3_SAM_001 functionality .. 22
Table 14. Defined Test Case WP3_TC_33 for WP3_CAC_012 functionality ... 23
Table 15. Defined Test Case WP3_TC_06 for WP3_VVA_001 ... 23
Table 16. Test results for the implemented System Component Specification functionalities 24
Table 17. Assurance case Specification basic building block functionalities .. 25
Table 18. Defined Test Case WP4_TC_01 for WP4_4.2 functionality .. 25
Table 19. Defined Test Case WP4_TC_03 for WP4_4.5 functionality .. 26
Table 20. Defined Test Case WP4_TC_04 for WP4_4.8 functionality .. 26
Table 21. Defined Test Case WP4_TC_05 for WP4_4.9 functionality .. 26
Table 22. Defined Test Case WP4_TC_06 for WP4_4.13 functionality .. 27
Table 23. Defined Test Case WP4_TC_08 for WP4 _4.19 functionality.. 27
Table 24. Test results for the implemented Assurance Case Specification functionalities 28
Table 25. Evidence Management basic building block functionalities ... 30
Table 26. Defined Test Case WP5_TC_01 for WP5_5.1, WP5_5.5, WP5_5.14, WP5_5.21 functionalities 30
Table 27. Defined Test Case WP5_TC_02 for WP5_5.4, WP5_5.10, WP5_5.21 functionalities 31
Table 28. Defined Test Case WP5_TC_03 for WP5_5.2, WP5_5.3, WP5_5.11, WP5_5.21 functionalities 31
Table 29. Defined Test Case WP5_TC_04 for WP5_5.10, WP5_5.13, WP5_5.21 functionalities 32
Table 30. Test results for the implemented Evidence Management functionalities 33
Table 31. Compliance Management basic building block functionalities... 34
Table 32. Defined Test Case WP6_TC_01 for WP6_6.1 functionality .. 34
Table 33. Defined Test Case WP6_TC_02 for WP6_6.1 functionality .. 35
Table 34. Defined Test Case WP6_TC_03 for WP6_6.1 functionality .. 35
Table 35. Defined Test Case WP6_TC_04 for WP6_6.2 functionality .. 35
Table 36. Defined Test Case WP6_TC_05 for WP6_6.2, WP6_6.6 functionalities .. 35
Table 37. Defined Test Case WP6_TC_06 for WP6_6.3 functionality .. 36
Table 38. Test results for the implemented Compliance Management basic building block functionalities . 36
Table 39. Prototype Core Implementation Status .. 38
Table 40. Results of the test cases for Prototype Core implemented functionalities 38
Table 41. Prototype Core Functionalities Status ... 43

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 44

Executive Summary
This deliverable (D2.6) is the first one from the Task 2.4 AMASS Platform Validation. It concerns the AMASS
Open Tool Platform, which will be one of the main results of the AMASS project. This platform corresponds
to a collaborative tool environment supporting CPS assurance and certification. It represents a concrete
implementation of the AMASS Reference Tool Architecture, with a capability for evolution and adaptation,
which will be released as an open technological solution by the AMASS project.

To reach this goal, the AMASS Consortium has decided to follow an incremental approach by developing
rapid and early prototypes in three iterations. This deliverable concerns the first prototyping iteration
called Prototype Core, regrouping the AMASS Platform Basic Building Blocks, that are be aligned, merged
and consolidated at Technology Readiness Level (TRL) 4 (technology validated in laboratory).

The AMASS platform is composed of a set of tools providing the functionalities described in the AMASS
deliverable D2.2 (AMASS Reference Architecture, first prototype). This first prototype has been built upon
three pre-existing toolsets from the OpenCert project [6], the CHESS Project (Polarsys Platform) [5] and the
EPF (Eclipse Process Framework) Project [7]. The components composing this first prototype are the
System Component Specification, the Assurance Case Specification, the Evidence Management, the
Compliance Management and the Data Manager.

The Prototype Core has been released (as source and as binaries) and two manuals have been provided
with it. The Developer Guide dedicated to the AMASS Platform developers and the User Manual that
targets AMASS Platform users.

The current deliverable first describes the architecture of the Prototype Core, and then presents the
validation activities that have been conducted on it.

This validation has been based on an analysis of the requirements and corresponding functionalities,
planned for basic building blocks constituting the Prototype Core, defined in D2.1 [10] and usage scenarios
defined in D2.2 [11] in order to refine these items into test cases that are compatible with the current
developments of the AMASS platform. From this analysis we defined 32 test cases to test and validate the
34 implemented functionalities of AMASS Prototype Core. These test cases have been executed by three
AMASS partners.

Globally the results of tests are satisfactory, only some functionalities concerning Assurance Case
Management need to be completed. From these results, the main recommendations concern the platform
development process for the next iterations, asking for stable and consistent versions of the tools and the
documentation before the beginning of the validation, more traceability between requirements, use cases
and developed functionalities, and requiring methodological guidelines.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 44

1. Introduction

1.1 Scope

AMASS will create and consolidate a de-facto European-wide assurance and certification open tool
platform, ecosystem and self-sustainable community spanning the largest CPS vertical markets. The
ultimate aim is to lower certification costs in face of rapidly changing product features and market needs.
This will be achieved by establishing a novel holistic and reuse-oriented approach for:

• architecture-driven assurance fully compatible with standards such as AUTOSAR and IMA;
• multi-concern assurance for example compliance demonstration, impact analyses, and

compositional assurance of security and safety aspects;
• seamless interoperability between assurance/certification and engineering activities along with

third-party activities (external assessments, supplier assurance);
• cross/intra-domain re-use of, for instance, semantic standards and product/process assurance.

The AMASS tangible expected results are:
a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS [1] and SafeCer [2]

conceptual, modelling and methodological frameworks for architecture-driven and multi-concern
assurance, as well as for further cross-domain and intra-domain reuse capabilities and seamless
interoperability mechanisms (e.g. based on Open Services for Lifecycle Collaboration (OSLC)1
specifications).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC Application programming interfaces (APIs) with external tools (e.g. engineering
tools including V&V tools) and on open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the PolarSys/Eclipse
community [4] is a strong candidate to host AMASS.

To achieve these results, the AMASS Consortium has decided to follow an incremental approach by
developing rapid and early prototypes in three iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks,
will be aligned, merged and consolidated at TRL 42 (technology validated in laboratory).

2. During the second prototyping iteration (Prototype P1), the single AMASS-specific Building Blocks
will be developed and benchmarked at TRL 4.

1 https://open-services.net
2 In the context of AMASS, the EU H2020 definition of TRL is used, see
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-
trl_en.pdf

https://open-services.net/
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 44

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL 5 (technology validated in relevant
environment).

1.2 Purpose of the deliverable

This deliverable is the first one from the Task 2.4 AMASS Platform Validation. The purpose of this
deliverable is to serve as a complementary to the Prototype Core. First, it provides a summarised version of
the implementation work that has been done related to the basic building blocks implementation and the
integration between them based on the reference architecture that was envisioned for the platform in
deliverable D2.2 [11]. This document presents the different blocks and the platform architecture.

In a second part, this deliverable presents the testing and validation activities of the AMASS platform that
correspond to the scope of Prototype Core, in order to check the global functionality of the platform
according to the requirements defined in WP2, T2.1.

In this context, we performed an analysis of the functionalities planned for basic building blocks
constituting the Prototype Core defined in D2.1 [10] and usage scenarios defined in D2.2 [11] in order to
refine these items into test cases that are compatible with the current developments of the AMASS
platform. Additional test cases have also been defined to check the correctness of the implementation
against the AMASS User Manual [8]. The manual execution of the test cases enables us to provide direct
feedback regarding implementation status and potential further enhancements for the next iteration.

The results of testing the Prototype Core and the validation team feedback will allow WP1 and T1.4 to start
a fair assessment of: 1) how the objectives of the case studies are met, 2) which applications perform best,
and consequently, have the biggest market potential, and 3) which aspects can be improved.

1.3 Relations to others deliverables

D2.6 is related to other AMASS deliverables:
• D2.1 [10] (Business cases and high-level requirements) defines the business models of the AMASS

solutions as well as the requirements to be met by the WP3, WP4, WP5, WP6 technical AMASS
work packages.

• D2.2 [11] (AMASS Reference Architecture (a)) describes the overall architecture of the AMASS
platform including needs from the case studies that must be covered by the platform.

