

Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems

AMASS Usage Scenario 3: Architecture Refinement

2nd EAB Workshop Västerås, September 17, 2018 Stefano Puri WP3 Leader

Introduction – Architecture Driven Assurance Areas

- Requirements specification
 - Support for formalization, quality evaluation
- System Architecture Modelling for Assurance
 - Exploit the system architecture in the assurance case
 - System architecture languages
 - Architecture trade-off and comparison
- Architectural Patterns for Assurance
 - Interaction between assurance and architectural patterns
 - Architectural patterns from standards
- Contract-based assurance
 - Assurance patterns for contract-based design
 - Enrich evidence produced by contract-based design
- V&V-based assurance
 - Enrich V&V techniques

Scenario

 To support system architecture design/refinement, allowing reuse and improvement of system assurance

Higher-level objectives & expected gains

- **O1:** define a holistic approach for *architecture-driven assurance* to leverage the reuse opportunities in assurance and certification by directly and explicitly addressing current technologies and HW/SW architectures needs.
- Metrics (subset)
 - Effort for assurance and certification
 - Effectiveness in system architecture issues identification
 - Number of requirements formalized

Scenario step: requirements specification

- Requirements can be written in informal language
 - Usage of OpenCert facilities to measure the quality of the requirements
- Templates for semi formal requirements specification are supported
- Formal definition of requirements is supported by using temporal logic
 - Usage of OpenCert facilities to find inconsistencies/redundance

Create a new Assertion

Whenever acceleration decreases below -50m/s^2 then in response

Scenario step: architectural modeling

- System architecture can be modeled by using Papyrus SysML tool (part of OpenCert) or by using external tool (e.g. Rhapsody, Medini, SafetyArchitect)
- Several importers are available to connect external modelling tool to Papyrus
- System components are defined out of any context, with their properties and then instantiated in the given context

Scenario step: contracts definition

- Requirements are assigned to components
- Contracts are created for a component
 - Pair of assumption and guarantee formal properties
 - A contract covers one or more requirements
 - The assumption and guarantee elaborate upon the component properties
 - Usage of weak and strong contracts
 - E.g., weak contracts are used to specify timing behaviour in different environments, or safety behaviour under different failure conditions

«Requirement»

PDPM_Alarm

«Requirement»

PCDM_Resetting

Scenario step: architectural refinement

- System components with high complexity are decomposed by using fine-grained components (parts)
 - Top-down or bottom-up process
 - The implementation of a composite component is completely delegated to its parts
 - The interfaces of the composite component have to be realized/required by the parts
 - Sub-Requirements are associated to the parts
 - Components parts are connected together via their interfaces

Scenario step: contracts refinement

- Contracts covering the sub-requirements are defined for the sub-components
- Contracts decomposition follows the requirements refinement

Scenario step: apply early analysis

- Usage of the CHESS feature and available integration with external tool OCRA to
 - verify the components assembly is correct wrt the associated contract assumption-guarantee
 - verify that the contracts decomposition is correct
 - E.g., if the refinement is not correct, then contracts/requirement has to be changed and the analysis reexecuted

■ ICM] DPM_ErrorType ICM ICM ICM ICM ICM ICM ICM IC		Step 1	Step 2	Step 3	Step 4
Success ICM] PCDM_ErrorType Success ICM] PCDM_ResetType Success ICM] DPM_ResetType Success ICCM] DPM_ErrorType Success ICCM] TCreceptionType Not Ok TCreceptionType Icim] DPM_ErrorType Icim] PCDM_ErrorType Icim] PCDM_ResetType Icim] DPM_ResetType Icim] DPM_ResetType Icim] DPM_ResetType	Ports	State Ports	State Ports	State Ports	State Ports
	□ OEU_inst □ pcdm				
	heater3_temp	5.0		5.0	
	heater2_temp	3.0		3.0	
	heater1_temp	4.0		4.0	
	pcdm_error	FALSE		TRUE	
	conf	CM_Usaitted		CM_Usaitted	
	- □ dpm				
	image1	2		2	
	image2	0		0	
	image3	1		1	
	dpm_error	FALSE		TRUE	
	dpm_fclk	FALSE		FALSE	
	Heater3_temperature	7.0		7.0	
	icm				

Scenario Step: Weak assumptions validity check

 Automatic selection/filtering of the weak contracts applicable in the given environment

Scenario step – apply safety analysis

Scenario step: link to assurance

- Automatic generation of argumentation fragments
 - Usage of traceability links between system architecture, assurance case and evidence entities

Scenario Outcome

- Number of requirements formalized
 - Requirements template, semi-formal to formal requirement transformation, ad-hoc LTL editor assistance allow to improve this metric
 - Good quality of requirements and requirement traceability can be assured
- Effort for assurance and certification
 - With tools like CHESS, Savona and using SysML and contracts in comparison to conventional approaches, it is possible to achieve a higher number of automated assurance objectives and hence an improvement of this metric
 - Using formal proof decreases the cost of issue correction by detecting them earlier and raise the assurance
 - Using contracts we can reuse the assurance results for a subsystem in another context or system
 - Usage of strong and weak contracts formalism
 - Evidences about contracts fullfillment have to be provided for the leaf components only
 - By providing the contract refinement verification results as evidence
 - System assurance is improved by collecting the automatically generated evidences
- Effectiveness in system architecture issues identification
 - By using Component+Contract based design and connection to V&V formal verification tools it is possible to improve this metric
 - E.g. the guarantee that the components assembly /decomposition is correct reduces system design and integration errors

OpenCert P2 prototype

Early Safety Assessment

Combine <u>simulation-based fault injection</u>, together with the <u>contract-based approach</u> and the <u>insertion of monitors</u>.

Support for Parameterized Architecture (reuse oriented)

Parametric number of components/ports

Load balancer (LB) example: boolean parameters

Others P2 features

- Extended support for metrics
 - About requiremens and architecture
- Extended integration with external modelling/analysis tools
 - Scade, Savona, SafetyArchitect
- FMEA generation from CHESS models
- Support for verification and validation of behavioural models
 - CHESS+external validation tools

Conclusions

- Several mode-based features and methodology guidelines have been provided, to support the different steps of CPSs development and feed the assurance case
 - Requirements specification, architectural design, V&V
 - Usage of Papyrus/CHESS tool integrated within OpenCert and external tools
- Currently we can provide claims stating why the AMASS architecture-driven assurance solution can improve the identified metrics
- Final iteration of AMASS case studies will be run in the next period by using the final prototype iteration (P2)
 - Values for identified metrics will be collected

Thank you for your attention!