• D3.4 [12] (Prototype for Architecture-Driven Assurance (a)), D4.4 [13] (Prototype for multi-concern
assurance (a)), D5.4 [14] (Prototype for seamless interoperability (a)) and D6.4 [15]
(Implementation for Cross-Domain and Intra-Domain Reuse (a)) define the development of a
tooling framework to support the AMASS platform first prototype. These deliverables describe the
tool whose testing is reported in D2.6.

• The AMASS User Manual [8] provides a guide on how to use the AMASS platform.
• The AMASS Developer Guide [9] provides a guide on how to set up the development environment

and the tools integrated in the AMASS platform.

Finally, D2.2 deliverable [11] and the AMASS User Manual [8] have been the main reference documents
from which new test cases have been derived, so that the features described there can be validated.

1.4 Structure of the document

This deliverable is structured as follows: Section 2 is a presentation of the AMASS basic building blocks and
of the tooling architecture and technologies used to implement them. Section 3 describes the testing and
validation procedure. Section 4 contains the implementation status of the functionalities for the Prototype

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 44

Core, the definitions of the test cases that have been defined to evaluate them and the results of execution
of these test cases. Section 5 provides a synthesis of the validation results of the Prototype Core and some
recommendations to be considered for the next version of the platform. Appendix A provides a detailed
status of the platform implementation.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 44

2. AMASS Platform Architecture

2.1 Conceptual Architecture

A general top-level architecture of the AMASS platform has been designed as an effort done in D2.2 [11].

As part of the overall platform, the AMASS Prototype Core is the result of merging existing technologies
from OPENCOSS [1] and SafeCer [2], and other related project such as CHESS [3]. This Prototype Core
includes basic building blocks composed of tools for specification of system components, specification of
assurance cases, evidence management, compliance management, user access management and data
management, as well as the Common Assurance and Certification Metamodel (CACM) that merges an
evolution of OPENCOSS CCL (Common Certification Language) and SafeCer metamodels.

Figure 1 provides a high-level picture of the AMASS Reference Tool Architecture (ARTA) where the basic
building blocks constituting the Prototype Core are surrounded by a red dash-line.

Figure 1. Scope of the AMASS Prototype Core in the overall AMASS Platform

2.2 Implementation Architecture

The designed architecture of the AMASS Prototype Core has been implemented in the scope of the T3.3,
T4.3, T5.3 and T6.3 Tasks. Figure 2 presents the overall picture of the implementation architecture of the
AMASS platform software building blocks and the communication between them.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 44

Figure 2. AMASS Implemented Architecture

The AMASS platform is composed of a set of tools providing the functionalities described in the AMASS
deliverable D2.2 (AMASS Reference Architecture, first prototype). This first prototype has been built upon
three pre-existing toolsets:

1. Tools from the pre-existing OpenCert project [6].
2. Tools from the CHESS Project (Polarsys Platform) [5].
3. Tools from the EPF (Eclipse Process Framework) Project [7].

The Prototype Core which integrated previous developments can be decomposed into the following main
building blocks:

1. AMASS clients - facilitating data editing.
2. AMASS web server - facilitating data reporting.
3. AMASS data storage - used by both clients and the server

Figure 3 presents an overall picture of the implementation architecture of the basic building blocks and the
communication between them for Prototype Core. Note that the implementation of the Access Manager
basic building block has been postponed to subsequent prototype iterations.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 44

Figure 3. AMASS Reference Architecture focused on the Prototype Core basic building blocks

Looking into the AMASS client implementations, the baseline alternatives and technologies chosen for the
implementation of the platform are the following:

• The System Component Specification basic building block reuses SafeCer and CHESS project
technologies based on UML metamodel and profile mechanism through Papyrus tool editor and its
CHESS extensions. Previous developments have been updated in order to support the CDO
communication protocol and the Assurance Project Management block connects with this block.

Figure 4. AMASS System Component Specification Block with screenshots associated

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 44

• The Assurance Case Specification basic building block reuses the argumentation tool based on the
CCL (Common Certification Language) metamodel from the OPENCOSS project and provides a GSN
graphical notation support like in the SafeCer project.

Figure 5. AMASS Assurance Case Specification Block with screenshots associated

• The Evidence Management basic building block reuses the evidence management tool defined in
the OPENCOSS project.

Figure 6. AMASS Evidence Management Block with screenshots associated

• The Compliance Management basic building block uses the Eclipse Process Framework (EPF) tool
(called EPF Composer) for standards and processes modelling from the SafeCer project together
with the CCL metamodel and the web-based compliance checks and reports solutions from the
OPENCOSS project. We have developed specific transformations in order to get information from
Process Model created in the EPF composer into the standard editor reused from OPENCOSS.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 44

Figure 7. AMASS Compliance Management Block with screenshots associated

• The Data Manager basic building block supports file-based and CDO-based data storage.

2.3 AMASS Platform Prototype Core

Together with this deliverable, the Prototype Core has been released. The source code for this prototype is
available at https://services.medini.eu/svn/AMASS_source 3.

Together with the source code, two binaries have been released. The first one was released at the time the
testing execution was being done and the second one was released after solving some errors and bugs that
were found during the validation. The binaries are available at:
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/Tools/OpenCertCHESS

Two manuals were also developed during the Prototype Core implementation. The first manual is the
Developer guide and targets the AMASS Platform developers. It was written at the same time of the
implementation in a collaborative way by the developers and validated among them. The second manual is
the User manual and targets the AMASS Platform users as the desirable audience. It has also been used
during this period by Task 2.4 participants to specify test cases and execute them. Some comments and

3 The AMASS SVN code repository is open to AMASS partners with the same credentials as the SVN document
repository. In case that people outside the project need access, please contact the AMASS Project Manager
(huascar.espinoza@tecnalia.com)

https://services.medini.eu/svn/AMASS_source/
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Tools/OpenCertCHESS
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Tools/OpenCertCHESS

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 44

feedback from these readers have been used as input to improve the manual before been released to the
people involved in the AMASS use cases. Both manuals are available at:

• Developer Guide [9] - https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_DeveloperGuide.doc

• User Guide [8] - https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_UserManual.docx

https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_DeveloperGuide.doc
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_DeveloperGuide.doc
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_UserManual.docx

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 44

3. Testing and Validation Methodology
This section presents the overall methodology for validation of AMASS results. This methodology aims to
validate that the AMASS Prototype Core platform satisfies its requirements and checks the system
behaviour against needs from user and case studies (see D2.1 [10] and D2.2 [11] deliverables). Figure 8
presents the overall testing and validation methodology.

Figure 8. AMASS testing and validation methodology

In step 1, the Prototype Core functionalities have been collected from D2.1 deliverable. In step 2, we define
the test cases corresponding to the implemented functionalities. The test cases are mainly based on the
scenarios defined in the use cases of D2.2 deliverable. The test cases aim to provide concrete details about
how AMASS will be used and when such usage can be regarded as successful. The test cases have been also
traced back to the D2.1 requirements of the AMASS Prototype Core to ensure their theoretical coverage.

The D2.1 and D2.2 reference documents have been used in the versions available at the time of the test
execution, they have not been always in line with the implementation status of the AMASS platform at that
time. This is why we have also used the AMASS User Manual as a reference document to derive some test
cases.

The specification of a test case consists of the following information:
• Test Case ID, which uniquely identifies the test case
• Scope, which provides the context and summarizes the purpose of the test case
• Functionality ID, which refers to the AMASS related requirements that must be validated
• Related use cases, which refer to the use case scenarios that are concerned
• Input, which specifies the necessary input data needed prior to execute the test case
• Steps are the execution steps to follow to run the test case
• Expected results specify the behaviour or computation results expected from the execution of the

test case
• MoSCoW Priority4 as defined for the AMASS requirements in D2.1 deliverable

4 Must have, Should have, Could have, and Won't have but would like

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 44

In step 3, the Validation Team has installed the required material for running the test cases based on the
Developer Guide, and the D3.4 [12], D4.4 [13], D5.4 [14] and D6.4 [15] deliverables. The software is
installed from a SVN repository. In step 4, the validation team has executed manually the test cases, as this
was the most efficient way at that development stage. We report the status of the execution of the test
cases as:

• Passed: functionality that works as required
• Passed but: functionality that works but could be enhanced
• Failed: functionality that does not work

In step 5, for each test case with “Passed but” or “Failed” result status, a rationale is given to describe the
problem identified in the software or the User Manual. We generated a ticket within the selected Issue-
Tracker system for such test cases to report the problem to the Implementation Team. When the test cases
have been resolved, they are executed again to update their status.

In step 6, we report the final status of the testing and validation in D2.6 deliverable.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 44

4. Testing and Validation for System Component Specification
Basic Building Block

4.1 System Component Specification Functionalities for Prototype Core

The functionalities concerning the System Component Specification basic building block are defined in D2.1
deliverable [10]. Table 1 is an excerpt of the relevant functionalities planned for Prototype Core, their
implementation status and the implementation responsible. Two functionalities among 16 defined have
not been implemented and are postponed for the next version of the AMASS platform prototypes.

Table 1. System Component Specification basic building block functionalities

ID Functionality Status Responsible
WP3_SC_001

Browse along the different abstractions levels
(system, subsystem, component)

Implemented

INT

WP3_SC_002

Move and edit along the different abstractions
levels (system, subsystem, component)

Implemented INT

WP3_SC_004 Formalize requirements with formal properties Implemented INT
WP3_SC_005

Provide the capability for allocating requirements
to parts of the component model.

Implemented INT

WP3_SC_006 Specify the component behavioural model Implemented INT
WP3_SC_007 Fault injection (include faulty behaviour of a

component)
Postponed

WP6_RA_003

Provide the capability for reuse of pre-developed
components and their accompanying artefacts

Implemented INT

WP3_CAC_002a Associate a contract to a component Implemented INT
WP3_CAC_002b Drop contract from component Implemented INT
WP3_CAC_003 Structure properties into contracts

(assumptions/guarantees)
Implemented INT

WP3_CAC_004

Specify the refinement of the contract along the
hierarchical components architecture

Implemented INT

WP3_CAC_012 Browse Contract status Implemented INT
WP3_CAC_013 Specify contracts defining the assumption and the

guarantee elements
Implemented INT

WP3_SAM_001 Trace all the assurance information with the
specific component

Implemented INT

WP3_VVA_001 Trace immediate evidence (obtained during the
execution of the left-hand side of the V-model)
with direct evidence (obtained during the
execution of the right-hand side of the V-model).

Implemented INT

WP3_VVA_004 Trace requirements validation checks Postponed

4.2 System Component Specification Test Cases

In this section, we present the set of test cases defined to validate the correct implementation of the
System Component Specification basic building block of Prototype Core. The test cases have been defined
based on the use case scenarios defined in the deliverable D2.2 [11] for the concerned functionalities when
existing.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 44

Table 2. Defined Test Case WP3_TC_01 for WP3_SC_001 functionality

ID WP3_TC_01
Scope Browse along the different abstractions levels (system, subsystem, component)
Functionality ID WP3_SC_001
Related use cases Use case “Specify system architecture”
Input None
Steps 1. Use the Model Explorer View to browse along the different abstractions

levels (e.g. RequirementView, SystemView, ComponentView, DeploymentView,
AnalysisView)
2. Select one diagram (e.g. PhysicalArchitecture_BDD in the ModelSystemView)
from the Model Explorer View to get access to the diagram information

Expected results A set of graphical views (e.g. Model-based Editor View, Properties View,
Outline View) provide information about a specified architecture. They are
updated with respect to the selected diagram

Priority Must

Table 3. Defined Test Case WP3_TC_02 for WP3_SC_002 functionality

ID WP3_TC_02
Scope Move and edit along the different abstractions levels
Functionality ID WP3_SC_002
Related use cases Use case “Specify system architecture”
Input None
Steps 1. Browse the model using the Model Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Create a new model (e.g. a Block Definition Diagram)
3. Use the Model-based Editor or the Model Explorer View to create model

entities (e.g. packages, contracts, interfaces, etc...)
4. Use the Model-based Editor or the Model Explorer View to delete model

entities (e.g. packages, contracts, interfaces, etc...)
5. Use the Model Explorer View to delete the model

Expected results A new diagram is created
Priority Must

Table 4. Defined Test Case WP3_TC_19 for WP3_SC_006 functionality

ID WP3_TC_19
Scope Specify the component behavioural model
Functionality ID WP3_SC_006
Related use cases Use case “Specify system architecture”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Create a StateMachine Diagram from the Model Explorer View
3. Use the Model-based Editor View and the related Palette to create,

associate to the component, and model the state machine that defines the
component behaviour

Expected results A new state machine diagram is defined
Priority Should

Table 5. Defined Test Case WP3_TC_25 for WP6_RA_003 functionality

ID WP3_TC_25

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 44

Scope Provide the capability for reuse of pre-developed components and their
accompanying artefacts

Functionality ID WP6_RA_003
Related use cases Use case “Specify system architecture”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Create a Block Definition Diagram (e.g. newPhisicalArchitecture_BDD) from

the Model Explorer View
3. Create a System component (e.g. System2) using the Palette
4. In the Model Explorer View select the System component and create an

Internal Block Diagram
5. Create a Part component inside the System component using the Palette
6. In the Properties View - UML tab, change the type selecting the element to

reuse (e.g. the subsystem BSCU)
Expected results A Diagram with a reused component
Priority Must

Table 6. Defined Test Case WP3_TC_14 for WP3_SC_004 functionality

ID WP3_TC_14
Scope Formalize requirements with formal properties
Functionality ID WP3_SC_004
Related use cases Use case “Specify system architecture”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

SoftwareContract package)
2. Open the diagram (e.g. SoftwareContracts_CD) from the Model Explorer

View
3. Create a “Formal Property” entity using the Palette.
4. Select the created entity and formalize the requirement using the property

view
Expected results The formalized requirement in a textual area of the Property View and in the

Model Explorer View
Priority Must

Table 7. Defined Test Case WP3_TC_16 for WP3_SC_005 functionality

ID WP3_TC_16
Scope Provide the capability for allocating requirements to parts of the component

model
Functionality ID WP3_SC_005
Related use cases Use case “Specify system architecture”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Open the diagram (e.g. PhysicalArchitecture_BDD) from the Model Explorer

View
3. In the Palette of the Model-based Editor View drag an entity with type

Constraint (e.g. CriticalityLevel) over a component (e.g. BSCU).
4. Select the already created constraint
5. In the Property View – UML Tab, text area Specification, specify the

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 44

requirement as formal condition
Expected results The formalized requirement assigned to a specific component
Priority Must

Table 8. Defined Test Case WP3_TC_30 for WP3_CAC_002a functionality

ID WP3_TC_30
Scope Associate a contract to a component
Functionality ID WP3_CAC_002a
Related use cases Use case “Assign a contract to the component”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the diagram (e.g. PhysicalArchitecture_CD) from the Model Explorer

View
3. Select Contract from the Palette and click on the diagram.
4. Give a proper name to the Contract
5. Create a ContractProperty inside the Block/Component (e.g. BSCU)
6. In the Property View – UML Tab, type the just created ContractProperty

with the Contract
Expected results A component updated with a property that represents the contract assignment
Priority Must

Table 9. Defined Test Case WP3_TC_31 for WP3_CAC_002b functionality

ID WP3_TC_31
Scope Drop contract from component
Functionality ID WP3_CAC_002b
Related use cases Use case “Assign a contract to the component”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Open the diagram (e.g. PhysicalArchitecture_CD) from the Model Explorer

View
3. Select a component (e.g. BSCU)
4. Delete the ContractProperty associated to the contract

Expected results The updated diagram without the assignment of contract
Priority Must

Table 10. Defined Test Case WP3_TC_29 for WP3_CAC_004 functionality

ID WP3_TC_29
Scope Specify the refinement of the contract along the hierarchical components

architecture
Functionality ID WP3_CAC_004
Related use cases Use case “Refine component contract”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the diagram (e.g. PhysicalArchitecture_CD) from the Model Explorer

View
3. Select a Block (e.g. BSCU)
4. Select a ContractProperty and use the Properties view – Profile Tab to

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 44

perform a contract refinement
5. The information about the refinement is set in the RefinedBy attribute of

the ContractProperty stereotype
Expected results The block is updated with the information about the contract refinement
Priority Must

Table 11. Defined Test Case WP3_TC_05 for WP3_CAC_013 functionality

ID WP3_TC_05
Scope Specify contracts defining the assumption and the guarantee elements
Functionality ID WP3_CAC_013
Related use cases Use case “Structure properties into contracts”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the diagram (e.g. PhysicalArchitecture_CD) from the Model Explorer

View
3. Select the contract (e.g. BSCU_Safety)
4. Use the Properties view – Profile Tab to bind the existing Formal Properties

as contract’s assumption and guarantee
Expected results The updated diagram with the contract composed to linked assumption and

guarantee property
Priority Should

Table 12. Defined Test Case WP3_TC_15 for WP3_CAC_003 functionality

ID WP3_TC_15
Scope Structure properties into contracts (assumptions/guarantees)
Functionality ID WP3_CAC_003
Related use cases Use case “Structure properties into contracts”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the diagram (e.g. PhysicalArchitecture_CD) from the Model Explorer

View
3. Select a Contract (e.g. BSCU_Safety)
4. Use the Properties view – Contracts Tab to edit the assumption and

guarantee property of the contract
Expected results The updated diagram with the contract composed to edited assumption and

guarantee property
Priority Must

Table 13. Defined Test Case WP3_TC_03 for WP3_SAM_001 functionality

ID WP3_TC_03
Scope Trace all the assurance information with the specific component
Functionality ID WP3_SAM_001
Related use cases Use case “Trace contract to evidence and assurance case”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the Contract or FormalProperty in the model to link (e.g.

System_Brake_Time in the Contracts diagram)

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 44

3. Open the OpenCert tab in the Properties view. The OpenCert tab shows the
relationships stated above between Contract/FormalProperty, Claim and
Artefact

4. Pin the Properties view
5. Drag the Claim/Artefact from the Project Explorer view to claim/artefact

property area of the OpenCert tab
Expected results The creation of a link. To delete the link, select the entity in the OpenCert tab

and click on the delete button available on the right of the OpenCert tab.
Priority Must

Table 14. Defined Test Case WP3_TC_33 for WP3_CAC_012 functionality

ID WP3_TC_33
Scope Browse Contract status
Functionality ID WP3_CAC_012
Related use cases Use case “Browse component contracts status”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the Contract in the model (e.g. BSCU_CMD_Time in the Contracts

diagram)
3. Open the Properties view – OpenCert Tab. It shows the relationships stated

above between Contract/FormalProperty, Claim and Artefact.
4. Check the contract status

Expected results A list of artefacts that support the contract
Priority Must

Table 15. Defined Test Case WP3_TC_06 for WP3_VVA_001

ID WP3_TC_06
Scope Trace immediate evidence with direct evidence
Functionality ID WP3_VVA_001
Related use cases Use case “Refine component contract”
Input None
Steps 1. Browse the model using the Project Explorer View (e.g. go inside the

PhysicalArchitecture package)
2. Select the Contract or FormalProperty in the model to link (e.g.

System_Brake_Time in the Contracts diagram)
3. Open the Properties view – OpenCert Tab. The OpenCert tab shows the

relationships stated above between Contract/FormalProperty, Claim and
Artefact

4. Pin the Properties view
5. Drag the Claim/Artefact from the Project Explorer view to claim/artefact

property area of the OpenCert tab
Expected results A link is created. To delete the link, select the entity in the OpenCert tab and

click on the delete button available on the right of the OpenCert tab.
Priority Should

4.3 System Component Specification Test Results

Table 16 presents, for each test case defined for the implemented System Component Specification basic
building block functionalities, the results of the execution, the status and the validation responsible.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 44

The instructions for installing the used testing environment are described in the AMASS Developer Guide
[9]. The System Component Specification functionalities provided by Prototype Core are detailed in the
AMASS User Manual [8]. The validation data used to perform the execution of the test cases have been
restored from a database backup5 and an existing Eclipse project6 provided by the implementation
responsible.

The test cases have been performed with the following machine configuration: Operating system: Windows
10 Enterprise (64 bits), Processor: Intel Core i7-56000U, CPU @ 2.60 GHz, RAM: 16 GB. All the test cases
have been passed for the building block.

Table 16. Test results for the implemented System Component Specification functionalities

Test Case ID Execution Results Status Rationale Responsible
WP3_TC_01 A set of graphical views provide information about

a specified architecture. They are updated with
respect to the selected diagram.

Passed FBK

WP3_TC_02 A new diagram with new entities are created Passed FBK
WP3_TC_19 A new state machine diagram is defined Passed FBK
WP3_TC_25 A Diagram with a reused component Passed FBK
WP3_TC_14 The formalized requirement in a textual area of the

Property View and in the Model Explorer View
Passed FBK

WP3_TC_16 The formalized requirement assigned to a specific
component

Passed FBK

WP3_TC_30 A component updated with a property that
represents the contract assignment.

Passed FBK

WP3_TC_31 The updated diagram without the assignment of
contract.

Passed FBK

WP3_TC_32 The updated diagram with the reassigned contract Passed FBK
WP3_TC_29 The block is updated with the information about

the contract refinement
Passed FBK

WP3_TC_05 The updated diagram with the contract composed
to linked assumption and guarantee property

Passed FBK

WP3_TC_15 Structure properties into contracts Passed FBK
WP3_TC_03 The creation of a link. To delete the link, select the

entity in the OpenCert tab and click on the delete
button available on the right of the OpenCert tab

Passed FBK

WP3_TC_33 A list of artefacts that support the contract Passed FBK
WP3_TC_06 The creation of a link. To delete the link, select the

entity in the OpenCert tab and click on the delete
button available on the right of the OpenCert tab

Passed FBK

5 The database backup used is SystemComponentSpecTest, located in the SVN repository https://services-
medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/CHESS
6 The Eclipse Project WBS_CHESS_OpenCert is located in the SVN repository https://services-
medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/CHESS

https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/CHESS
https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/CHESS
https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/CHESS
https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/CHESS

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 44

5. Testing and Validation for Assurance Case Specification
Basic Building Block

5.1 Assurance Case Specification Functionalities for Prototype Core

The functionalities concerning the Assurance Case Specification basic building block are defined in the
deliverable D2.1 [10]. Table 17 is an excerpt of these functionalities planned for Prototype Core, their
implementation status and the implementation responsible. The IDs are, as much as possible, taken from
D2.1, but some functionalities planned for Prototype Core have no direct correlation link with any D2.1
requirements and keep here their implementation IDs (WP4_4.8, WP4_4.15 and WP4_4.10). Among the
eight planned functionalities for Prototype Core, two functionalities have not been implemented and are
postponed for the next version of the AMASS platform.

Table 17. Assurance case Specification basic building block functionalities

ID Functionality Status Responsible
WP4_ACS_001 Edit an assurance case in a scalable way Implemented TEC
WP4_ACS_003 Instantiate in the actual assurance case an

argument pattern (concerning safety and
security) selected from the list of patterns
stored

Implemented TEC

WP4_ACS_004 Semi-automatic generation of process
arguments

Postponed

WP4_ACS_005 Provide support for language formalization
inside argument claims

Implemented TEC

WP4_ACS_010 Provide the capability of generating a
compositional assurance case argument

Implemented TEC

WP4_4.8 Navigate from an evidence supporting a claim
to the information about the evidence such as
the evidence characterization and the actual
artefact

Implemented TEC

WP4_4.15 Let different users edit an assurance case in a
collaborative manner

Postponed TEC

WP4_4.19 Edit and store argumentation patterns for later
use

Implemented TEC

5.2 Assurance Case Specification Test Cases

This section presents the set of test cases defined to validate the correct implementation of the Assurance
Case Specification basic building block of Prototype Core. Test cases have been defined based on the use
case scenarios defined in the D2.2 deliverable [11] for the concerned functionalities when existing.

Table 18. Defined Test Case WP4_TC_01 for WP4_4.2 functionality

ID WP4_TC_01
Scope Edit an assurance case in a scalable way
Functionality ID WP4_ACS_001
Related use cases Use Case “Define and navigate an assurance case structure”
Input A reference framework

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 44

Steps 1. Create an assurance project
2. Create a baseline from a big reference framework (ISO 26262)
3. Choose to create automatically the argumentation diagram
4. Browse the argument diagram elements
5. Create new elements, links
6. Update the elements
7. Delete some elements
8. Save the argumentation diagram
9. Create a diagram view
10. Drag and drop element from outline menu to diagram editor
11. Hide an element on the diagram
12. Delete an element on the diagram
13. Create a new diagram from the argumentation model

Expected results Modified assurance case
Priority Must

Table 19. Defined Test Case WP4_TC_03 for WP4_4.5 functionality

ID WP4_TC_03
Scope Provide the capability of generating a compositional assurance case argument
Functionality ID WP4_ACS_010
Related use cases Use Case “Define and navigate an assurance case structure”
Input None
Steps For every argument module:

1. Specify manually the claims set
2. Provide stated and valid assumptions applied to the claims
3. Specify contextual information to define or constraint the scope over which

the arguments are assumed to be valid
4. Map claims (away goals) to the external claims (public goals) that support

to (in other argument modules)
Expected results A compositionally defined assurance case
Priority Must

Table 20. Defined Test Case WP4_TC_04 for WP4_4.8 functionality

ID WP4_TC_04
Scope Connection from the supporting evidences to evidence information
Functionality ID WP4_4.8
Related use cases Use case “Develop Claims and Links to Evidence”
Input Argumentation model, pieces of evidence
Steps 1. Start from an assurance case (result of WP4_TC_01)

2. Create an evidence model
3. Add artefacts in the evidence model
4. Go to the argumentation diagram
5. Edit solutions, contexts and justifications elements and add

corresponding artefacts
Expected results An argumentation model linked to evidences
Priority Must

Table 21. Defined Test Case WP4_TC_05 for WP4_4.9 functionality

ID WP4_TC_05
Scope Drag and drop argumentation patterns

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 44

Functionality ID WP4_ACS_003
Related use cases Use case “Apply an argument pattern”
Input An argumentation model under edition
Steps 1. Start from an existing pattern library (see WP4_TC_08)

2. Open an argumentation diagram
3. Open the template view
4. Drag and drop a pattern into this diagram
5. Arrange and edit the included elements
6. Save the diagram

Expected results Changes in an argumentation model are registered
Priority Must

Table 22. Defined Test Case WP4_TC_06 for WP4_4.13 functionality

ID WP4_TC_06
Scope Provide support for language formalization inside argument claims
Functionality ID WP4_ACS_005
Related use cases None
Input An argumentation model
Steps 1. Create a vocabulary diagram

2. Add categories and terms
3. Open an argumentation diagram
4. Edit the description of the elements using the defined terms
5. Save the vocabulary on an xml file

Expected results A vocabulary and an argumentation using it inside claims
Priority Must

Table 23. Defined Test Case WP4_TC_08 for WP4 _4.19 functionality

ID WP4_TC_08
Scope Edit and store argumentation patterns for later use.
Functionality ID WP4 _4.19
Related use cases Use case “Define and navigate an assurance case structure”
Input None
Steps 1. Create a general local project

2. Define a PATTERNS folder in the project
3. Define the argumentation Opencert/Argumentation preference concerning

patterns directory to this folder
4. Create a new argumentation diagram (to file) in this folder
5. Edit this pattern diagram
6. Save the diagram

Expected results Feasibility of reusing previously created argument packages
Priority Should

5.3 Assurance Case Specification Test Results

Table 24 presents, for each test case defined for the implemented Assurance Case Specification basic
building block functionalities, the results of the execution, the status, a rationale when the execution failed
and finally the AMASS project partner who is responsible for the validation of the test case.

The documentation and data used to perform the test cases execution are as followed: the instructions to
install the used testing environment are described in the AMASS Developer Guide [9]. The Assurance Case

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 44

Specification functionalities provided by Prototype Core are detailed in the AMASS User manual [8]. The
validation data have been restored from a CDO repository7 provided by the implementation responsible.

The test cases have been performed with the following machine configuration: Operating system: Windows
7 Enterprise (64 bits), Processor: Intel Core i7-56000U, CPU @ 2.60 GHz, RAM: 16 GB. Three test cases for
the building block have successfully passed, and three test cases have failed.

Table 24. Test results for the implemented Assurance Case Specification functionalities

Test Case ID Execution
Results

Status Rationale Responsibility

WP4_TC_01 An
argumentation
model

Failed -There are inconsistencies in
terminology between GSN and CACM
in the tool (for example you create a
“goal”, but in the properties tab it is
called a “claim “, and in the cited by
property too)
-The COPY/PASTE functionality is not
available (the lines in the edit menu
are greyed)
-Step 11: the contextual menu Delete
from diagram is greyed
- Step 13: there is no contextual menu
proposed for creating the diagram

CEA

WP4_TC_03 An assurance
case

Failed Reading the user manual, we are not
able to understand how the modules
may be defined in different diagrams
and then linked in a coherent way. We
have just been able to insert GSN
modular extensions concepts in a
diagram

CEA

WP4_TC_04 An
argumentation
model linked
to evidences

Passed CEA

WP4_TC_05 An
argumentation
model built
instantiating a
predefined
pattern

Passed CEA

WP4_TC_06 A vocabulary
and an
argumentation
using it inside
claims

Failed -We create a vocabulary, both on a file
or in the remote repository. However,
we do not success in associating the
vocabulary to the assurance case.
When we use CTRL-SPACE during
claim editing, nothing happens.
-The user manual explains how to load
a vocabulary in xml format but does
not explain how to save the

CEA

7 The CDO repository used is amass.tecnalia.com (server: amass.tecnalia.com, port: 2036)

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 44

vocabulary in an xml file

WP4_TC_08 A pattern Passed There are inconsistencies in
terminology between GSN and CACM
in the tool in the pattern model

CEA

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 44

6. Testing and Validation for Evidence Management Basic
Building Block

6.1 Evidence Management Functionalities for Prototype Core

The functionalities concerning Evidence Management basic building block are defined in the D2.1
deliverable [10]. Table 25 is an excerpt of these functionalities, keeping those planned for Prototype Core,
their implementation status and the AMASS project partner who is responsible for the validation of the test
case. Among the fourteen planned functionalities for Prototype Core, five functionalities have not been
implemented and postponed for the next version of the AMASS platform.

Table 25. Evidence Management basic building block functionalities

ID Functionality Status Responsible
WP5_EM_001 Evidence characteristics specification Implemented TEC
WP5_EM_002 Evidence traceability Implemented TEC
WP5_EM_003 Evidence change impact analysis Implemented TEC
WP5_EM_004 Evidence evaluation Implemented TEC
WP5_EM_005 Evidence information import Implemented TEC
WP5_EM_010 Evidence lifecycle information storage Implemented TEC
WP5_EM_011 Interactive evidence change impact analysis Implemented TEC
WP5_EM_013 Link of evidence to other assets Implemented TEC
WP5_EM_014 Evidence resource specification Implemented TEC
WP5_EM_006 Evidence information export Postponed
WP5_EM_008 Visualization of chains of evidence Postponed
WP5_EM_009 Suggestion of evidence traces Postponed
WP5_EM_012 Evidence trace verification Postponed
WP5_EM_015 Resource part selection Postponed

6.2 Evidence Management Test Cases

The tables in this section define the test cases to validate the correct implementation of the Evidence
Management basic building block of the Prototype Core. Test cases have been defined based on the use
case scenarios defined in the D2.2 deliverable [11] for the concerned functionalities when existing.

Table 26. Defined Test Case WP5_TC_01 for WP5_5.1, WP5_5.5, WP5_5.14, WP5_5.21 functionalities

ID WP5_TC_01
Scope Specification of the main characteristics of an artefact model and its artefacts
Functionality ID WP5_EM_001, WP5_ EM_005, WP5_ EM_014
Related use cases Use case “Characterise Managed Artefact, Import of artefact information from

an external tool”
Input Assurance Project
Steps 1. Open the Assurance Project

2. Configure the artefact repository for SVN
3. Create an Artefact Model for the Assurance Project
4. Add an Artefact Definition
5. Add an Artefact to the Artefact Definition

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 44

6. Fill all the fields of the Artefact
7. Add a Resource to the Artefact
8. Specify the information of the Resource
9. Add a Value to the Artefact
10. Specify the information of the Value
11. Add a Sub-artefact to the Artefact
12. Fill the fields of the Sub-Artefact
13. Add another Artefact
14. Indicate that the precedent version of the second Artefact is the first

Artefact
15. Save the Artefact Model
16. Close the Artefact Model
17. Open the Artefact Models

Expected results It has been possible to execute all the steps, and all the information specified
for the Artefact Model is available

Priority Must

Table 27. Defined Test Case WP5_TC_02 for WP5_5.4, WP5_5.10, WP5_5.21 functionalities

ID WP5_TC_02
Scope Specification of lifecycle information for artefacts
Functionality ID WP5_ EM_004, WP5_ EM_010
Related use cases Use case “Specify Managed Artefact Lifecycle, Specification of evaluation

information for artefacts”
Input • Assurance project

• Artefact Model with Artefacts, of the Assurance Project
Steps 1. Open the Artefact Model

2. Select an Artefact
3. Add an Assurance Asset Event to the Artefact
4. Specify the information of the Event
5. Select another Artefact
6. Add an Assurance Asset Evaluation to the Artefact
7. Specify the information of the Evaluation
8. Save the Artefact Model
9. Close the Artefact Model
10. Open the Artefact Models

Expected results It has been possible to execute all the steps, and all the information specified
for the Artefact Model is available

Priority Must

Table 28. Defined Test Case WP5_TC_03 for WP5_5.2, WP5_5.3, WP5_5.11, WP5_5.21 functionalities

ID WP5_TC_03
Scope Specification of traceability information for artefacts and impact analysis as a

result of artefact change
Functionality ID WP5_ EM_002, WP5_ EM_003, WP5_ EM_011
Related use cases Use case “Specify Traceability between Managed Artefacts, Conduct Impact

Analysis of Managed-Artefact Change”
Input • Assurance project

• Artefact Model with at least two Artefacts, of the Assurance Project
Steps 1. Open the Artefact Model

2. Select an Artefact

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 44

3. Add an Artefact Rel to the Artefact
4. Select the Artefact as source
5. Indicate ‘Modify’ as Change Effect Kinds
6. Select another Artefact as target
7. Save the Artefact Model
8. Add a Modification Event to the first Artefact (i.e. Artefact Rel source)
9. Save the Artefact Model

Expected results It has been possible to execute all the steps, and impact analysis is triggered
Priority Must

Table 29. Defined Test Case WP5_TC_04 for WP5_5.10, WP5_5.13, WP5_5.21 functionalities

ID WP5_TC_04
Scope Specification of process information for artefacts
Functionality ID WP5_ EM_010, WP5_ EM_013
Related use cases Use case “Specify Executed-Process Information for Artefact Use”
Input • Assurance project

• Artefact Model with Artefacts, of the Assurance Project
Steps 1. Open the Assurance Project

2. Create a Process Model for the Assurance Project
3. Add an Activity
4. Fill the fields of the Activity
5. Add an Organization
6. Fill the fields of the Organization
7. Add a Technique
8. Fill the fields of the Technique
9. Associate the Technique to the Activity
10. Add a Person
11. Fill the fields of the Person
12. Associate the Person to the Activity
13. Associate the Person to the Organization
14. Select some Artefacts as required Artefacts for the Activity
15. Select some Artefacts as produced Artefacts for the Activity
16. Add a sub-Activity to the Activity
17. Select an Artefacts as owned Artefact for the Person
18. Select an Artefacts as created Artefact for the Technique
19. Add another Activity
20. Associate the latter Activity with the first one

Expected results It has been possible to execute all the steps, and all the information specified
for the Process Model is available

Priority Must

6.3 Evidence Management Test Results

Table 30 presents, for each test case defined for the implemented Evidence Management basic building
block functionalities, the results of the execution, the status, a rationale when the execution failed and the
AMASS project partner who is responsible for the validation of the test case. The tools used to perform the
test cases execution are a PostgreSQL server, the OpenCert software version in a development version, and
a local CDO repository. The installation instructions for these tools are provided in the AMASS Developer

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 44

Guide [9]. The validation data used to run the test cases have been restored from a databased backup8
provided by the responsible project partner. The AMASS User Manual [8] was used to understand how the
Evidence Management functionalities provided for Prototype Core were working.

The test cases have been performed with the following machine configuration: Operating system: Windows
10 Enterprise (64 bits), Processor: Intel Core i7-6500U, CPU @ 2.50 GHz, RAM: 8 GB. All the test cases have
successfully been passed for the building block.

Table 30. Test results for the implemented Evidence Management functionalities

Test Case ID Execution Results Status Rationale Responsible
WP5_TC_01 An artefact model with the specified

information
Passed TRC

WP5_TC_02 An artefact model with the specified
information

Passed TRC

WP5_TC_03 Impact analysis is triggered Passed TRC
WP5_TC_04 A process model with the specified

information
Passed TRC

8 The database backup used is OpenCert1, located in the SVN repository https://services-
medini.kpit.com/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/OpenCert

https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/OpenCert
https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/OpenCert
https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/OpenCert

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 44

7. Testing and Validation for Compliance Management Basic
Building Block

7.1 Compliance Management Functionalities for Prototype Core

The functionalities concerning Compliance Management basic building block are defined in the D2.1
deliverable [10]. Table 31 is an excerpt of these functionalities planned for Prototype Core, their
implementation status and the AMASS project partner who is responsible for the validation of the test
case. Among the five planned functionalities for Prototype Core, one functionality was not implemented
and postponed for the next version of the AMASS platform.

Table 31. Compliance Management basic building block functionalities

ID Functionality Status Responsible
WP6_CM_001 Retrieving, digitalizing and storing of a set of

industrial standards (including the parts, objectives,
practices, goals/requirements, criticality levels from
the standards)

Implemented TEC

WP6_CM_002 Specification of the interpretation of how to comply
with an industrial standard in a specific project (e.g.,
check list with specific compliance requirements)

Implemented TEC

WP6_CM_005 Web-based monitoring of Compliance status to be
filtered by any custom criteria.

Implemented TEC

WP6_CM_008 The AMASS tools shall enable users to visualize
process compliance. This could be done via
compliance maps (matrix) or via arguments aimed at
justifying the satisfaction of the requirements
coming from the standards.

Implemented TEC

WP6_CM_006 Compliance status to externals Postponed

7.2 Compliance Management Test Cases

The tables in this section below define the test cases to validate the correct implementation of the
Compliance Management basic building block of Prototype Core. Test cases have been defined based on
the use case scenarios defined in the D2.2 deliverable for the concerned functionalities when existing.

Table 32. Defined Test Case WP6_TC_01 for WP6_6.1 functionality

ID WP6_TC_01
Scope Retrieve, digitalize and store a set of norms, recommendations, standards, or

quality models.
Functionality ID WP6_CM_001
Related use cases Use case “Capture information from standards”
Input Standard information
Steps 1. Create a new standard model

2. Specify the characteristics that define the standard in the properties view
3. Structure/Categorize the standard by parts, objectives, activities,

practices, goals and requirements
4. Describe the parts, objectives, activities, practices, goals and requirements

contained in the standard in the properties view

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 44

Expected results Standard model
Priority Must

Table 33. Defined Test Case WP6_TC_02 for WP6_6.1 functionality

ID WP6_TC_02
Scope Retrieve, digitalize and store a set of norms, recommendations, standards, or

quality models.
Functionality ID WP6_CM_001
Related use cases Use case “Capture information from standards”
Input RefFramework in OpenCert
Steps 1. Create a project baseline from a standard model -
Expected results Project Baseline
Priority Must

Table 34. Defined Test Case WP6_TC_03 for WP6_6.1 functionality

ID WP6_TC_03
Scope Retrieve, digitalize and store a set of norms, recommendations, standards, or

quality models.
Functionality ID WP6_CM_001
Related use cases Use case “Capture information from standards”
Input Baseline in OpenCert
Steps 1. Generate argument fragments for the assurance case in relation with

process-based argumentation from the baseline
Expected results Argument fragments
Priority Must

Table 35. Defined Test Case WP6_TC_04 for WP6_6.2 functionality

ID WP6_TC_04
Scope Create, modify and drop assurance information
Functionality ID WP6_CM_002
Related use cases Use case “Manage Assurance Project”
Input Library and configuration models exported from EPF
Steps 1. Import process related information from EPF
Expected results Process and Artefact (Evidence) models
Priority Must

Table 36. Defined Test Case WP6_TC_05 for WP6_6.2, WP6_6.6 functionalities

ID WP6_TC_05
Scope Create, modify and drop assurance information
Functionality ID WP6_CM_002, WP6_CM_008
Related use cases Use case “Manage Assurance Project”
Input A model containing information of the standard available in the platform
Steps 1. Create a new assurance project

2. Specify the baseline in association with a standard which will be followed in
the project

3. Specify the compliance maps/links through the project lifecycle.
Expected results Assurance Project
Priority Must

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 44

Table 37. Defined Test Case WP6_TC_06 for WP6_6.3 functionality

ID WP6_TC_06
Scope Information about the assurance activities
Functionality ID WP6_CM_005
Related use cases Use case “Monitor Assurance Project Status”
Input Assurance project in the platform
Steps 1. Select an assurance project

2. Define a filter to find specific compliance information
Expected results Compliance information
Priority Must

7.3 Compliance Management Test Results

Table 38 presents, for each test case defined for the implemented Compliance Management basic building
block functionalities, the results of the execution, the status, a rationale when the execution was not fully
satisfying the expected results, and the AMASS project partner who is responsible for the validation of the
test case.

The installation instructions for the validation environment and the description of the Compliance
Management functionalities provided for Prototype Core are respectively found in the AMASS Developer
Guide [9] and the AMASS User Manual [8]. As testing data, we use a database backup containing examples
of assurance project and evidence model. We also used some files exported from EPF tool for the process
model9.

The test cases have been performed with the following machine configuration: Operating system: Windows
7 Enterprise (64 bits), Processor: Intel Core i7-56000U, CPU @ 2.60 GHz, RAM: 16 GB. Four test cases have
successfully been passed for the building block, when two test cases have not been fully corresponding to
the expected results.

Table 38. Test results for the implemented Compliance Management basic building block functionalities

Test Case ID Execution Results Status Rationale Responsible
WP6_TC_01 A standard’s model with its

characteristics
Passed
but

There is no practices and
goals to fill in in the
properties view for the
element

CEA

WP6_TC_02 A new baseline model Passed CEA
WP6_TC_03 An argumentation model Passed

but
The argumentation model is
not generated from the
baseline, but together with
the baseline from a new
assurance project creation.
When a different baseline is
created, we are not able to
generate the corresponding
argumentation model

CEA

WP6_TC_04 Process and artefact models Passed CEA

9 The EPF files used are located in the SVN repository https://services-medini.kpit.com/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/EPF/Exported XML

https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/EPF
https://services-medini.kpit.com/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/Vaditation_Data/EPF

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 44

imported from EPF
WP6_TC_05 An Assurance Project with

compliance links done.
Summary can be checked
through the mapping table

Passed CEA

WP6_TC_06 The Compliance information
related to a specific element
type (activity, requirement,
etc.)

Passed CEA

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 44

8. Prototype Core Validation Synthesis

8.1 Analysis of Test Results

Table 39 summarizes the implementation status of the Prototype Core functionalities per basic building
block. In total, 43 functionalities have been planned for the Core Prototype: nine of them have been
postponed, while 30 functionalities have successfully been implemented and four functionalities have not
met the expected behaviours.

Table 39. Prototype Core Implementation Status

Functionalities System
Component
Specification

Assurance
Case
Specification

Evidence
Management

Compliance
Management

AMASS
Prototype
Core

Correctly Implemented 14 3 9 4 30
Implemented but
required amelioration

0 3 0 1 4

Postponed 2 1 5 1 9
Total 16 7 14 6 43

We defined 32 test cases to test and validate the (34) implemented functionalities of AMASS Prototype
Core: 27/32 test cases have been successfully PASSED including all the ones defined for System Component
Specification and Evidence Management basic building blocks. Two test cases result with the status PASSED
BUT, both concerning Compliance Management functionalities. Finally, three test cases concerning
Assurance Case Specification functionalities FAILED to provide the expected results. For each test case with
the status FAILED or PASSED BUT, we created a ticket corresponding to the problem identified in the
software or user guide (user manual and developer guide) in the AMASS wiki to report them to the
implementation responsible.

Table 40. Results of the test cases for Prototype Core implemented functionalities

Test Results Status System
Component
Specification

Assurance
Case
Specification

Evidence
Management

Compliance
Management

AMASS
Prototype
Core

Passed 15 3 4 5 27
Passed but 0 0 0 2 2
Failed 0 3 0 0 3
Total 15 6 4 7 32

From these results, we have the following findings:
• Difficulty to have consistent and up to date reference documents to base the tests on. The D2.1

deliverable, the D2.2 deliverable and the user manual, which are the main input documents for the
tests, were in-progress when we started the validation task. Hence, the tests are based on
requirements and use case scenarios that were either incomplete or no more up to date, making it
difficult to exploit. We also found some discrepancies between the User Manual and Developer Guide
and the software in several cases: either they were not as up to date as the software or vice versa.

• Some required functionalities have not been correctly or not completely implemented. In some cases,
the platform did not implement some functionalities that were required for the AMASS Prototype Core
(postponed functionalities). In other cases, the expected results of the test cases have not met because

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 44

the relative feature is simply not implemented, e.g. regarding the vocabulary and the argumentation
model for the Assurance Case Specification basic building block.

• The tests execution on the platform revealed some problems concerning the tool integration between
the basic building blocks as well as some usability and performance concerns.

8.2 Recommendations

In this section, we make some recommendations considering the results of testing and validation of the
AMASS Prototype Core:
• In priority, we must correct bugs with respect to new developments and implement the postponed

functionalities. This is because, firstly, the cost of a bug correction and tests increases with time, and
secondly, some functionalities targeted in the version 2 of the AMASS platform (Prototype P1) will be
built on top of the ones planned in this Prototype Core.
 Recommendation: Use an issue-tracker system to follow the status of bug report.

• We must update the user manual and developer guide with the requirements and the use case
scenarios defined in the deliverables D2.1 and D2.2 in order to create a better alignment between
these documents. To this end,
o it will be useful to define the means to facilitate the traceability analysis between

 requirements for the AMASS platform,
 the functionalities defined (at a conceptual level) and implemented to meet them,
 the test cases and results resulting from the validation.
 Recommendation: Report any inconsistency between requirements and functionalities in the

issue-tracking system. Make sure these inconsistencies are solved before the next validation
iteration. Ideally, define a traceability matrix to assist in checking the completeness and
consistency of relationships between requirements, conceptual models, design, test cases and
test results.

o the requirements and use cases may also be written in a more homogeneous manner to ensure
internal and external consistency.
 Recommendation: Define strict template and vocabulary for requirement and use case

definition.

• In addition to the user manual, it would also be very helpful to have ready methodological guidelines to
understand and use the platform, since the user manual specifies how to perform an action or launch a
functionality but does not include the overall rationale for performing such actions and functionalities
(in this way).

 Recommendation: Define methodological guidelines for AMASS platform.

• The next AMASS Prototype P1 will extend the basic building blocks of the Prototype Core with four (4)
pillars which correspond to specific project Scientific and Technical Objectives (STO), namely :
Architecture-Driven Assurance (STO1), Multi-concern Assurance (STO2), Seamless Interoperability
(STO3) and Cross/Intra-Domain Reuse (STO4) (see Figure 1). The validation of the AMASS Prototype P1
will then focus on integration and interoperability testing in addition to the validation of the individual
components.

 Recommendation: Define specific test cases to validate the integration of the individual
components of the platform.

• To enhance further the validation results, the test cases definition by the validation team must be
carried out in closer collaboration with the implementation team prior to their execution, to early
identify any comprehension discrepancies of the implemented functionalities.

 Recommendation: Define a test cases review and validation phase before their execution.

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 44

Abbreviations and Definitions
AMASS Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical

Systems
API Application Programming Interface
ARTA AMASS Reference Tool Architecture
ATL ATLAS Transformation Language
AUTOSAR AUTomotive Open System ARchitecture
BPMN Business Process Model and Notation
BSCU Braking System Control Unit
BVR Base Variability Resolution
CACM Common Assurance and Certification Meta-model
CBSE Component-Based Software Engineering
CCL Common Certification Language
CDO Connected Data Objects
COTS Commercial Off The Shelf
CPS Cyber Physical Systems
CPU Central Processing Unit
CVL Common Variability Language
DSL Domain Specific Language
EPF Eclipse Process Framework
GB Gigabyte
GSN Goal Structuring Notation
IMA Integrated Modular Avionics
MDE Model Driven Engineering
MOF Meta Object Facility
MOTS Modified off the shelf
OMG Object Management Group
OSLC Open Services for Lifecycle Collaboration
OTS Off the shelf
PLE Process Line Engineering
RAM Random-access memory
RQS Requirements Quality Suite
SACM Structured Assurance Case Meta-model
SEI Software Engineering Institute
SEooC Safety Element out of Context
SKR System Knowledge Repository
SOUP Software of Unknown Pedigree
SPEM Software and Systems Process Engineering Meta-model
STO Scientific and Technical Objectives
SVN Subversion
TRL Technology Readyness Level

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 44

UDP User-defined Process
V&V Verification & Validation

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 44

References
[1] OPENCOSS project. 2015. http://www.opencoss-project.eu
[2] SafeCer Project. 2015. http://safecer.eu
[3] CHESS project. 2015. http://www.chess-project.org/
[4] PolarSys. https://www.polarsys.org
[5] PolarSys: CHESS project. https://www.polarsys.org/projects/polarsys.chess
[6] PolarSys: OpenCert project. https://www.polarsys.org/projects/polarsys.opencert
[7] Eclipse Process Framework Project (EPF) https://eclipse.org/epf/

[8] AMASS project: Prototype Core User Manual10. 2017.
https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_UserManual.docx

[9] AMASS Developer Guide11. 2017
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_DeveloperGuide.doc

[10] AMASS D2.1 Business cases and high-level requirements. 28 February 2017.
[11] AMASS D2.2 AMASS reference architecture (a). 30 November 2016.
[12] AMASS D3.4 - Prototype for architecture-driven assurance (a). 23 December 2016.
[13] AMASS D4.4 - Prototype for multiconcern assurance (a). 31 January 2017.
[14] AMASS D5.4 - Prototype for seamless interoperability (a). 31 March 2017.
[15] AMASS D6.4 - Prototype for cross/intra-domain reuse (a). 31 March 2017.

10 The current User Manual is a draft document; the final version of the manual will be integrated in D2.5 - AMASS
User guidance and methodological framework (m31).
11 The current Developer Guide is a draft document; the final version of the manual will be integrated in D2.5 -
AMASS User guidance and methodological framework (m31).

http://www.opencoss-project.eu/
http://safecer.eu/
http://www.chess-project.org/
https://www.polarsys.org/
https://www.polarsys.org/projects/polarsys.chess
https://www.polarsys.org/projects/polarsys.opencert
https://eclipse.org/epf/
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_UserManual.docx
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_DeveloperGuide.doc
https://services-medini.kpit.com/AMASS/browser/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeCore/AMASS_Prototype1_DeveloperGuide.doc
http://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.4_Prototype%20for%20architecture-driven%20assurance%20%28a%29_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf
http://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.4_Prototype-for-seamless-interoperability-(a)_AMASS_final.pdf
http://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.4_Prototype-for-cross-intra-domain-reuse-(a)_AMASS_final.pdf

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 44

Appendix A: Validation status of the basic building blocks
The table below summarizes the validation status of the basic building blocks. Each functionality of the
Prototype Core is traced to the test cases that evaluated them, if existing. The colour code indicates that
the status of associated test cases to the functionalities:

• Green indicates that all test cases have the status PASSED hence the functionality is correctly
implemented.

• Red indicates that the test cases FAILED hence the functionality was not correctly implemented.
• Orange indicates the test cases PASSED BUT we identified some needed improvements to fully

meet the expected results for the functionality.
• Yellow indicates that we did not define test cases to evaluate the functionality, as it is postponed

for next version of the platform, so not implemented yet.

Table 41. Prototype Core Functionalities Status

Functionality Test Cases Status
System components specification
WP3_SC_001 Browse along the different abstractions levels WP3_TC_01
WP3_SC_002 Move, edit along the different abstractions levels WP3_TC_02
WP3_SC_004 Formalize requirements with formal properties WP3_TC_14
WP3_SC_005 Allocating requirements to parts of the component model. WP3_TC_16
WP3_SC_006 Specify the component behavioural model WP3_TC_19
WP3_SC_007 Fault injection (include faulty behaviour of a component)
WP3_SAM_001 Trace all the assurance information with the specific component WP3_TC_03
WP6_RA_003 Reuse of pre-developed components and artefacts WP3_TC_25
WP3_VVA_001 Trace contract evidence and assurance case WP3_TC_06
WP3_VVA_004 Trace requirements validation checks
WP3_CAC_002 Associate a contract to a component WP3_TC_30
WP3_CAC_002 Drop contract from component WP3_TC_31, 32
WP3_CAC_003 Structure properties into contracts (assumptions/guarantees) WP3_TC_15
WP3_CAC_004 Refinement of a contract along the hierarchical components WP3_TC_29
WP3_CAC_012 Browse Contract status WP3_TC_33
WP3_CAC_013 Specify contracts : the assumption and the guarantee elements WP3_TC_05
Assurance Case Specification
WP4_ACS_001 Edit an assurance case in a scalable way WP4_TC_01
WP4_ACS_003 Instantiate in the actual assurance case an argument pattern WP4_TC_05
WP4_ACS_004 semi-automatic generation of process arguments
WP4_ACS_005 Provide support for language formalization in argument claims WP4_TC_06
WP4_ACS_010 Capability of generating a compositional assurance case arg. WP4_TC_03
WP4_4.8 Navigation from an evidence supporting a claim to its information WP4_TC_04
WP4_4.15 Edit an assurance case in collaboration with other people
WP4_4.19 Edit and store argumentation patterns for later use. WP4_TC_08
Evidence Management
WP5_EM_001 Evidence characteristics specification WP5_TC_01
WP5_EM_002 Evidence traceability WP5_TC_03
WP5_EM_003 Evidence change impact analysis WP5_TC_03
WP5_EM_004 Evidence evaluation WP5_TC_02
WP5_EM_005 Evidence information import WP5_TC_01
WP5_EM_006 Evidence information export
WP5_EM_008 Visualization of chains of evidence
WP5_EM_009 Suggestion of evidence traces
WP5_EM_010 Evidence lifecycle information storage WP5_TC_02, 04
WP5_EM_011 Interactive evidence change impact analysis WP5_TC_03

 AMASS Integrated AMASS platform (a) D2.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 44

WP5_EM_012 Evidence trace verification
WP5_EM_013 Link of evidence to other assets WP5_TC_04
WP5_EM_014 Evidence resource specification WP5_TC_01
WP5_EM_015 Resource part selection
Compliance management
WP6_CM_001 Retrieving, digitalizing and storing of a set of industrial standards WP6_TC_01, 02, 03
WP6_CM_002 Specify how to comply with an industrial standard WP6_TC_04, 05, 07
WP6_CM_005 Monitoring of Compliance status, filtering by custom criteria. WP6_TC_06
WP6_CM_006 Compliance status to externals
WP6_CM_008 Visualize of process compliance via maps or arguments WP6_TC_05

	Executive Summary
	1. Introduction
	1.1 Scope
	1.2 Purpose of the deliverable
	1.3 Relations to others deliverables
	1.4 Structure of the document

	2. AMASS Platform Architecture
	2.1 Conceptual Architecture
	2.2 Implementation Architecture
	2.3 AMASS Platform Prototype Core

	3. Testing and Validation Methodology
	4. Testing and Validation for System Component Specification Basic Building Block
	4.1 System Component Specification Functionalities for Prototype Core
	4.2 System Component Specification Test Cases
	4.3 System Component Specification Test Results

	5. Testing and Validation for Assurance Case Specification Basic Building Block
	5.1 Assurance Case Specification Functionalities for Prototype Core
	5.2 Assurance Case Specification Test Cases
	5.3 Assurance Case Specification Test Results

	6. Testing and Validation for Evidence Management Basic Building Block
	6.1 Evidence Management Functionalities for Prototype Core
	6.2 Evidence Management Test Cases
	6.3 Evidence Management Test Results

	7. Testing and Validation for Compliance Management Basic Building Block
	7.1 Compliance Management Functionalities for Prototype Core
	7.2 Compliance Management Test Cases
	7.3 Compliance Management Test Results

	8. Prototype Core Validation Synthesis
	8.1 Analysis of Test Results
	8.2 Recommendations

	Abbreviations and Definitions
	References
	Appendix A: Validation status of the basic building blocks

